Co-chaperones of the Human Endoplasmic Reticulum: An Update

  • Chapter
  • First Online:
The Networking of Chaperones by Co-Chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 101))

Abstract

In mammalian cells, the rough endoplasmic reticulum (ER) plays central roles in the biogenesis of extracellular plus organellar proteins and in various signal transduction pathways. For these reasons, the ER comprises molecular chaperones, which are involved in import, folding, assembly, export, plus degradation of polypeptides, and signal transduction components, such as calcium channels, calcium pumps, and UPR transducers plus adenine nucleotide carriers/exchangers in the ER membrane. The calcium- and ATP-dependent ER lumenal Hsp70, termed immunoglobulin heavy-chain-binding protein or BiP, is the central player in all these activities and involves up to nine different Hsp40-type co-chaperones, i.e., ER membrane integrated as well as ER lumenal J-domain proteins, termed ERj or ERdj proteins, two nucleotide exchange factors or NEFs (Grp170 and Sil1), and NEF-antagonists, such as MANF. Here we summarize the current knowledge on the ER-resident BiP/ERj chaperone network and focus on the interaction of BiP with the polypeptide-conducting and calcium-permeable Sec61 channel of the ER membrane as an example for BiP action and how its functional cycle is linked to ER protein import and various calcium-dependent signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acosta-Alvear D, Karagöz GE, Fröhlich F, Li H, Walther TC, Walter P (2018) The unfolded protein response and endoplasmic reticulum protein targeting machineries converge on the stress sensor IRE1. eLife 7:e43036

    Article  Google Scholar 

  • Alder NA, Shen Y, Brodsky JL, Hendershot LM, Johnson AE (2005) The molecular mechanism underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J Cell Biol 168:389–399

    Article  CAS  Google Scholar 

  • Amin-Wetzel N, Saunders RA, Kamphuis MJ, Rato C, Preissler S, Harding HP, Ron D (2017) A J-protein co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response. Cell 171:1625–1637

    Article  CAS  Google Scholar 

  • Ampofo E, Welker S, Jung M, Müller L, Greiner M, Zimmermann R, Montenarh M (2013) CK2 phosphorylation of human Sec63 regulates its interaction with Sec62. Biochim Biophys Acta 1830:2938–2945

    Article  CAS  Google Scholar 

  • Anttonen A-K, Mahjneh I, Hämäläinen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T, Kalimo H, Paetau A, Tranebjaerg L, Chaigne D, Koenig M, Eeg-Olofsson O, Udd B, Somer M, Somer H, Lehesjoki A-E (2005) The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Gen 37:1309–1311

    Article  CAS  Google Scholar 

  • Araki K, Nagata K (2011) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 3:a007526

    Article  Google Scholar 

  • Aridor M (2007) Visiting the ER: the endoplasmic reticulum as a target for therapeutics in traffic related diseases. Adv Drug Deliv Rev 59:759–781

    Article  CAS  Google Scholar 

  • Aviram N, Schuldiner M (2017) Targeting and translocation of proteins to the endoplasmic reticulum at a glance. J Cell Sci 130:4079–4085

    Article  CAS  Google Scholar 

  • Awad W, Estrada I, Shen Y, Hendershot LM (2008) BiP mutants that are unable to interact with endoplasmic reticulum DnaJ proteins provide insights into interdomain interactions in BiP. Proc Natl Acad Sci USA 105:1164–1169

    Article  CAS  Google Scholar 

  • Bagola K, Mehnert M, Jarosch E, Sommer T (2011) Protein dislocation from the ER. Biochim Biophys Acta 1808:925–936

    Article  CAS  Google Scholar 

  • Bakowski D, Nelson C, Parekh AB (2012) Endoplasmic reticulum-mitochondria coupling: local Ca2+ signalling with functional consequences. Eur J Physiol 464:27–32

    Article  CAS  Google Scholar 

  • Bandla S, Diaz S, Nasheuer HP, FitzGerald U (2019) ATPase activity of human binding immunoglobulin protein (BiP) variants is enhanced by signal sequence and physiological concentrations of Mn2+. FEBS Open Bio 9:1355–1369

