Domain-Adaptive 3D Medical Image Synthesis: An Efficient Unsupervised Approach

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13436))

Abstract

Medical image synthesis has attracted increasing attention because it could generate missing image data, improve diagnosis, and benefits many downstream tasks. However, so far the developed synthesis model is not adaptive to unseen data distribution that presents domain shift, limiting its applicability in clinical routine. This work focuses on exploring domain adaptation (DA) of 3D image-to-image synthesis models. First, we highlight the technical difference in DA between classification, segmentation, and synthesis models. Second, we present a novel efficient adaptation approach based on a 2D variational autoencoder which approximates 3D distributions. Third, we present empirical studies on the effect of the amount of adaptation data and the key hyper-parameters. Our results show that the proposed approach can significantly improve the synthesis accuracy on unseen domains in a 3D setting. The code is publicly available at https://github.com/WinstonHuTiger/2D_VAE_UDA_for_3D_sythesis.

Q. Hu and H. Li—Equal contributions to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, E., Kumar, A., Fulham, M., Feng, D., Kim, J.: Unsupervised domain adaptation to classify medical images using zero-bias convolutional auto-encoders and context-based feature augmentation. IEEE Trans. Med. Imaging 39(7), 2385–2394 (2020)

    Article  Google Scholar 

  2. Conte, G.M., et al.: Generative adversarial networks to synthesize missing T1 and FLAIR MRI sequences for use in a multisequence brain tumor segmentation model. Radiology 300(1), E319 (2021)

    Article  Google Scholar 

  3. Conte, G.M., et al.: Generative adversarial networks to synthesize missing T1 and flair MRI sequences for use in a multisequence brain tumor segmentation model. Radiology 299(2), 313–323 (2021)

    Article  Google Scholar 

  4. Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.A.: Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 691–697 (2018)

    Google Scholar 

  5. Finck, T., et al.: Deep-learning generated synthetic double inversion recovery images improve multiple sclerosis lesion detection. Investig. Radiol. 55(5), 318–323 (2020)

    Article  Google Scholar 

  6. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2017)

    Google Scholar 

  8. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  9. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  10. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021)

    Article  Google Scholar 

  11. Lenga, M., Schulz, H., Saalbach, A.: Continual learning for domain adaptation in chest x-ray classification. In: Medical Imaging with Deep Learning, pp. 413–423. PMLR (2020)

    Google Scholar 

  12. Liu, L., Zhang, Z., Li, S., Ma, K., Zheng, Y.: S-CUDA: self-cleansing unsupervised domain adaptation for medical image segmentation. Med. Image Anal. 74, 102214 (2021)

    Article  Google Scholar 

  13. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  14. Ouyang, C., Kamnitsas, K., Biffi, C., Duan, J., Rueckert, D.: Data efficient unsupervised domain adaptation for cross-modality image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 669–677. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_74

    Chapter  Google Scholar 

  15. Perone, C.S., Ballester, P., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. NeuroImage 194, 1–11 (2019)

    Article  Google Scholar 

  16. Thomas, M.F., et al.: Improving automated glioma segmentation in routine clinical use through artificial intelligence-based replacement of missing sequences with synthetic magnetic resonance imaging scans. Investig. Radiol. 57(3), 187–193 (2022)

    Article  Google Scholar 

  17. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  18. Volokitin, A., et al.: Modelling the distribution of 3D brain MRI using a 2D slice VAE. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 657–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_64

    Chapter  Google Scholar 

  19. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  20. Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported in part by National Key Research and Development Program of China (No.: 2021YFF1200800) and Shenzhen Science, Technology and Innovation Commission Basic Research Project (No. JCYJ20180507181527806). H. L. was supported by Forschungskredit (No. FK-21-125) from UZH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 639 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Q., Li, H., Zhang, J. (2022). Domain-Adaptive 3D Medical Image Synthesis: An Efficient Unsupervised Approach. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation