Resistance in Tuberculosis: Molecular Mechanisms and Modulation

  • Chapter
  • First Online:
Tuberculosis

Part of the book series: Integrated Science ((IS,volume 11))

  • 719 Accesses

Summary

Since the time of years following World War II, tuberculosis (TB) has become a treatable disease due to the discovery of antibiotics such as streptomycin. But now, TB has poised to make a dramatic and deadly comeback again owing to the emergence of some drug-resistant (DR) strains, including multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) strains. Health professionals are alarmed that these TB strains are so virulent that they are called “virtually untreatable” even with the most potent anti-TB drugs available. Inappropriate TB practice conducted, mainly in develo** countries, is considered the main reason behind DR. These malpractices include inadequate treatment of TB patients due to incorrect drug combinations, insufficient dose irregularities, or poor adherence. Consequently, both public and non-public sectors contribute to DR-TB. The current chapter sheds light on various DR mechanisms that hinder effective treatment with existing anti-TB drugs. Multiple strategies to overcome the problem of DR-TB have also been discussed. The chapter provides recent updates on newly developed drugs, clinical trials in the pipeline, and international recommendations to manage resistance. This information is essential for develo** a more effective therapy that is potent against DR-TB and can shorten the antibiotic course required for both drug-susceptible TB and DR-TB.

Graphical Abstract

Mechanisms of resistance to anti-tubercular drugs and their possible modulation

Science has no idea how much it owns the imagination.

Ralph Emerson

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kresge N, Simoni RD, Hill RL (2004) Selman Waksman: the father of antibiotics. J Biol Chem 279(48):e7

    Article  CAS  Google Scholar 

  2. Waksman SA, Lechevalier HA (1949) Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 109(2830):305–307

    Article  CAS  PubMed  Google Scholar 

  3. Society AT (1992) Control of tuberculosis in the United States. Am Rev Respir Dis 146:1623–1633

    Google Scholar 

  4. Grosset JH (1989) Present status of chemotherapy for tuberculosis. Rev Infect Dis 11(Suppl 2):S347–S352

    Google Scholar 

  5. Hopewell P (1994) The cure: organization and administration of therapy for tuberculosis. In: Tuberculosis: back to the future. Wiley, Chichester, pp 99–120

    Google Scholar 

  6. Iseman MD, Cohn DL, Sbarbaro JA (1993) Directly observed treatment of tuberculosis—we can’t afford not to try it. Mass Med Soc

    Google Scholar 

  7. Iseman MD (1994) Evolution of drug-resistant tuberculosis: a tale of two species. Proc Natl Acad Sci 91(7):2428–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. CfD C (1991) Nosocomial transmission of multidrug-resistant tuberculosis among HIV-infected persons–Florida and New York, 1988–1991. MMWR Morb Mortal Wkly Rep 40(34):585

    Google Scholar 

  9. Frieden TR, Sterling T, Pablos-Mendez A, Kilburn JO, Cauthen GM, Dooley SW (1993) The emergence of drug-resistant tuberculosis in New York City. N Engl J Med 328(8):521–526

    Google Scholar 

  10. Shah NS, Wright A, Bai G-H, Barrera L, Boulahbal F, Martín-Casabona N, Drobniewski F, Gilpin C, Havelková M, Lepe R: Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 13(3):380

    Google Scholar 

  11. Verma H, Choudhary S, Singh PK, Kashyap A, Silakari O (2019) Decoding the signature of molecular mechanism involved in mutation associated resistance to 1,3-benzothiazin-4-ones (Btzs) based DprE1 inhibitors using BTZ043 as a reference drug. Mol Simul 45(18):1515–1523

    Article  CAS  Google Scholar 

  12. Velayati AA, Farnia P, Masjedi MR (2013) The totally drug resistant tuberculosis (TDR-TB). Int J Clin Exp Med 6(4):307

    PubMed  PubMed Central  Google Scholar 

  13. Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, ZiaZarifi AH, Hoffner SE (2009) Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136(2):420–425

    Article  PubMed  Google Scholar 

  14. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, Van Soolingen D, Jensen P, Bayona J (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375(9728):1830–1843

    Article  PubMed  Google Scholar 

  15. Jain A, Mondal R (2008) Extensively drug-resistant tuberculosis: current challenges and threats. FEMS Immunol Med Microbiol 53(2):145–150

    Article  CAS  PubMed  Google Scholar 

  16. Annabel B, Anna D, Hannah M (2019) Global tuberculosis report 2019. World Health Organization, Geneva

    Google Scholar 

  17. Ahmad S, Mokaddas E (2014) Current status and future trends in the diagnosis and treatment of drug-susceptible and multidrug-resistant tuberculosis. J Infect Public Health 7(2):75–91

    Article  PubMed  Google Scholar 

  18. Hargreaves JR, Boccia D, Evans CA, Adato M, Petticrew M, Porter JD (2011) The social determinants of tuberculosis: from evidence to action. Am J Public Health 101(4):654–662

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smith T, Wolff KA, Nguyen L (2012) Molecular biology of drug resistance in Mycobacterium tuberculosis. In: Pathogenesis of Mycobacterium tuberculosis and its interaction with the host organism. Springer, pp 53–80

    Google Scholar 

  20. Sharma S, Kumar M, Sharma S, Nargotra A, Koul S, Khan IA (2010) Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J Antimicrob Chemother 65(8):1694–1701

    Article  CAS  PubMed  Google Scholar 

  21. Hugonnet J-E, Blanchard JS (2007) Irreversible inhibition of the Mycobacterium tuberculosis β-lactamase by clavulanate. Biochemistry 46(43):11998–12004

    Article  CAS  PubMed  Google Scholar 

  22. Meena S, Shivangi ML (2018) Interaction of Mycobacterium tuberculosis H37Rv with microfold cell leads to a New Era of infection in host. Ann Clin Lab Res 6(3):246

    Article  Google Scholar 

  23. Nikaido H, Brennan P (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    Article  PubMed  Google Scholar 

  24. Liu J, Rosenberg EY, Nikaido H (1995) Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc Natl Acad Sci 92(24):11254–11258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vandal OH, Nathan CF, Ehrt S (2009) Acid resistance in Mycobacterium tuberculosis. J Bacteriol 191(15):4714–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raynaud C, Papavinasasundaram K, Speight RA, Springer B, Sander P, Böttger EC, Colston MJ, Draper P (2002) The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Mol Microbiol 46(1):191–201

    Article  CAS  PubMed  Google Scholar 

  27. Sequoia Ecosystem and Recreation Preserve Act of 1999 (1999) 106th Congress edn

    Google Scholar 

  28. Dye C, Williams BG (2010) The population dynamics and control of tuberculosis. Science 328(5980):856–861

    Article  CAS  PubMed  Google Scholar 

  29. Timmins GS, Deretic V (2006) Mechanisms of action of isoniazid. Mol Microbiol 62(5):1220–1227

    Article  CAS  PubMed  Google Scholar 

  30. Aslan G, Tezcan S, Serin MS, Emekdas G (2008) Genotypic analysis of isoniazid and rifampin resistance in drug-resistant clinical Mycobacterium tuberculosis complex isolates in southern Turkey. Jpn J Infect Dis 61(4):255–260

    Article  CAS  PubMed  Google Scholar 

  31. Mokrousov I, Narvskaya O, Otten T, Limeschenko E, Steklova L, Vyshnevskiy B (2002) High prevalence of KatG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001. Antimicrob Agents Chemother 46(5):1417–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Yew W (2015) Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int J Tuberc Lung Dis 19(11):1276–1289

    Article  CAS  PubMed  Google Scholar 

  33. Lancini G (2014) In memory of Piero Sensi (1920–2013). J Antibiot 67(9):609–611

    Article  CAS  Google Scholar 

  34. Herrera L, Jiménez S, Valverde A, Garcı́a-Aranda MA, Sáez-Nieto JA (2003) Molecular analysis of rifampicin-resistant Mycobacterium tuberculosis isolated in Spain (1996–2001). Description of new mutations in the rpoB gene and review of the literature. Int J Antimicrobial Agents 21(5):403–408

    Google Scholar 

  35. Kumar S, Jena L (2014) Understanding rifampicin resistance in tuberculosis through a computational approach. Genomics Inform 12(4):276

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pandey B, Grover S, Tyagi C, Goyal S, Jamal S, Singh A, Kaur J, Grover A (2016) Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis. Gene 581(1):31–42

    Article  CAS  PubMed  Google Scholar 

  37. Njire M, Tan Y, Mugweru J, Wang C, Guo J, Yew W, Tan S, Zhang T (2016) Pyrazinamide resistance in Mycobacterium tuberculosis: review and update. Adv Med Sci 61(1):63–71

    Article  PubMed  Google Scholar 

  38. Nguyen L (2016) Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol 90(7):1585–1604

    Google Scholar 

  39. Kanji A, Hasan R, Hasan Z (2019) Efflux pump as alternate mechanism for drug resistance in Mycobacterium tuberculosis. Indian J Tuberc 66(1):20–25

    Article  PubMed  Google Scholar 

  40. Hao P, Shi-Liang Z, Ju L, Ya-**n D, Biao H, Xu W, Min-Tao H, Shou-Gang K, Ke W (2011) The role of ABC efflux pump, Rv1456c-Rv1457c-Rv1458c, from Mycobacterium tuberculosis clinical isolates in China. Folia Microbiol 56(6):549–553

    Google Scholar 

  41. Danilchanka O, Mailaender C, Niederweis M (2008) Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 52(7):2503–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Zhang J, Cui P, Zhang Y, Zhang W (2017) Identification of novel efflux proteins Rv0191, Rv3756c, Rv3008, and Rv1667c involved in pyrazinamide resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 61(8)

    Google Scholar 

  43. Duan W, Li X, Ge Y, Yu Z, Li P, Li J, Qin L, **e J (2019) Mycobacterium tuberculosis Rv1473 is a novel macrolides ABC efflux pump regulated by WhiB7. Future Microbiol 14(1):47–59

    Article  CAS  PubMed  Google Scholar 

  44. Choudhuri BS, Bhakta S, Barik R, Basu J, Kundu M, Chakrabarti P (2002) Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J 367(1):279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li P, Gu Y, Li J, **e L, Li X, **e J (2017) Mycobacterium tuberculosis major facilitator superfamily transporters. J Membr Biol 250(6):573–585

    Article  CAS  PubMed  Google Scholar 

  46. Gupta AK, Reddy VP, Lavania M, Chauhan D, Venkatesan K, Sharma V, Tyagi A, Katoch V (2010) jefA (Rv2459), a drug efflux gene in Mycobacterium tuberculosis confers resistance to isoniazid & ethambutol. Indian J Med Res 132(2):176–188

    CAS  PubMed  Google Scholar 

  47. Gupta AK, Katoch VM, Chauhan DS, Sharma R, Singh M, Venkatesan K, Sharma VD (2010) Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microb Drug Resist 16(1):21–28

    Article  CAS  PubMed  Google Scholar 

  48. Silva PE, Bigi F, de la Paz Santangelo M, Romano MI, Martı́n C, Cataldi A, Aı́nsa JA (2001) Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob Agents Chemother 45(3):800–804

    Google Scholar 

  49. Ramón-García S, Martín C, Thompson CJ, Aínsa JA (2009) Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother 53(9):3675–3682

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cloete R, Kapp E, Joubert J, Christoffels A, Malan SF (2018) Molecular modelling and simulation studies of the Mycobacterium tuberculosis multidrug efflux pump protein Rv1258c. PLoS ONE 13(11):e0207605

    Article  PubMed  PubMed Central  Google Scholar 

  51. Katoch VM (2019) Molecular basis of drug resistance in Mycobacteria. In: Pathogenicity and drug resistance of human pathogens. Springer, pp 3–31

    Google Scholar 

  52. Doran JL, Pang Y, Mdluli KE, Moran AJ, Victor TC, Stokes RW, Mahenthiralingam E, Kreiswirth BN, Butt JL, Baron GS (1997) Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. Clin Diagn Lab Immunol 4(1):23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li X-Z, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48(7):2415–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Batt SM, Jabeen T, Bhowruth V, Quill L, Lund PA, Eggeling L, Alderwick LJ, Fütterer K, Besra GS (2012) Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc Natl Acad Sci 109(28):11354–11359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marbán E (2013) Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 5(2):191–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He L, Wang X, Cui P, ** J, Chen J, Zhang W, Zhang Y (2015) ubiA (Rv3806c) encoding DPPR synthase involved in cell wall synthesis is associated with ethambutol resistance in Mycobacterium tuberculosis. Tuberculosis 95(2):149–154

    Article  CAS  PubMed  Google Scholar 

  57. Ramón-García S, Martín C, De Rossi E, Aínsa JA (2007) Contribution of the Rv2333c efflux pump (the Stp protein) from Mycobacterium tuberculosis to intrinsic antibiotic resistance in Mycobacterium bovis BCG. J Antimicrob Chemother 59(3):544–547

    Article  PubMed  Google Scholar 

  58. Rodrigues L, Cravo P, Viveiros M (2020) Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Exp Rev Anti-Infect Ther, pp 1–17

    Google Scholar 

  59. Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T (2020) Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol 128(6):1547–1567

    Article  CAS  PubMed  Google Scholar 

  60. Te Brake LH, van den Heuvel JJ, Buaben AO, van Crevel R, Bilos A, Russel FG, Aarnoutse RE, Koenderink JB (2016) Moxifloxacin is a potent in vitro inhibitor of OCT-and MATE-mediated transport of metformin and ethambutol. Antimicrob Agents Chemother 60(12):7105–7114

    Article  Google Scholar 

  61. Pasca MR, Guglierame P, De Rossi E, Zara F, Riccardi G (2005) mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob Agents Chemother 49(11):4775–4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Briffotaux J, Huang W, Wang X, Gicquel B (2017) MmpS5/MmpL5 as an efflux pump in Mycobacterium species. Tuberculosis 107:13–19

    Article  CAS  PubMed  Google Scholar 

  63. Poulsen BE, Deber CM (2012) Drug efflux by a small multidrug resistance protein is inhibited by a transmembrane peptide. Antimicrob Agents Chemother 56(7):3911–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. De Rossi E, Branzoni M, Cantoni R, Milano A, Riccardi G, Ciferri O (1998) mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J Bacteriol 180(22):6068–6071

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rodrigues L, Villellas C, Bailo R, Viveiros M, Aínsa JA (2013) Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57(2):751–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hegde SS, Vetting MW, Roderick SL, Mitchenall LA, Maxwell A, Takiff HE, Blanchard JS (2005) A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science 308(5727):1480–1483

    Article  CAS  PubMed  Google Scholar 

  67. Hameed PS, Raichurkar A, Madhavapeddi P, Menasinakai S, Sharma S, Kaur P, Nandishaiah R, Panduga V, Reddy J, Sambandamurthy VK (2014) Benzimidazoles: novel mycobacterial gyrase inhibitors from scaffold morphing. ACS Med Chem Lett 5(7):820–825

    Article  Google Scholar 

  68. Flores AR, Parsons LM, Pavelka MS Jr (2005) Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics. Microbiology 151(2):521–532

    Article  CAS  PubMed  Google Scholar 

  69. Page MG (2012) Beta-lactam antibiotics. In: Antibiotic discovery and development. Springer, pp 79–117

    Google Scholar 

  70. Kashyap A, Singh PK, Silakari O (2018) Mechanistic investigation of resistance via drug-inactivating enzymes in Mycobacterium tuberculosis. Drug Metab Rev 50(4):448–465

    Article  CAS  PubMed  Google Scholar 

  71. Tremblay LW, Xu H, Blanchard JS: Structures of the Michaelis complex (1.2 Å) and the covalent acyl intermediate (2.0 Å) of cefamandole bound in the active sites of the Mycobacterium tuberculosis β-lactamase K73A and E166A mutants. Biochemistry 49(45):9685–9687

