Concept Drift Detection to Improve Time Series Forecasting of Wind Energy Generation

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2022)

Abstract

Most of the current data sources generate large amounts of data over time. Renewable energy generation is one example of such data sources. Machine learning is often applied to forecast time series. Since data flows are usually large, trends in data may change and learned patterns might not be optimal in the most recent data. In this paper, we analyse wind energy generation data extracted from the Sistema de Información del Operador del Sistema (ESIOS) of the Spanish power grid. We perform a study to evaluate detecting concept drifts to retrain models and thus improve the quality of forecasting. To this end, we compare the performance of a linear regression model when it is retrained randomly and when a concept drift is detected, respectively. Our experiments show that a concept drift approach improves forecasting between a 7.88% and a 33.97% depending on the concept drift technique applied.

Supported by the Spanish Ministry of Science and Innovation (PID2020-117954RB-C22) and the Andalusian Regional Government (US-1263341, P18-RT-2778).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Díaz Cordero, G.: El cambio climático. Ciencia y sociedad (2012)

    Google Scholar 

  2. Lizano, B.: Calentamiento Global: “la máxima expresión de la civilización petrofósil”. Revista del CESLA. https://www.redalyc.org/articulo.oa?id=243329724003

  3. Rafique, M.M., Bahaidarah, H.M., Anwar, M.K.: Enabling private sector investment in off-grid electrification for cleaner production: optimum designing and achievable rate of unit electricity. J. Clean. Prod. 206, 508–523 (2019). https://doi.org/10.1016/j.jclepro.2018.09.123

    Article  Google Scholar 

  4. Mills, A.D., Levin, T., Wiser, R., Seel, J., Botterud, A.: Impacts of variable renewable energy on wholesale markets and generating assets in the united states: a review of expectations and evidence. Renew. Sustain. Energy Rev. 120, 109670 (2020). https://doi.org/10.1016/j.rser.2019.109670

    Article  Google Scholar 

  5. Jaworski, M.: Regression function and noise variance tracking methods for data streams with concept drift. Int. J. Appl. Math. Comput. Sci. 28(3), 559–567 (2018)

    Article  MathSciNet  Google Scholar 

  6. Barddal, J.P., Gomes, H.M., Enembreck, F.: Advances on concept drift detection in regression tasks using social networks theory. Int. J. Nat. Comput. Res. (IJNCR) 5(1), 26–41 (2015)

    Article  Google Scholar 

  7. Zenisek, J., Holzinger, F., Affenzeller, M.: Machine learning based concept drift detection for predictive maintenance. Comput. Ind. Eng. 137, 106031 (2019). https://doi.org/10.1016/j.cie.2019.106031

    Article  Google Scholar 

  8. Ikonomovska, E., Gama, J., Sebastião, R., Gjorgjevik, D.: Regression trees from data streams with drift detection. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS (LNAI), vol. 5808, pp. 121–135. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04747-3_12

    Chapter  Google Scholar 

  9. Baier, L., Kühl, N., Satzger, G., Hofmann, M., Mohr, M.: Handling concept drifts in regression problems – the error intersection approach. In: WI2020 Zentrale Tracks, pp. 210–224. GITO Verlag (2020). https://doi.org/10.30844/wi_2020_c1-baier

  10. Ray, S.: A quick review of machine learning algorithms. In: 2019 International conference on machine learning, big data, pp. 35–39. cloud and parallel computing (COMITCon), IEEE (2019)

    Google Scholar 

  11. Api esios documentation. https://api.esios.ree.es/

  12. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)

    Google Scholar 

  13. Raab, C., Heusinger, M., Schleif, F.-M.: Reactive soft prototype computing for concept drift streams. Neurocomputing 416, 340–351 (2020)

    Article  Google Scholar 

  14. Lima, M., Filho, T.S., de A. Fagundes, R.A.: A comparative study on concept drift detectors for regression. In: Britto, A., Valdivia Delgado, K. (eds.) BRACIS 2021. LNCS (LNAI), vol. 13073, pp. 390–405. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91702-9_26

    Chapter  Google Scholar 

  15. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    Article  MathSciNet  Google Scholar 

  16. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output streaming framework. J. Mach. Learn. Res. 19(72), 1–5 (2018)

    Google Scholar 

  17. Buitinck, L. et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)

    Google Scholar 

  18. Bergmeir, C., Benítez, J.M.: On the use of cross-validation for time series predictor evaluation. Inf. Sci. 191, 192–213 (2012). https://doi.org/10.1016/j.ins.2011.12.028. Data Mining for Software Trustworthiness

    Article  Google Scholar 

  19. Bergmeir, C., Costantini, M., Benítez, J.M.: On the usefulness of cross-validation for directional forecast evaluation, computational statistics & data analysis. cFEnetwork: Ann. Comput. Financ. Econometr. 76, 132–143 (2014). https://doi.org/10.1016/j.csda.2014.02.001

  20. Shcherbakov, M.V., et al.: A survey of forecast error measures. World Appl. Sci. J. 24(24), 171–176 (2013)

    Google Scholar 

  21. Hewamalage, H., Montero-Manso, P., Bergmeir, C., Hyndman, R.J.: A look at the evaluation setup of the m5 forecasting competition. ar**v preprint ar**v:2108.03588 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Cabello-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabello-López, T., Cañizares-Juan, M., Carranza-García, M., Garcia-Gutiérrez, J., Riquelme, J.C. (2022). Concept Drift Detection to Improve Time Series Forecasting of Wind Energy Generation. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2022. Lecture Notes in Computer Science(), vol 13469. Springer, Cham. https://doi.org/10.1007/978-3-031-15471-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15471-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15470-6

  • Online ISBN: 978-3-031-15471-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation