Genetic Diversity of Fig Varieties

  • Chapter
  • First Online:
Fig (Ficus carica): Production, Processing, and Properties
  • 558 Accesses

Abstract

Ficus carica L., the common fig, is a Mediterranean crop with ambiguous cultivar identification. This fruit is of great importance worldwide, being able to be implanted as a new source of agricultural variability. Therefore, the genetic characterization of the available germplasm is involved in restoring and protecting potential local varieties for ecological agriculture. The assessment of the genetic variability of fig is a key tool for the selected programs to identify varieties that could be used as natural sources of attracting bioactive compounds that may have an array of potential applications. Hybridization, local adaptation, clinal variation, and recurrent colonization episodes contribute to genetic variability. Thus, autogamous species invasion resulted in genetically homogeneous populations. Genetical diversity of fig is also critical for predicting its future dispersal in the face of global climate change. From that perspective, the current knowledge of the genetic variability of Ficus carica L. is reviewed in this chapter. Fingerprinting was done on various samples, including local varieties, caprifigs, and reference samples. Therefore, many approaches have been employed in DNA fingerprinting of the Ficus carica L., including PCR-RFLP fingerprinting, SSR, and Microsatellite markers as efficient methods to evaluate the fig tree diversity. It was concluded that the most divergent accessions presented characteristics of agronomic interest, allowing the selection of features to subsidize conservation works, genetic improvement, and crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMOVA:

Molecular Variance Analysis

ANOVA:

Analysis of variance

GO:

Genetic Ontology

ISSR:

Inter-Simple Sequence Repeats

Itraq:

Isobaric Tags for Relative and Absolute Quantitation

LTR:

Long Terminal Repeat

NCGR:

National Clonal Germplasm Repository

PCA:

Principal Component Analysis

PCR:

Polymerase Chain Reaction

RAPD:

Random Amplified Polymorphism DNA

RFLP:

Restriction Fragment Length Polymorphism

SAS:

Statistical Analysis System

SSR:

Simple-Sequence Repeats

UPGMA:

Unweighted Pair-Group Approach of Arithmetic Averages

References

  • Ahmad, S., Bhatti, F. R., Khaliq, F. H., Irshad, S., & Madni, A. (2013). A review on the prosperous phytochemical and pharmacological effects of Ficus carica. International Journal of Bioassays, 2(5), 843–849.

    Google Scholar 

  • Ahmed, B. A., Ghada, B., Laila, E., Hafid, A., Bouchaib, K., & Amel, S. H. (2015). Use of morphological traits and microsatellite markers to characterize the Tunisian cultivated and wild figs (Ficus carica L.). Biochemical Systematics and Ecology, 59, 209–219.

    Article  CAS  Google Scholar 

  • Aljane, F. (2011). Caractérisation et évaluation des accessions locales de figuier (Ficus carica L,) en Tunisie et sélection des plus performantes (Doctoral dissertation, Thèse de doctorat, Faculté des Sciences).

    Google Scholar 

  • Amessis-Ouchemoukh, N., Ouchemoukh, S., Meziant, N., Idiri, Y., Hernanz, D., Stinco, C. M., Rodríguez-Pulido, J. R., Heredia, J. F., Madani, K., & Luis, J. (2017). Bioactive metabolites involved in the antioxidant, anticancer and anticalpain activities of Ficus carica L., Ceratonia siliqua L. and Quercus ilex L. extracts. Industrial Crops and Products, 95, 6–17.

    Article  CAS  Google Scholar 

  • Barolo, M. I., Mostacero, N. R., & López, S. N. (2014). Ficus carica L. (Moraceae): An ancient source of food and health. Food Chemistry, 164, 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Berg, C. C. (2003). Flora Malesiana precursor for the treatment of Moraceae 1: The main subdivision of Ficus: The subgenera. Blumea-Biodiversity, Evolution and Biogeography of Plants, 48(1), 166–177.

    Article  Google Scholar 

  • Boudchicha, R. H. (2019). Etude de la diversité génétique de quelques variétés locales de figuier (Ficus carica L.) en Algérie. Doctoral dissertation, Université de Batna 2

    Google Scholar 

  • Çalişkan, O., & Polat, A. A. (2012). Morphological diversity among fig (Ficus carica L.) accessions sampled from the eastern Mediterranean region of Turkey. Turkish Journal of Agriculture and Forestry, 36(2), 179–193.

    Google Scholar 

  • Chai, L., Wang, Z., Chai, P., Chen, S., & Ma, H. (2017). Transcriptome analysis of San Pedro-type fig (Ficus carica L.) parthenocarpic breba and non-parthenocarpic main crop reveals divergent phytohormone-related gene expression. Tree Genetics & Genomes, 13(4), 1–14.

    Article  Google Scholar 

  • Chatti, K., Salhi-Hannachi, A., Mars, M., Marrakchi, M., & Trifi, M. (2004). Analyse de la diversité génétique de cultivars tunisiens de figuier (Ficus carica L.) à l’aide de caractères morphologiques. Fruits, 59(1), 49–61.

    Article  Google Scholar 

  • Condit, I. J. (1933). Fig culture in California (Vol. 77). Рипол Классик.

    Google Scholar 

  • Corner, E. J. H. (1965). Check-list of Ficus in Asia and Australasia with keys to identification. Garden’s Bulletin Singapore, 21, 1–186.

    Google Scholar 

  • Darjazi, B. B. (2011). Morphological and pomological characteristics of fig (Ficus carica L.) cultivars from Varamin, Iran. African Journal of Biotechnology, 10(82), 19096–19105.

    Google Scholar 

  • Deng, P., Wang, M., Feng, K., Cui, L., Tong, W., Song, W., & Nie, X. (2016). Genome-wide characterization of microsatellites in Triticeae species: Abundance, distribution and evolution. Scientific Reports, 6(1), 1–13.

    Article  Google Scholar 

  • Devos, K. M., Brown, J. K., & Bennetzen, J. L. (2002). Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Research, 12(7), 1075–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubin, M. J., Scheid, O. M., & Becker C. (2018). Transposons: A blessing curse. Current Opinion in Plant Biology, 42, 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Engelmann, F. (2000). Importance of cryopreservation for the conservation of plant genetic resources. In Cryopreservation of tropical plant germplasm—Current research progress and applications, IPGRI, Rome & JIRCAS (pp. 8–20)

    Google Scholar 

  • Essid, A., Aljane, F., Ferchichi, A., & Hormaza, J. I. (2015). Analysis of genetic diversity of Tunisian caprifig (Ficus carica L.) accessions using simple sequence repeat (SSR) markers. Hereditas, 152(1), 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabres, P. J., Collins, C., Cavagnaro, T. R., & Rodríguez López, C. M. (2017). A concise review on multi-omics data integration for terroir analysis in Vitis vinifera. Frontiers in Plant Science, 8, 1065.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson, L., Michailides, T. J., & Shorey, H. H. (1990). The California fig industry. Horticultural reviews (USA).

    Book  Google Scholar 

  • Figueiredo, P., & Pinheiro, E. D. (1969). Uma nova doença da figueira (Ficus carica L.) na região de Valinhos, SP. Biológico, 35, 227–203.

    Google Scholar 

  • Freiman, Z. E., Doron-Faigenboim, A., Dasmohapatra, R., Yablovitz, Z., & Flaishman, M. A. (2014). High-throughput sequencing analysis of common fig (Ficus carica L.) transcriptome during fruit ripening. Tree Genetics & Genomes, 10(4), 923–935.

    Article  Google Scholar 

  • Gafoor, H., Bhattacharjee, A., Hegde, K., & Shabaraya, A. R. (2019). Ficus carica: A brief review. International Journal of Pharmaceutical Sciences Review and Research, 59(2), 40–43.

    CAS  Google Scholar 

  • Gibernau, M., Buser, H. R., Frey, J. E., & Hossaert-McKey, M. (1997). Volatile compounds from extracts of figs of Ficus carica. Phytochemistry, 46(2), 241–244.

    Article  CAS  Google Scholar 

  • Hosomi, A. (2015). Variation in graft compatibility of wild Ficus species as rootstock for common fig trees (Ficus carica). V International Symposium on Fig, 1173, 199–206.

    Google Scholar 

  • Ikegami, H., Nogata, H., Hirashima, K., Awamura, M., & Nakahara, T. (2009). Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers. Genetic Resources and Crop Evolution, 56(2), 201–209.

    Article  CAS  Google Scholar 

  • Ikegami, H., Habu, T., Mori, K., Nogata, H., Hirata, C., Hirashima, K., Tashiro, K., & Kuhara, S. (2013). De novo sequencing and comparative analysis of expressed sequence tags from gynodioecious fig (Ficus carica L.) fruits: Caprifig and common fig. Tree Genetics & Genomes, 9(4), 1075–1088.

    Article  Google Scholar 

  • IPGRI & CIHEAM. (2003). Descriptors for figs. International Plant Genetic Resources Institute (IPGRI) and the International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM).

    Google Scholar 

  • Joseph, B., & Raj, S. J. (2011). Pharmacognostic and phytochemical properties of Ficus carica Linn-an overview. International journal of pharmtech research, 3(1), 8–12.

    Google Scholar 

  • Khadari, B., Lashermes, P., & Kjellberg, F. (1994). Identification variétale et ressources génétiques chez le figuier (Ficus carica L.): utilisation des marqueurs RAPD. AUPELF-UREF.

    Google Scholar 

  • Khadhraoui, M., Bagues, M., Artés, F., & Ferchichi, A. (2019). Phytochemical content, antioxidant potential, and fatty acid composition of dried Tunisian fig (Ficus carica L.) cultivars. Journal of Applied Botany and Food Quality, 92, 143–150.

    CAS  Google Scholar 

  • Khadivi, A., Anjam, R., & Anjam, K. (2018). Morphological and pomological characterization of edible fig (Ficus carica L.) to select the superior trees. Scientia Horticulturae, 238, 66–74.

    Article  Google Scholar 

  • Lahbib, T. (1984). Etude pomologique des variétés de figuier (Ficus carica L.) répertoriées au Sahel tunisien. Mémoire de Fin d’Études du Cycle de Spécialisation.

    Google Scholar 

  • Lisch, D. (2013). How important are transposons for plant evolution? Nature Reviews Genetics, 14(1), 49–61.

    Article  CAS  PubMed  Google Scholar 

  • Mars, M., Chatti, K., Saddoud, O., Salhi-Hannachi, A., Trifi, M., & Marrakchi, M. (2008). Fig cultivation and genetic resources in Tunisia, an overview. Acta Horticulturae, 798, 27–32.

    Article  Google Scholar 

  • Mawa, S., Husain, K., & Jantan, I. (2013). Ficus carica L.(Moraceae): Phytochemistry, traditional uses and biological activities. Evidence-Based Complementary and Alternative Medicine.

    Google Scholar 

  • Miličević, B., Ačkar, Đ., Babić, J., Jozinović, A., Oroz, M., & Šubarić, D. (2017). Impact of the fermentation process with immobilized yeast cells on the aroma profile and sensory quality of distillates produced from two fig (Ficus carica L.) cultivars. Poljoprivreda, 23(1), 49–55.

    Article  Google Scholar 

  • Miyagi, M., & Rao, K. S. (2007). Proteolytic 18O-labeling strategies for quantitative proteomics. Mass Spectrometry Reviews, 26(1), 121–136.

    Article  CAS  PubMed  Google Scholar 

  • Padden, J., Megger, D. A., Bracht, T., Reis, H., Ahrens, M., Kohl, M., Eisenacher, M., Schlaak, J. F., Canbay, A. E., Weber, F., Hoffmann, A. C., Kuhlmann, K., Meyer, H. E., Baba, H. A., & Sitek, B. (2014). Identification of novel biomarker candidates for the immunohistochemical diagnosis of cholangiocellular carcinoma. Molecular & Cellular Proteomics, 13(10), 2661–2672.

    Article  CAS  Google Scholar 

  • Palma, J. M., Corpas, F. J., & Luís, A. (2011). Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. Journal of Proteomics, 74(8), 1230–1243.

    Article  CAS  PubMed  Google Scholar 

  • Panis, B., Swennen, R., & Engelmann, F. (2000, July). Cryopreservation of plant germplasm. In IV International Symposium on In Vitro Culture and Horticultural Breeding, 560 (pp. 79–86).

    Google Scholar 

  • Pereira, C., Serradilla, M. J., Martín, A., del Carmen Villalobos, M., Pérez-Gragera, F., & López-Corrales, M. (2015). Agronomic behaviour and quality of six fig cultivars for fresh consumption. Scientia Horticulturae, 185, 121–128.

    Article  Google Scholar 

  • Pereira, C., Serradilla, M. J., Pérez-Gragera, F., Martín, A., Villalobos, M. C., & López-Corrales, M. (2017). Evaluation of agronomic and fruit quality traits of fig tree varieties (Ficus carica L.) grown in Mediterranean conditions. Spanish Journal of Agricultural Research, 15(3), e0903–e0903.

    Article  Google Scholar 

  • Pierre, B. (1959). La greffe, important facteur de l’augmentation du rendement des plantes et des animaux. IMPACT science et société, IX, n 3.

    Google Scholar 

  • Podgornik, M., Vuk, I., Vrhovnik, I., & Mavsar, D. B. (2010). A survey and morphological evaluation of fig (Ficus carica L.) genetic resources from Slovenia. Scientia Horticulturae, 125(3), 380–389.

    Article  Google Scholar 

  • Raskovic, B., Lazic, J., & Polovic, N. (2016). Characterisation of general proteolytic, milk clotting and antifungal activity of Ficus carica latex during fruit ripening. Journal of the Science of Food and Agriculture, 96(2), 576–582.

    Article  PubMed  Google Scholar 

  • Rodríguez-Solana, R., Galego, L. R., Pérez-Santín, E., & Romano, A. (2018). Production method and varietal source influence the volatile profiles of spirits prepared from fig fruits (Ficus carica L.). European Food Research and Technology, 244(12), 2213–2229.

    Article  Google Scholar 

  • Roger, J. P. (2003). L’origine des arbres fruitiers. Conservatoire botanique national méditerranéen de Porquerolles. Antenne Provence-Alpes, Côte d’Azur.

    Google Scholar 

  • Saddoud, O., Salhi-Hannachi, A., Chatti, K., Mars, M., Rhouma, A., Marrakchi, M., & Trifi, M. (2005). Tunisian fig (Ficus carica L.) genetic diversity and cultivar characterization using microsatellite markers. Fruits, 60(2), 143–153.

    Article  CAS  Google Scholar 

  • Sahin, N. (1997, June). Fig adaptation studies in Western Turkey. In I International Symposium on Fig, 480 (pp. 61–70).

    Google Scholar 

  • Salem, M. Z., Salem, A. Z. M., Camacho, L. M., & Ali, H. M. (2013). Antimicrobial activities and phytochemical composition of extracts of Ficus species: An overview. African Journal of Microbiology Research, 7(33), 4207–4219.

    Google Scholar 

  • Smartt, J. (1976). Evolution of crop plants (pp. 205–208). Longman.

    Google Scholar 

  • Soni, N., Mehta, S., Satpathy, G., & Gupta, R. K. (2014). Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficus carica). Journal of Pharmacognosy and Phytochemistry, 3(2), 158–165.

    Google Scholar 

  • Sun, Y. V., & Hu, Y. J. (2016). Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Advances in Genetics, 93, 147–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towill, L. E., & Bajaj, Y. P. S. (2002). Biotechnology in agriculture and forestry. Cryopreservation of plant germplasm II.

    Google Scholar 

  • Trad, M., Ginies, C., Gaaliche, B., Renard, C. M., & Mars, M. (2012). Does pollination affect aroma development in ripened fig (Ficus carica L.) fruit? Scientia Horticulturae, 134, 93–99.

    Article  CAS  Google Scholar 

  • Usai, G., Mascagni, F., Giordani, T., Vangelisti, A., Bosi, E., Zuccolo, A., Ceccarelli, M., King, R., Hassani-Pak, K., Zambrano, L. S., Cavallini, A., & Natali, L. (2020). Epigenetic patterns within the haplotype phased fig (Ficus carica L.) genome. The Plant Journal, 102(3), 600–614.

    Article  CAS  PubMed  Google Scholar 

  • Valarini, P. J., & Tokeshi, H. (1980). Ceratocystis fimbriata, causal agent of fig dieback, and its control. Summa Phytopathologica, 6(3/4), 102–106.

    Google Scholar 

  • Vangelisti, A., Simoni, S., Usai, G., Ventimiglia, M., Natali, L., Cavallini, A., Mascagni, F., & Giordani, T. (2021). LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. BMC Plant Biology, 21(1), 1–18.

    Article  Google Scholar 

  • Wang, T., Jiao, J., Gai, Q. Y., Wang, P., Guo, N., Niu, L. L., & Fu, Y. J. (2017). Enhanced and green extraction polyphenols and furanocoumarins from fig (Ficus carica L.) leaves using deep eutectic solvents. Journal of Pharmaceutical and Biomedical Analysis, 145, 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Ware, A. B., Kaye, P. T., Compton, S. G., & Van Noort, S. (1993). Fig volatiles: Their role in attracting pollinators and maintaining pollinator specificity. Plant Systematics and Evolution, 186(3), 147–156.

    Article  Google Scholar 

  • Wojdyło, A., Nowicka, P., Carbonell-Barrachina, Á. A., & Hernández, F. (2016). Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. Journal of Functional Foods, 25, 421–432.

    Article  Google Scholar 

  • Yakushiji, H., Morita, T., Jikumaru, S., Ikegami, H., Azuma, A., & Koshita, Y. (2012). Interspecific hybridization of fig (Ficus carica L.) and Ficus erecta Thunb., a source of Ceratocystis canker resistance. Euphytica, 183(1), 39–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Ben Abdallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ben Abdallah, R., Othmani, I., Lagha, A., Fattouch, S. (2023). Genetic Diversity of Fig Varieties. In: Ramadan, M.F. (eds) Fig (Ficus carica): Production, Processing, and Properties. Springer, Cham. https://doi.org/10.1007/978-3-031-16493-4_4

Download citation

Publish with us

Policies and ethics

Navigation