    Google Scholar 

  72. Upton A, Mushtaq A, Victor T, Sampson S, Sandy J, Smith DM, Van Helden P, Sim E (2001) Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol Microbiol 42(2):309–317

    Article  CAS  PubMed  Google Scholar 

  73. Payton M, Auty R, Delgoda R, Everett M, Sim E (1999) Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J Bacteriol 181(4):1343–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Payton M, Gifford C, Schartau P, Hagemeier C, Mushtaq A, Lucas S, Pinter K, Sim E (2001) Evidence towards the role of arylamine N-acetyltransferase in Mycobacterium smegmatis and development of a specific antiserum against the homologous enzyme of Mycobacterium tuberculosis. Microbiology 147(12):3295–3302

    Article  CAS  PubMed  Google Scholar 

  75. Sikora AL, Frankel BA, Blanchard JS (2008) Kinetic and chemical mechanism of arylamine N-acetyltransferase from Mycobacterium tuberculosis. Biochemistry 47(40):10781–10789

    Article  CAS  PubMed  Google Scholar 

  76. Chen W, Biswas T, Porter VR, Tsodikov OV, Garneau-Tsodikova S (2011) Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc Natl Acad Sci 108(24):9804–9808

    Google Scholar 

  77. Gao C, Peng C, Shi Y, You X, Ran K, **ong L, Ye T-H, Zhang L, Wang N, Zhu Y (2016) Benzothiazinethione is a potent preclinical candidate for the treatment of drug-resistant tuberculosis. Sci Rep 6(1):1–9

    Google Scholar 

  78. Warrier T, Martinez-Hoyos M, Marin-Amieva M, Colmenarejo G, Porras-De Francisco E, Alvarez-Pedraglio AI, Fraile-Gabaldon MT, Torres-Gomez PA, Lopez-Quezada L, Gold B (2015) Identification of novel antimycobacterial compounds by screening a pharmaceutical small-molecule library against nonreplicating Mycobacterium tuberculosis. ACS Infect Dis 1(12):580–585

    Google Scholar 

  79. Warrier T, Kapilashrami K, Argyrou A, Ioerger TR, Little D, Murphy KC, Nandakumar M, Park S, Gold B, Mi J (2016) N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis. Proc Natl Acad Sci 113(31):E4523–E4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wermuth CG (2003) Analog design. In: Burger’s medicinal chemistry and drug discovery, pp 167–180

    Google Scholar 

  81. Vosátka R, Krátký M, Švarcová M, Janoušek J, Stolaříková J, Madacki J, Huszár S, Mikušová K, Korduláková J, Trejtnar F (2018) New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: synthesis, antimycobacterial activity and investigation of their mechanism of action. Eur J Med Chem 151:824–835

    Article  PubMed  Google Scholar 

  82. Bhoi MN, Borad MA, Jethava DJ, Acharya PT, Pithawala EA, Patel CN, Pandya HA, Patel HD (2019) Synthesis, biological evaluation and computational study of novel isoniazid containing 4H-Pyrimido [2,1-b] benzothiazoles derivatives. Eur J Med Chem 177:12–31

    Article  CAS  PubMed  Google Scholar 

  83. De P, Koumba Yoya G, Constant P, Bedos-Belval F, Duran H, Saffon N, Daffé M, Baltas M (2011) Design, synthesis, and biological evaluation of new cinnamic derivatives as antituberculosis agents. J Med Chem 54(5):1449–1461

    Google Scholar 

  84. Kumar D, Khare G, Kidwai S, Tyagi AK, Singh R, Rawat DS (2014) Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur J Med Chem 81:301–313

    Article  CAS  PubMed  Google Scholar 

  85. Tiwari R, Miller PA, Chiarelli LR, Mori G, Šarkan M, Centárová I, Cho S, Mikušová K, Franzblau SG, Oliver AG (2016) Design, syntheses, and anti-TB activity of 1,3-benzothiazinone azide and click chemistry products inspired by BTZ043. ACS Med Chem Lett 7(3):266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hearn MJ, Cynamon MH (2004) Design and synthesis of antituberculars: preparation and evaluation against Mycobacterium tuberculosis of an isoniazid Schiff base. J Antimicrob Chemother 53(2):185–191

    Article  CAS  PubMed  Google Scholar 

  87. Shingnapurkar D, Dandawate P, Anson CE, Powell AK, Afrasiabi Z, Sinn E, Pandit S, Swamy KV, Franzblau S, Padhye S (2012) Synthesis and characterization of pyruvate–isoniazid analogs and their copper complexes as potential ICL inhibitors. Bioorg Med Chem Lett 22(9):3172–3176

    Article  CAS  PubMed  Google Scholar 

  88. Dandawate P, Vemuri K, Swamy KV, Khan EM, Sritharan M, Padhye S (2014) Synthesis, characterization, molecular docking and anti-tubercular activity of plumbagin-isoniazid analog and its β-cyclodextrin conjugate. Bioorg Med Chem Lett 24(21):5070–5075

    Article  CAS  PubMed  Google Scholar 

  89. Brooke EW, Davies SG, Mulvaney AW, Okada M, Pompeo F, Sim E, Vickers RJ, Westwood IM (2003) Synthesis and in vitro evaluation of novel small molecule inhibitors of bacterial arylamine N-acetyltransferases (NATs). Bioorg Med Chem Lett 13(15):2527–2530

    Article  CAS  PubMed  Google Scholar 

  90. Willby MJ, Green KD, Gajadeera CS, Hou C, Tsodikov OV, Posey JE, Garneau-Tsodikova S (2016) Potent inhibitors of acetyltransferase Eis overcome kanamycin resistance in Mycobacterium tuberculosis. ACS Chem Biol 11(6):1639–1646

    Google Scholar 

  91. Garzan A, Willby MJ, Ngo HX, Gajadeera CS, Green KD, Holbrook SY, Hou C, Posey JE, Tsodikov OV, Garneau-Tsodikova S (2017) Combating enhanced intracellular survival (Eis)-mediated kanamycin resistance of Mycobacterium tuberculosis by novel pyrrolo [1,5-a] pyrazine-based Eis inhibitors. ACS Infect Dis 3(4):302–309

    Google Scholar 

  92. Garzan A, Willby MJ, Green KD, Gajadeera CS, Hou C, Tsodikov OV, Posey JE, Garneau-Tsodikova S (2016) Sulfonamide-based inhibitors of aminoglycoside acetyltransferase Eis abolish resistance to kanamycin in Mycobacterium tuberculosis. J Med Chem 59(23):10619–10628

    Google Scholar 

  93. Ngo HX, Green KD, Gajadeera CS, Willby MJ, Holbrook SY, Hou C, Garzan A, Mayhoub AS, Posey JE, Tsodikov OV (2018) Potent 1,2,4-triazino [5,6b] indole-3-thioether inhibitors of the kanamycin resistance enzyme Eis from Mycobacterium tuberculosis. ACS Infect Dis 4(6):1030–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Garzan A, Willby MJ, Green KD, Tsodikov OV, Posey JE, Garneau-Tsodikova S (2016) Discovery and optimization of two Eis inhibitor families as kanamycin adjuvants against drug-resistant M. tuberculosis. ACS Med Chem Lett 7(12):1219–1221

    Google Scholar 

  95. Kurz SG, Hazra S, Bethel CR, Romagnoli C, Caselli E, Prati F, Blanchard JS, Bonomo RA (2015) Inhibiting the β-lactamase of Mycobacterium tuberculosis (M. tb) with novel boronic acid transition-state inhibitors (BATSIs). ACS Infect Dis 1(6):234–242

    Article  CAS  PubMed  Google Scholar 

  96. Hazra S, Kurz SG, Wolff K, Nguyen L, Bonomo RA, Blanchard JS (2015) Kinetic and structural characterization of the interaction of 6-methylidene penem 2 with the β-lactamase from Mycobacterium tuberculosis. Biochemistry 54(36):5657–5664

