Cardiovascular Autonomic Neuropathy

  • Chapter
  • First Online:
Diabetic Neuropathy

Part of the book series: Contemporary Diabetes ((CDI))

  • 824 Accesses

Abstract

Diabetic neuropathies are the most prevalent chronic complications of diabetes, present with diverse clinical manifestations, and promote high morbidity and mortality, low quality of life, and high health care costs. Among the various forms of diabetic neuropathy, distal symmetric polyneuropathy and diabetic autonomic neuropathies, particularly cardiovascular autonomic neuropathy (CAN), are by far the most studied. Although frequently overlooked in clinical practice due to its characteristic initial very subtle presentation, CAN is quite prevalent in individuals with both type 1 and type 2 diabetes. In addition, high prevalence rates for CAN were reported in several cohorts of individuals with prediabetes/metabolic syndrome and obesity, as well as in youth. Evidence from several large cohorts shows that CAN is an independent predictor of all-cause and cardiovascular mortality as well as of cardiovascular disease risk, including more recently heart failure. Thus, screening for symptoms and signs of CAN is critical in clinical practice as it may be used for risk stratification and to enable early interventions. Although disease modifying therapies for diabetic neuropathy in general including CAN are still lacking, several symptomatic treatment options exist for some forms of CAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 199.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, Sosenko JM, Ziegler D. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54.

    CAS  PubMed  Google Scholar 

  2. Ang L, Dillon B, Mizokami-Stout K, Pop-Busui R. Cardiovascular autonomic neuropathy: a silent killer with long reach. Auton Neurosci. 2020;225:102646.

    PubMed  Google Scholar 

  3. Braffett BH, Gubitosi-Klug RA, Albers JW, Feldman EL, Martin CL, White NH, Orchard TJ, Lopes-Virella M, Lachin JM, Pop-Busui R. Risk factors for diabetic peripheral neuropathy and cardiovascular autonomic neuropathy in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes. 2020;69(5):1000–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pop-Busui R, Low PA, Waberski BH, Martin CL, Albers JW, Feldman EL, Sommer C, Cleary PA, Lachin JM, Herman WH, Group DER. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation. 2009;119(22):2886–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kempler P, Tesfaye S, Chaturvedi N, Stevens LK, Webb DJ, Eaton S, Kerényi Z, Tamás G, Ward J, Fuller J. Autonomic neuropathy is associated with increased cardiovascular risk factors: the EURODIAB IDDM Complications Study. Diabet Med. 2002;19(11):900–9.

    CAS  PubMed  Google Scholar 

  6. Hansen C, Theilade S, Lajer M, Hansen T, Rossing P. Cardiovascular autonomic neuropathy and bone metabolism in type 1 diabetes. Diabet Med. 2018;35(11):1596–604.

    CAS  PubMed  Google Scholar 

  7. Pambianco G, Costacou T, Ellis D, Becker DJ, Klein R, Orchard TJ. The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes. 2006;55(5):1463–9.

    CAS  PubMed  Google Scholar 

  8. Mizokami-Stout KR, Bailey R, Foster NC, Ang L, Aleppo G, Levy CJ, Rickels MR, Shah VN, Polsky S, Katz M. 563-P: autonomic neuropathy in type 1 diabetes (T1D): findings from the T1D exchange. Am Diabetes Assoc. 2019;68(Suppl 1):563.

    Google Scholar 

  9. Andersen ST, Witte DR, Fleischer J, Andersen H, Lauritzen T, Jorgensen ME, Jensen TS, Pop-Busui R, Charles M. Risk factors for the presence and progression of cardiovascular autonomic neuropathy in type 2 diabetes: ADDITION-Denmark. Diabetes Care. 2018;41(12):2586–94.

    PubMed  Google Scholar 

  10. Tang Y, Shah H, Bueno Junior CR, Sun X, Mitri J, Sambataro M, Sambado L, Gerstein HC, Fonseca V, Doria A, Pop-Busui R. Intensive risk factor management and cardiovascular autonomic neuropathy in type 2 diabetes: the ACCORD trial. Diabetes Care. 2021;44(1):164–73.

    PubMed  Google Scholar 

  11. Mather KJ, Bebu I, Baker C, Cohen RM, Crandall JP, DeSouza C, Green JB, Kirkman MS, Krause-Steinrauf H, Larkin M. Prevalence of microvascular and macrovascular disease in the Glycemia Reduction Approaches in Diabetes-A Comparative Effectiveness (GRADE) Study cohort. Diabetes Res Clin Pract. 2020;165:108235.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Neal WT, Chen LY, Nazarian S, Soliman EZ. Reference ranges for short-term heart rate variability measures in individuals free of cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis (MESA). J Electrocardiol. 2016;49(5):686–90.

    PubMed  PubMed Central  Google Scholar 

  13. Diakakis GF, Parthenakis FI, Patrianakos AP, Koukouraki SI, Stathaki MI, Karkavitsas NS, Vardas PE. Myocardial sympathetic innervation in patients with impaired glucose tolerance: relationship to subclinical inflammation. Cardiovasc Pathol. 2008;17(3):172–7.

    CAS  PubMed  Google Scholar 

  14. Papanas N, Vinik AI, Ziegler D. Neuropathy in prediabetes: does the clock start ticking early? Nat Rev Endocrinol. 2011;7(11):682.

    CAS  PubMed  Google Scholar 

  15. Putz Z, Tabák ÁG, Tóth N, Istenes I, Németh N, Gandhi RA, Hermányi Z, Keresztes K, Jermendy G, Tesfaye S. Noninvasive evaluation of neural impairment in subjects with impaired glucose tolerance. Diabetes Care. 2009;32(1):181–3.

    PubMed  PubMed Central  Google Scholar 

  16. Wu J-S, Yang Y-C, Lin T-S, Huang Y-H, Chen J-J, Lu F-H, Wu C-H, Chang C-J. Epidemiological evidence of altered cardiac autonomic function in subjects with impaired glucose tolerance but not isolated impaired fasting glucose. J Clin Endocrinol Metab. 2007;92(10):3885–9.

    CAS  PubMed  Google Scholar 

  17. Ziegler D, Voss A, Rathmann W, Strom A, Perz S, Roden M, Peters A, Meisinger C. Increased prevalence of cardiac autonomic dysfunction at different degrees of glucose intolerance in the general population: the KORA S4 survey. Diabetologia. 2015;58(5):1118–28.

    CAS  PubMed  Google Scholar 

  18. Stein P, Barzilay J, Domitrovich P, Chaves P, Gottdiener J, Heckbert S, Kronmal R. The relationship of heart rate and heart rate variability to non-diabetic fasting glucose levels and the metabolic syndrome: the Cardiovascular Health Study. Diabet Med. 2007;24(8):855–63.

    CAS  PubMed  Google Scholar 

  19. Jaiswal M, Divers J, Urbina EM, Dabelea D, Bell RA, Pettitt DJ, Imperatore G, Pihoker C, Dolan LM, Liese AD, Marcovina S, Linder B, Feldman EL, Pop-Busui R, Group SfDiYS. Cardiovascular autonomic neuropathy in adolescents and young adults with type 1 and type 2 diabetes: the SEARCH for Diabetes in Youth Cohort Study. Pediatr Diabetes. 2018;19(4):680–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dabelea D, Stafford JM, Mayer-Davis EJ, D’Agostino R, Dolan L, Imperatore G, Linder B, Lawrence JM, Marcovina SM, Mottl AK. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA. 2017;317(8):825–35.

    PubMed  PubMed Central  Google Scholar 

  21. Maser RE, Pfeifer MA, Dorman JS, Kuller LH, Becker DJ, Orchard TJ. Diabetic autonomic neuropathy and cardiovascular risk: Pittsburgh Epidemiology of Diabetes Complications Study III. JAMA Intern Med. 1990;150(6):1218–22.

    CAS  Google Scholar 

  22. Stella P, Ellis D, Maser RE, Orchard TJ. Cardiovascular autonomic neuropathy (expiration and inspiration ratio) in type 1 diabetes: incidence and predictors. J Diabetes Complicat. 2000;14(1):1–6.

    CAS  Google Scholar 

  23. Tesfaye S, Chaturvedi N, Eaton SE, Ward JD, Manes C, Ionescu-Tirgoviste C, Witte DR, Fuller JH. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352(4):341–50.

    CAS  PubMed  Google Scholar 

  24. Andersen ST, Witte DR, Andersen H, Bjerg L, Bruun NH, Jørgensen ME, Finnerup NB, Lauritzen T, Jensen TS, Tankisi H. Risk-factor trajectories preceding diabetic polyneuropathy: ADDITION-Denmark. Diabetes Care. 2018;41(9):1955–62.

    CAS  PubMed  Google Scholar 

  25. Reynolds EL, Akinci G, Banerjee M, Looker HC, Patterson A, Nelson RG, Feldman EL, Callaghan BC. The determinants of complication trajectories in American Indians with type 2 diabetes. JCI Insight. 2021;6(10):e146849.

    PubMed  PubMed Central  Google Scholar 

  26. Frontoni S, Bracaglia D, Baroni A, Pellegrini F, Perna M, Cicconetti E, Ciampittiello G, Menzinger G, Gambardella S. Early autonomic dysfunction in glucose-tolerant but insulin-resistant offspring of type 2 diabetic patients. Hypertension. 2003;41(6):1223–7.

    CAS  PubMed  Google Scholar 

  27. Laitinen T, Vauhkonen I, Niskanen LK, Hartikainen J, Länsimies EA, Uusitupa M, Laakso M. Power spectral analysis of heart rate variability during hyperinsulinemia in nondiabetic offspring of type 2 diabetic patients: evidence for possible early autonomic dysfunction in insulin-resistant subjects. Diabetes. 1999;48(6):1295–9.

    CAS  PubMed  Google Scholar 

  28. Duvernoy CS, Raffel DM, Swanson SD, Jaiswal M, Mueller G, Ibrahim E-S, Pennathur S, Plunkett C, Stojanovska J, Brown MB, Pop-Busui R. Left ventricular metabolism, function, and sympathetic innervation in men and women with type 1 diabetes. J Nucl Cardiol. 2016;23(5):960–9.

    PubMed  PubMed Central  Google Scholar 

  29. Winkley K, Thomas S, Sivaprasad S, Chamley M, Stahl D, Ismail K, Amiel S. The clinical characteristics at diagnosis of type 2 diabetes in a multi-ethnic population: the South London Diabetes cohort (SOUL-D). Diabetologia. 2013;56(6):1272–81.

    CAS  PubMed  Google Scholar 

  30. Tahrani AA, Altaf QA, Piya MK, Barnett AH. Peripheral and autonomic neuropathy in South Asians and White Caucasians with type 2 diabetes mellitus: possible explanations for epidemiological differences. J Diabetes Res. 2017;2017:1273789.

    PubMed  PubMed Central  Google Scholar 

  31. Lieb DC, Parson HK, Mamikunian G, Vinik AI. Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. Exp Diabetes Res. 2012;2012:8.

    Google Scholar 

  32. Pop-Busui R. What do we know and we do not know about cardiovascular autonomic neuropathy in diabetes. J Cardiovasc Transl Res. 2012;5(4):463–78.

    PubMed  PubMed Central  Google Scholar 

  33. Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, Yamada E, Raffel DM, Stevens MJ. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol. 2004;44(12):2368–74.

    CAS  PubMed  Google Scholar 

  34. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115(3):387–97.

    PubMed  Google Scholar 

  35. Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    CAS  PubMed  Google Scholar 

  36. Glycemic targets: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Suppl. 1):S73–84.

    Google Scholar 

  37. Ang L, Jaiswal M, Martin C, Pop-Busui R. Glucose control and diabetic neuropathy: lessons from recent large clinical trials. Curr Diab Rep. 2014;14(9):1–15.

    CAS  Google Scholar 

  38. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.

    CAS  PubMed  Google Scholar 

  39. Gill GV, Woodward A, Casson IF, Weston PJ. Cardiac arrhythmia and nocturnal hypoglycaemia in type 1 diabetes—the ‘dead in bed’ syndrome revisited. Diabetologia. 2009;52(1):42–5.

    CAS  PubMed  Google Scholar 

  40. Tu E, Twigg SM, Semsarian C. Sudden death in type 1 diabetes: the mystery of the ‘dead in bed’ syndrome. Int J Cardiol. 2010;138(1):91–3.

    PubMed  Google Scholar 

  41. Weston PJ, Gill GV. Is undetected autonomic dysfunction responsible for sudden death in type 1 diabetes mellitus? The ‘dead in bed’ syndrome revisited. Diabet Med. 1999;16(8):626–31.

    CAS  PubMed  Google Scholar 

  42. Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care. 2003;26(6):1902–12.

    CAS  PubMed  Google Scholar 

  43. Desouza CV, Bolli GB, Fonseca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care. 2010;33(6):1389–94.

    PubMed  PubMed Central  Google Scholar 

  44. Limberg J, Farni K, Taylor J, Dube S, Basu A, Basu R, Wehrwein E, Joyner M. Autonomic control during acute hypoglycemia in type 1 diabetes mellitus. Clin Auton Res. 2014;24(6):275–83.

    PubMed  Google Scholar 

  45. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349–54.

    CAS  PubMed  Google Scholar 

  46. Horváth E, Benkő R, Kiss L, Muranyi M, Pek T, Fekete K, Barany T, Somlai A, Csordas A, Szabo C. Rapid ‘glycaemic swings’ induce nitrosative stress, activate poly (ADP-ribose) polymerase and impair endothelial function in a rat model of diabetes mellitus. Diabetologia. 2009;52(5):952–61.

    PubMed  Google Scholar 

  47. Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–7.

    CAS  PubMed  Google Scholar 

  48. Saisho Y. Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease? Int J Mol Sci. 2014;15(10):18381–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fleischer J. Diabetic autonomic imbalance and glycemic variability. J Diabetes Sci Technol. 2012;6(5):1207–15.

    PubMed  PubMed Central  Google Scholar 

  50. Fleischer J, Cichosz SL, Hoeyem P, Laugesen E, Poulsen PL, Christiansen JS, Tarnow L, Hansen TK. Glycemic variability is associated with reduced cardiac autonomic modulation in women with type 2 diabetes. Diabetes Care. 2015;38(4):682–8.

    CAS  PubMed  Google Scholar 

  51. Jaiswal M, McKeon K, Comment N, Henderson J, Swanson S, Plunkett C, Nelson P, Pop-Busui R. Association between impaired cardiovascular autonomic function and hypoglycemia in patients with type 1 diabetes. Diabetes Care. 2014;37(9):2616–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rao AD, Bonyhay I, Dankwa J, Baimas-George M, Kneen L, Ballatori S, Freeman R, Adler GK. Baroreflex sensitivity impairment during hypoglycemia: implications for cardiovascular control. Diabetes. 2016;65(1):209–15.

    CAS  Google Scholar 

  53. Di Flaviani A, Picconi F, Di Stefano P, Giordani I, Malandrucco I, Maggio P, Palazzo P, Sgreccia F, Peraldo C, Farina F. Impact of glycemic and blood pressure variability on surrogate measures of cardiovascular outcomes in type 2 diabetic patients. Diabetes Care. 2011;34(7):1605–9.

    PubMed  PubMed Central  Google Scholar 

  54. Lachin JM, Bebu I, Bergenstal RM, Pop-Busui R, Service FJ, Zinman B, Nathan DM, Group DER. Association of glycemic variability in type 1 diabetes with progression of microvascular outcomes in the diabetes control and complications trial. Diabetes Care. 2017;40(6):777–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hoeldtke RD, Bryner KD, VanDyke K. Oxidative stress and autonomic nerve function in early type 1 diabetes. Clin Auton Res. 2011;21(1):19–28.

    PubMed  Google Scholar 

  56. Kellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop-Busui R. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes. 2007;56(12):2997–3005.

    CAS  PubMed  Google Scholar 

  57. Pennathur S, Heinecke JW. Mechanisms for oxidative stress in diabetic cardiovascular disease. Antioxid Redox Signal. 2007;9(7):955–69.

    CAS  PubMed  Google Scholar 

  58. Cameron NE, Cotter MA. Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets. 2008;9(1):60–7.

    CAS  PubMed  Google Scholar 

  59. Pop-Busui R, Ang L, Holmes C, Gallagher K, Feldman EL. Inflammation as a therapeutic target for diabetic neuropathies. Curr Diab Rep. 2016;16(3):29.

    PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Schmeichel AM, Iida H, Schmelzer JD, Low PA. Enhanced inflammatory response via activation of NF-κB in acute experimental diabetic neuropathy subjected to ischemia–reperfusion injury. J Neurol Sci. 2006;247(1):47–52.

    CAS  PubMed  Google Scholar 

  61. Mathew AV, Jaiswal M, Ang L, Michailidis G, Pennathur S, Pop-Busui R. Impaired amino acid and TCA metabolism and cardiovascular autonomic neuropathy progression in type 1 diabetes. Diabetes. 2019;68(10):2035–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ziegler D, Strom A, Straßburger K, Knebel B, Bönhof GJ, Kotzka J, Szendroedi J, Roden M. Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes. Diabetologia. 2021;64(2):458–68.

    CAS  PubMed  Google Scholar 

  63. Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, Genuth S, Grimm RH, Corson MA, Prineas R, Group tAS. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care. 2010;33(7):1578–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Soedamah-Muthu SS, Chaturvedi N, Witte DR, Stevens LK, Porta M, Fuller JH. Relationship between risk factors and mortality in type 1 diabetic patients in Europe: the EURODIAB Prospective Complications Study (PCS). Diabetes Care. 2008;31(7):1360–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Döring A, Meisinger C. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care. 2008;31(3):556–61.

    PubMed  Google Scholar 

  66. Ho JE, Bittner V, DeMicco DA, Breazna A, Deedwania PC, Waters DD. Usefulness of heart rate at rest as a predictor of mortality, hospitalization for heart failure, myocardial infarction, and stroke in patients with stable coronary heart disease (Data from the Treating to New Targets [TNT] trial). Am J Cardiol. 2010;105(7):905–11.

    PubMed  Google Scholar 

  67. Nauman J, Janszky I, Vatten LJ, Wisløff U. Temporal changes in resting heart rate and deaths from ischemic heart disease. JAMA. 2011;306(23):2579–87.

    CAS  PubMed  Google Scholar 

  68. Lonn EM, Rambihar S, Gao P, Custodis FF, Sliwa K, Teo KK, Yusuf S, Böhm M. Heart rate is associated with increased risk of major cardiovascular events, cardiovascular and all-cause death in patients with stable chronic cardiovascular disease: an analysis of ONTARGET/TRANSCEND. Clin Res Cardiol. 2014;103(2):149–59.

    PubMed  Google Scholar 

  69. Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr, Hutson AD, Dekemp RA, Haka MS, Sajjad M, Cimato TR, Curtis AB, Cain ME, Canty JM Jr. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63(2):141–9.

    PubMed  Google Scholar 

  70. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chandna H, Narula J. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure: results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55(20):2212–21.

    PubMed  Google Scholar 

  71. Zobel EH, Hasbak P, Winther SA, Hansen CS, Fleischer J, von Scholten BJ, Holmvang L, Kjaer A, Rossing P, Hansen TW. Cardiac autonomic function is associated with myocardial flow reserve in type 1 diabetes. Diabetes. 2019;68(6):1277–86.

    CAS  PubMed  Google Scholar 

  72. Young LH, Frans JT, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchuk N. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301(15):1547–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pop-Busui R, Cleary PA, Braffett BH, Martin CL, Herman WH, Low PA, Lima JAC, Bluemke DA. Association between cardiovascular autonomic neuropathy and left ventricular dysfunction: DCCT/EDIC study (Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications). J Am Coll Cardiol. 2013;61(4):447–54.

    PubMed  Google Scholar 

  74. Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S, Low P, Valensi P, On behalf of The Toronto Consensus Panel on Diabetic N. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27(7):639–53.

    PubMed  Google Scholar 

  75. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25(4):543–67.

    CAS  PubMed  Google Scholar 

  76. Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation. 2000;101(8):899–907.

    CAS  PubMed  Google Scholar 

  77. Semeniuk LM, Kryski AJ, Severson DL. Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Phys Heart Circ Phys. 2002;283(3):H976–82.

    CAS  Google Scholar 

  78. Sacre JW, Franjic B, Jellis CL, Jenkins C, Coombes JS, Marwick TH. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc Imaging. 2010;3(12):1207–15.

    PubMed  Google Scholar 

  79. Astorri E, Fiorina P, Astorri A, Contini GA, Albertini D, Magnati G, Lanfredini M. Isolated and preclinical impairment of left ventricular filling in insulin-dependent and non-insulin-dependent diabetic patients. Clin Cardiol. 1997;20(6):536–40.

    CAS  PubMed  Google Scholar 

  80. Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer B. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology. 2002;98(1-2):33–9.

    CAS  PubMed  Google Scholar 

  81. Cohen JA, Estacio RO, Lundgren RA, Esler AL, Schrier RW. Diabetic autonomic neuropathy is associated with an increased incidence of strokes. Auton Neurosci. 2003;108(1):73–8.

    PubMed  Google Scholar 

  82. Ko S, Song K, Park S, Kim S, Cha B, Son H, Moon K, Yoo K, Park Y, Cho J. Cardiovascular autonomic dysfunction predicts acute ischaemic stroke in patients with type 2 diabetes mellitus: a 7-year follow-up study. Diabet Med. 2008;25(10):1171–7.

    CAS  PubMed  Google Scholar 

  83. Axelrod S, Lishner M, Oz O, Bernheim J, Ravid M. Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron. 1987;45(3):202–6.

    CAS  PubMed  Google Scholar 

  84. Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–8.

    PubMed  Google Scholar 

  85. Orlov S, Cherney DZ, Pop-Busui R, Lovblom LE, Ficociello LH, Smiles AM, Warram JH, Krolewski AS, Perkins BA. Cardiac autonomic neuropathy and early progressive renal decline in patients with nonmacroalbuminuric type 1 diabetes. Clin J Am Soc Nephrol. 2015;10(7):1136–44.

    PubMed  PubMed Central  Google Scholar 

  86. Tahrani AA, Dubb K, Raymond NT, Begum S, Altaf QA, Sadiqi H, Piya MK, Stevens MJ. Cardiac autonomic neuropathy predicts renal function decline in patients with type 2 diabetes: a cohort study. Diabetologia. 2014;57(6):1249–56.

    CAS  PubMed  Google Scholar 

  87. Wheelock KM, Jaiswal M, Martin CL, Fufaa GD, Weil EJ, Lemley KV, Yee B, Feldman E, Brosius FC III, Knowler WC. Cardiovascular autonomic neuropathy associates with nephropathy lesions in American Indians with type 2 diabetes. J Diabetes Complicat. 2016;30(5):873–9.

    Google Scholar 

  88. Brotman DJ, Bash LD, Qayyum R, Crews D, Whitsel EA, Astor BC, Coresh J. Heart rate variability predicts ESRD and CKD-related hospitalization. J Am Soc Nephrol. 2010;21(9):1560–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Davidson MB, Hix JK, Vidt DG, Brotman DJ. Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch Intern Med. 2006;166(8):846–52.

    PubMed  Google Scholar 

  90. Farmer C, Goldsmith D, Quin JD, Dallyn P, Cox J, Kingswood JC, Sharpstone P. Progression of diabetic nephropathy—is diurnal blood pressure rhythm as important as absolute blood pressure level? Nephrol Dial Transplant. 1998;13(3):635–9.

    CAS  PubMed  Google Scholar 

  91. Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, Batlle D. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347(11):797–805.

    CAS  PubMed  Google Scholar 

  92. Knudsen ST, Laugesen E, Hansen K, Bek T, Mogensen C, Poulsen P. Ambulatory pulse pressure, decreased nocturnal blood pressure reduction and progression of nephropathy in type 2 diabetic patients. Diabetologia. 2009;52(4):698–704.

    CAS  PubMed  Google Scholar 

  93. Nakano S, Ogihara M, Tamura C, Kitazawa M, Nishizawa M, Kigoshi T, Uchida K. Reversed circadian blood pressure rhythm independently predicts endstage renal failure in non–insulin-dependent diabetes mellitus subjects. J Diabetes Complicat. 1999;13(4):224–31.

    CAS  Google Scholar 

  94. Palmas W, Pickering T, Teresi J, Schwartz JE, Eguchi K, Field L, Weinstock RS, Shea S. Nocturnal blood pressure elevation predicts progression of albuminuria in elderly people with type 2 diabetes. J Clin Hypertens. 2008;10(1):12–20.

    CAS  Google Scholar 

  95. Spallone V. Blood pressure variability and autonomic dysfunction. Curr Diab Rep. 2018;18(12):1–14.

    CAS  Google Scholar 

  96. Nishimura M, Hashimoto T, Kobayashi H, Fukuda T, Okino K, Yamamoto N, Nakamura N, Yoshikawa T, Takahashi H, Ono T. Association between cardiovascular autonomic neuropathy and left ventricular hypertrophy in diabetic haemodialysis patients. Nephrol Dial Transplant. 2004;19(10):2532–8.

    PubMed  Google Scholar 

  97. Simó R, Hernández C. Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications. Br J Ophthalmol. 2012;96(10):1285–90.

    PubMed  Google Scholar 

  98. Stem MS, Dunbar GE, Jackson GR, Farsiu S, Pop-Busui R, Gardner TW. Glucose variability and inner retinal sensory neuropathy in persons with type 1 diabetes mellitus. Eye (Lond). 2016;30(6):825–32.

    CAS  PubMed  Google Scholar 

  99. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366(13):1227–39.

    CAS  PubMed  Google Scholar 

  100. Krolewski AS, Barzilay J, Warram JH, Martin BC, Pfeifer M, Rand LI. Risk of early-onset proliferative retinopathy in IDDM is closely related to cardiovascular autonomic neuropathy. Diabetes. 1992;41(4):430–7.

    CAS  PubMed  Google Scholar 

  101. Hotaling JM, Sarma AV, Patel DP, Braffett BH, Cleary PA, Feldman E, Herman WH, Martin CL, Jacobson AM, Wessells H, Pop-Busui R. Cardiovascular autonomic neuropathy, sexual dysfunction, and urinary incontinence in women with type 1 diabetes. Diabetes Care. 2016;39(9):1587–93.

    PubMed  PubMed Central  Google Scholar 

  102. Pop-Busui R, Hotaling J, Braffett BH, Cleary PA, Dunn RL, Martin CL, Jacobson AM, Wessells H, Sarma AV, Group DER. Cardiovascular autonomic neuropathy, erectile dysfunction and lower urinary tract symptoms in men with type 1 diabetes: findings from the DCCT/EDIC. J Urol. 2015;193(6):2045–51.

    PubMed  PubMed Central  Google Scholar 

  103. Lin YK, Fisher SJ, Pop-Busui R. Hypoglycemia unawareness and autonomic dysfunction in diabetes: lessons learned and roles of diabetes technologies. J Diabetes Investig. 2020;11(6):1388–402.

    PubMed  PubMed Central  Google Scholar 

  104. Spallone V, Bellavere F, Scionti L, Maule S, Quadri R, Bax G, Melga P, Viviani GL, Esposito K, Morganti R, Cortelli P, Diabetic Neuropathy Study Group of the Italian Society of D. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis. 2011;21(1):69–78.

    CAS  PubMed  Google Scholar 

  105. Pop-Busui R, Backlund JYC, Bebu I, Braffett BH, Lorenzi G, White NH, Lachin JM, Soliman EZ, Group DER. The utility of using ECG measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes. J Diabetes Investig. 2022;13(1):125–33.

    CAS  PubMed  Google Scholar 

  106. Margolis KL, O’Connor PJ, Morgan TM, Buse JB, Cohen RM, Cushman WC, Cutler JA, Evans GW, Gerstein HC, Grimm RH Jr, Lipkin EW, Venkat Narayan KM, Riddle MC Jr, Sood A, Goff DC Jr. Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes Care. 2014;37(6):1721–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Martin CL, Albers JW, Pop-Busui R. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):31–8.

    CAS  PubMed  Google Scholar 

  108. Azad N, Emanuele NV, Abraira C, Henderson WG, Colwell J, Levin SR, Nuttall FQ, Comstock JP, Sawin CT, Silbert C, Rubino FA. The effects of intensive glycemic control on neuropathy in the VA cooperative study on type II diabetes mellitus (VA CSDM). J Diabetes Complicat. 1999;13(5-6):307–13.

    CAS  Google Scholar 

  109. Charles M, Fleischer J, Witte DR, Ejskjaer N, Borch-Johnsen K, Lauritzen T, Sandbaek A. Impact of early detection and treatment of diabetes on the 6-year prevalence of cardiac autonomic neuropathy in people with screen-detected diabetes: ADDITION-Denmark, a cluster-randomised study. Diabetologia. 2013;56(1):101–8.

    CAS  PubMed  Google Scholar 

  110. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    CAS  PubMed  Google Scholar 

  111. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93.

    PubMed  Google Scholar 

  112. Carnethon MR, Jacobs DR Jr, Sidney S, Sternfeld B, Gidding SS, Shoushtari C, Liu K. A longitudinal study of physical activity and heart rate recovery: CARDIA, 1987-1993. Med Sci Sports Exerc. 2005;37(4):606–12.

    PubMed  Google Scholar 

  113. Carnethon MR, Prineas RJ, Temprosa M, Zhang ZM, Uwaifo G, Molitch ME. The association among autonomic nervous system function, incident diabetes, and intervention arm in the diabetes prevention program. Diabetes Care. 2006;29(4):914–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Pop-Busui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ang, L., Pop-Busui, R. (2023). Cardiovascular Autonomic Neuropathy. In: Tesfaye, S., Gibbons, C.H., Malik, R.A., Veves, A. (eds) Diabetic Neuropathy. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-15613-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15613-7_12

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-15612-0

  • Online ISBN: 978-3-031-15613-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation