Abstract

So far, during classification, we have been interested in finding a model that decides if an instance belongs to a class or not; the model’s answer would be a yes or no with certainty. The situation with Bayesian modeling for decision-making is different—it estimates the probability that an instance belongs to a certain class, which is more nuanced [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.D. Hoff, A First Course in Bayesian Statistical Methods (Springer, New York, 2009)

    Book  Google Scholar 

  2. M. Gopal, Applied Machine Learning (McGraw-Hill Education, 2018)

    Google Scholar 

  3. D.D. Lewis, Naive (Bayes) at forty: The independence assumption in information retrieval, in Machine Learning: ECML-98, ed. by C. Nédellec, C. Rouveirol, (Springer, Berlin, Heidelberg, 1998), pp. 4–15

    Chapter  Google Scholar 

  4. I. Kononenko, Semi-naive bayesian classifier, in Machine Learning — EWSL-91, ed. by Y. Kodratoff, (Springer, Berlin, Heidelberg, 1991), pp. 206–219

    Chapter  Google Scholar 

  5. P. Golpour et al., Comparison of support vector machine, Naïve Bayes and logistic regression for assessing the necessity for coronary angiography. Int. J. Environ Res. Public Health 17(18), 6449 (4 Sep 2020). https://doi.org/10.3390/ijerph17186449

    Article  Google Scholar 

  6. D. Harada, H. Asanoi, T. Noto, J. Takagawa, Naive bayes prediction of the development of cardiac events in heart failure with preserved ejection fraction in an outpatient clinic - beyond B-type natriuretic peptide. Circ. J. 86(1), 37–46 (30 Jul 2021). https://doi.org/10.1253/circj.CJ-21-0131

    Article  Google Scholar 

  7. N.A. Mansour, A.I. Saleh, M. Badawy, H.A. Ali, Accurate detection of Covid-19 patients based on Feature Correlated Naïve Bayes (FCNB) classification strategy. J. Ambient Intell. Humaniz. Comput. 13(1), 41–73 (15 Jan 2021). https://doi.org/10.1007/s12652-020-02883-2

    Article  Google Scholar 

  8. L. Yang et al., Prediction model of the response to neoadjuvant chemotherapy in breast cancers by a naive Bayes algorithm. Comput. Methods Prog. Biomed. 192, 105458 (Aug 2020). https://doi.org/10.1016/j.cmpb.2020.105458

    Article  Google Scholar 

  9. H. Zhang et al., Develo** novel computational prediction models for assessing chemical-induced neurotoxicity using naïve Bayes classifier technique. Food Chem. Toxicol. 143, 111513 (Sep 2020). https://doi.org/10.1016/j.fct.2020.111513

    Article  Google Scholar 

  10. E. Crawford, J. Kay, E. McCreath, IEMS - the intelligent email sorter, in Presented at the Proceedings of the Nineteenth International Conference on Machine Learning (2002)

    Google Scholar 

  11. R. J. Mooney, L. Roy, Content-based book recommending using learning for text categorization. Presented at the Proceedings of the fifth ACM conference on Digital libraries, San Antonio, Texas, USA, (2000). [Online]. Available: https://doi.org/10.1145/336597.336662

  12. T. Trappenberg, Fundamentals of Machine Learning (OUP, Oxford, 2019)

    Book  Google Scholar 

  13. R.R. Bouckaert, Naive Bayes classifiers that perform well with continuous variables, in AI 2004: Advances in Artificial Intelligence, ed. by G. I. Webb, X. Yu, (Springer, Berlin, Heidelberg, 2005), pp. 1089–1094

    Google Scholar 

  14. C. N. Hsu, H. J. Huang, T. T. Wong, Why discretization works for Naïve Bayesian classiers, in 17th International Conference on Machine Learning (ICML-2000), (2000)

    Google Scholar 

  15. Y. Yang, G.I. Webb, On why discretization works for naive-bayes classifiers, in AI 2003: Advances in Artificial Intelligence, ed. by T. D. Gedeon, L. C. C. Fung, (Springer, Berlin, Heidelberg, 2003), pp. 440–452

    Chapter  Google Scholar 

  16. G. H. John, P. Langley, Estimating continuous distributions in BAYESIAN classifiers. Presented at the Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Montréal, Qué, Canada, (1995)

    Google Scholar 

  17. J. Brownlee, Master Machine Learning Algorithms: Discover How They Work and Implement them from Scratch (Jason Brownlee, 2016)

    Google Scholar 

  18. P. Domingos, M. Pazzani, On the Optimality of the Simple Bayesian Classifier Under Zero-One Loss. Mach. Learn. 29(2), 103–130 (1 Nov 1997). https://doi.org/10.1023/A:1007413511361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Morr, C., Jammal, M., Ali-Hassan, H., El-Hallak, W. (2022). Naïve Bayes. In: Machine Learning for Practical Decision Making. International Series in Operations Research & Management Science, vol 334. Springer, Cham. https://doi.org/10.1007/978-3-031-16990-8_9

Download citation

Publish with us

Policies and ethics

Navigation