    Article  CAS  PubMed  Google Scholar 

  97. Iannazzo L, Soroka D, Triboulet S, Fonvielle M, Compain F, Dubée V, Mainardi J-L, Hugonnet J-E, Braud E, Arthur M (2016) Routes of synthesis of carbapenems for optimizing both the inactivation of l,d-transpeptidase LdtMt1 of Mycobacterium tuberculosis and the stability toward hydrolysis by β-lactamase BlaC. J Med Chem 59(7):3427–3438

    Article  CAS  PubMed  Google Scholar 

  98. Xu H, Hazra S, Blanchard JS (2012) NXL104 irreversibly inhibits the β-lactamase from Mycobacterium tuberculosis. Biochemistry 51(22):4551–4557

    Article  CAS  PubMed  Google Scholar 

  99. Caminero JA, Piubello A, Scardigli A, Migliori GB (2017) Proposal for a standardised treatment regimen to manage pre-and extensively drug-resistant tuberculosis cases. Eur Respir Soc

    Google Scholar 

  100. Tiberi S, Scardigli A, Centis R, D’Ambrosio L, Munoz-Torrico M, Salazar-Lezama MA, Spanevello A, Visca D, Zumla A, Migliori GB (2017) Classifying new anti-tuberculosis drugs: rationale and future perspectives. Int J Infect Dis 56:181–184

    Google Scholar 

  101. Falzon D, Schünemann HJ, Harausz E, González-Angulo L, Lienhardt C, Jaramillo E, Weyer K (2017) World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur Respir J 49(3)

    Google Scholar 

  102. World Health Organization (2016) WHO treatment guidelines for drug-resistant tuberculosis. World Health Organization

    Google Scholar 

  103. Caminero JA, Scardigli A (2015) Classification of antituberculosis drugs: a new proposal based on the most recent evidence. Eur Respir Soc

    Google Scholar 

  104. Abbate E, Vescovo M, Natiello M, Cufré M, García A, Ambroggi M, Poggi S, Símboli N, Ritacco V (2007) Tuberculosis extensamente resistente (XDR-TB) en Argentina: aspectos destacables epidemiológicos, bacteriológicos, terapéuticos y evolutivo

    Google Scholar 

  105. Amaral L, Boeree MJ, Gillespie SH, Udwadia ZF, Van Soolingen D (2010) Thioridazine cures extensively drug-resistant tuberculosis (XDR-TB) and the need for global trials is now! Int J Antimicrob Agents 35(6):524–526

    Google Scholar 

  106. Gopal M, Padayatchi N, Metcalfe J, O’Donnell M (2013) Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int J Tuberc Lung Dis 17(8):1001–1007

    Google Scholar 

  107. Chhabra N, Aseri M, Dixit R, Gaur S (2012) Pharmacotherapy for multidrug resistant tuberculosis. J Pharmacol Pharmacother 3(2):98

    Google Scholar 

  108. Zhang T, Jiang G, Shu’an Wen FH, Wang F, Huang H, Pang Y (2019) Para-aminosalicylic acid increases the susceptibility to isoniazid in clinical isolates of Mycobacterium tuberculosis. Infect Drug Resist 12:825

    Google Scholar 

  109. Fan Y-L, Wu J-B, Cheng X-W, Zhang F-Z, Feng L-S (2018) Fluoroquinolone derivatives and their anti-tubercular activities. Europ J Med Chem 146:554–563

    Google Scholar 

  110. Kumar B, Sharma D, Sharma P, Katoch VM, Venkatesan K, Bisht D (2013) Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin. J Proteomics 94:68–77

    Google Scholar 

  111. Rozwarski DA, Grant GA, Barton DH, Jacobs WR, Sacchettini JC (1998) Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279(5347):98–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Silakari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, H., Choudhary, S., Silakari, O. (2023). Resistance in Tuberculosis: Molecular Mechanisms and Modulation. In: Rezaei, N. (eds) Tuberculosis. Integrated Science, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-15955-8_19

Download citation

Publish with us

Policies and ethics

Navigation