    Article  CAS  Google Scholar 

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  Google Scholar 

  • Baxter BK, James P, Evans T, Craig E (1996) SSI1 encodes a novel Hsp70 of the Saccharomyces cerevisiae endoplasmic reticulum. Mol Cell Biol 16:6444–6456

    Article  CAS  Google Scholar 

  • Behnke J, Feige MJ, Hendershot LM (2015) BiP and ist nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 427:1589–1608

    Article  CAS  Google Scholar 

  • Behnke J, Mann MJ, Scruggs F-L, Feige MJ, Hendershot LM (2016) Members of the Hsp70 family recognize distinct types of sequences to execute ER quality control. Mol Cell 63:739–752

    Article  CAS  Google Scholar 

  • Bell OF, Carroll RW (1973) Basis of the defect in alpha-1-antitrypsin deficiency. Nature 243:410–411

    Article  CAS  Google Scholar 

  • Benedix J, Lajoie P, Jaiswal H, Burgard C, Greiner M, Zimmermann R, Rospert S, Snapp EL, Dudek J (2010) BiP modulates the affinity of its co-chaperone ERj1 to ribosomes. J Biol Chem 285:36427–36433

    Article  CAS  Google Scholar 

  • Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signalling organelle. Cell Calcium 32:235–249

    Article  CAS  Google Scholar 

  • Bertolotti A (2018) Importance of the subcellular location of protein deposits in neurodegenerative diseases. Curr Opin Neurobiol 51:127–133

    Article  CAS  Google Scholar 

  • Bies C, Guth S, Janoschek K, Nastainczyk W, Volkmer J, Zimmermann R (1999) AScj1p homolog and folding catalysts present in dog pancreas microsomes. Biol Chem 380:1175–1182

    Article  CAS  Google Scholar 

  • Bies C, Blum R, Dudek J, Nastainczyk W, Oberhauser S, Jung M, Zimmermann R (2004) Characterization of pancreatic ERj3p, a homolog of yeast DnaJ-like protein Scj1p. Biol Chem 385:389–395

    Article  CAS  Google Scholar 

  • Blau M, Mullapudi S, Becker T, Dudek J, Zimmermann R, Penczek PA, Beckmann R (2005) ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat Struct Mol Biol 12:1015–1016

    Article  CAS  Google Scholar 

  • Blobel G, Dobberstein B (1975a) Transfer of proteins across membranes I Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    Article  CAS  Google Scholar 

  • Blobel G, Dobberstein B (1975b) Transfer of proteins across membranes: II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67:852–862

    Article  CAS  Google Scholar 

  • Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething M-J (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717–728

    Article  CAS  Google Scholar 

  • Bochen F, Adisurya H, Wemmert S, Lerner C, Greiner M, Zimmermann R, Hasenfus A, Wagner M, Smola S, Pfuhl T, Bozzato A, Al Kadah B, Schick B, Linxweiler M (2017) Effect of 3q oncogenes SEC62 and SOX2 on lymphatic metastasis and clinical outcome of head and neck squamous cell carcinomas. Oncotarget 8:4922–4934

    Article  Google Scholar 

  • Bolar NA, Golzio C, Živná M, Hayot G, Van Hemelrijk C, Schepers D, Vandeweyer G, Hoischen A, Huyghe JR, Raes A, Matthys E, Sys E, Azou M, Gubler M-C, Praet M, Van Camp G, McFadden K, Pediaditakis I, Přistoupilová A, Hodonová K, Vyletal P, Hartmannová H, Stránecký V, Hůlková H, Barešová V, Jedličková I, Sovová J, Hnízda A, Kidd K, Bleyer A, Spong RS, Vande Walle J, Mortier G, Brunner H, Van Laer L, Kmoch S, Katsanis N, Loeys BL (2016) Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet 299:174–187

    Article  Google Scholar 

  • Bole DG, Hendershot LM, Kearney JF (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 102:1558–1566

    Article  CAS  Google Scholar 

  • Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, Quiroga C, Rodriguez AE, Verdejo HE, Ferreira J, Iglewski M, Chiong M, Simmen T, Zorzano A, Hill JA, Rothermel BA, Szabadkai G, Lavandero S (2011) Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 124:2143–2152

    Article  CAS  Google Scholar 

  • Brightman SE, Blatch GL, Zetter BR (1995) Isolation of a mouse cDNA encoding MTJ1, a new murine member of the DnaJ family of proteins. Gene 153:249–254

    Article  CAS  Google Scholar 

  • Brodsky JL, Scheckman R (1993) A Sec63-BiP complex is required for protein translocation in a reconstituted proteoliposome. J Cell Biol 123:1355–1263

    Article  CAS  Google Scholar 

  • Brodsky JL, Hamamoto S, Feldheim D, Schekman R (1993) Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for BiP and cytosolic Hsc70. J Cell Biol 120:95–102

    Article  CAS  Google Scholar 

  • Brodsky JL, Goeckeler J, Schekman R (1995) BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. Proc Natl Acad Sci USA 92:9643–9646

    Article  CAS  Google Scholar 

  • Bulleid NJ (2012) Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol 4:a013219

    Article  Google Scholar 

  • Burns K, Helgason CD, Bleakley RC, Michalak M (1992) Calreticulin in T-lymphocytes. Identification of calreticulin in T-lymphocytes and demonstration that activation of T-cells correlates with increased levels of calreticulin mRNA and protein. J Biol Chem 267:19039–19042

    Article  CAS  Google Scholar 

  • Carrel RW, Lomas DA (2002) Alpha-1-antitrypsin deficiency – a model for conformational disease. N Eng J Med 346:45–53

    Article  Google Scholar 

  • Casper M, Linxweiler M, Linxweiler J, Zimmermann R, Glanemann M, Lammert F, Weber SN (2021) SEC62 and SEC63 expression in hepatocellular carcinoma (HCC) and tumor-surrounding liver tissue. Visc Med. https://doi.org/10.1159/000513293

  • Chambers JE, Petrova K, Tomba G, Vendruscolo M, Ron D (2012) ADP ribosylation adapts an ER chaperone response to short-term fluctuations in unfolded protein load. J Cell Biol 198:371–385

    Article  CAS  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  CAS  Google Scholar 

  • Chung KT, Shen Y, Hendershot H (2002) BAP, a mammalian BiP associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 277:47557–47563

    Article  CAS  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  Google Scholar 

  • Craven RA, Egerton M, Stirling CJ (1996) A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO J 15:2640–2650

    Article  CAS  Google Scholar 

  • Cunnea PM, Miranda-Vizuete A, Bertoli G, Simmen T, Damdimopoulos AE, Hermann S, Leinonen S, Huikko MP, Gustafsson J-A, Sitia R, Spyrou G (2003) ERdj5, an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells or following ER stress. J Biol Chem 278:1059–1066

    Article  CAS  Google Scholar 

  • Davila S, Furu L, Gharavi AG, Tian X, Onoe T, Qian Q, Li A, Cai Y, Kamath PS, King BF, Azurmendi PJ, Tahvanainen P, Kääriäinen H, Höckerstedt K, Devuyst O, Pirson Y, Martin RS, Lifton RP, Tahvanainen E, Tores VE, Somlo S (2004) Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Gen 36:575–577

    Article  CAS  Google Scholar 

  • Depaoli MR, Hay JC, Graier WF, Malli R (2019) The enigmatic ATP supply of the endoplasmic reticulum. Biol Rev 94:610–628

    Article  Google Scholar 

  • De Keyzer J, Steel GJ, Hale SJ, Humphries D, Stirling CJ (2009) Nucleotide binding by Lhs1p is essential for ist nucleotide exchange activity and for function in vivo. J Biol Chem 284:31564–31571

    Article  Google Scholar 

  • Degen E, Williams DB (1991) Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility proteins. J Cell Biol 112:1099–1115

    Article  CAS  Google Scholar 

  • Dierks T, Volkmer J, Schlenstedt G, Jung C, Sandholzer U, Zachmann K, Schlotterhose P, Neifer K, Schmidt B, Zimmermann R (1996) A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum. EMBO J 15:6931–6942

    Article  CAS  Google Scholar 

  • Dong M, Bridges JP, Apsley K, Xu Y, Weaveret TE (2008) ERdj4 and ERdj5 are required for endoplasmic reticulum-associated protein degradation of misfolded surfactant protein C. Mol Biol Cell 19:2620–2630

    Article  CAS  Google Scholar 

  • Dudek J, Volkmer J, Bies C, Guth S, Müller A, Lerner M, Feick P, Schäfer KH, Morgenstern E, Hennessy F, Blatch GL, Janoscheck K, Heim N, Scholtes P, Frien M, Nastainczyk W, Zimmermann R (2002) A novel type of cochaperone mediates transmembrane recruitment of DnaK-like chaperones to ribosomes. EMBO J 21:2958–2967

    Article  CAS  Google Scholar 

  • Dudek J, Greiner M, Müller A, Hendershot LM, Kopsch K, Nastainczyk W, Zimmermann R (2005) ERj1p plays a basic role in protein biogenesis at the endoplasmic reticulum. Nat Struct Mol Biol 12:1008–1014

    Article  CAS  Google Scholar 

  • Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Müller L, Zimmermann R (2009) Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci 66:1556–1569

    Article  CAS  Google Scholar 

  • Dudek J, Pfeffer S, Lee P-H, Jung M, Cavalié A, Helms V, Förster F, Zimmermann R (2015) Protein transport into the human endoplasmic reticulum. J Mol Biol 427:1159–1175

    Article  CAS  Google Scholar 

  • Eesmaa A, Yu L-Y, Göös K, Nöges K, Kovaleva V, Hellman M, Zimmermann R, Jung M, Permi P, Varjosalo M, Lindholm P, Saarma M (2021) The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor. J Biol Chem 296:100295

    Article  CAS  Google Scholar 

  • Eki T, Naitou M, Hagiwara H, Ozawa M, Sasanuma SI, Sasanuma M, Tsuchiya T, Shibata T, Hanaoka F, Murakami Y (1996) Analysis of a 36.2 kb DNA sequence including the right telomere of chromosome VI from Saccharomyces cerevisiae. Yeast 12:149–167

    Article  CAS  Google Scholar 

  • English AR, Voeltz GK (2013) Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 5:a013227

    Article  Google Scholar 

  • Erdmann F, Schäuble N, Lang S, Jung M, Honigmann A, Ahmad M, Dudek J, Benedix J, Harsmann A, Kopp A, Helms V, Cavalié A, Wagner R, Zimmermann R (2011) Interaction of calmodulin with Sec61α limits Ca2+ leakage from the endoplasmic reticulum. EMBO J 30:17–31

    Article  CAS  Google Scholar 

  • Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A, Coppola D, Kruhoffer M, Aaltonen L, Orntoft TF, Quackenbush J, Yeatman TJ (2005) Molecular staging or survival prediction of colorectal cancer patients. J Clin Oncol 23:3526–3535

    Article  CAS  Google Scholar 

  • Faust O, Abayev-Avraham M, Wentink AS, Maurer M, Nillegoda NB, London N, Bukau B, Rosenzweig R (2020) HSP40 proteins use class-specific regulation to drive HSP70 functional diversity. Nature 587:489–494

    Article  CAS  Google Scholar 

  • Fedeles SV, Tian X, Gallagher A-R, Mitobe M, Nishio S, Lee SH, Cai Y, Geng L, Crews CM, Somlo S (2011) A genetic interaction network of five genes for human polycystic kidney and liver disease defines polycystin-1 as the central determinant of cyst formation. Nat Genet 43:639–647

    Article  CAS  Google Scholar 

  • Feige MJ, Hendershot LM, Buchner J (2010) How antibodies fold. Trends Biochem Sci 35:189–198

    Article  CAS  Google Scholar 

  • Fenech EJ, Ben-Dor S, Schuldiner M (2020) Double the fun, double the trouble: Paralogs and homologs functioning in the endoplasmic reticulum. Ann Rev Biochem 89:637–666

    Article  CAS  Google Scholar 

  • Feske S (2019) CRAC channels and disease – from human CRAC channelopathies and animal models to novel drugs. Cell Calcium 80:112–116

    Article  CAS  Google Scholar 

  • Flourakis M, Van Coppenolle F, Lehen'kyi V, Beck B, Skryma R (2006) Passive calcium leak via translocon is a first step for iPLA2-pathway regulated store operated channels activation. FASEB J 20:1215–1217

    Article  CAS  Google Scholar 

  • Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353:726–730

    Article  CAS  Google Scholar 

  • Freiden PJ, Gaut JR, Hendershot LM (1992) Interconversion of three differentially modified and assembled forms of BiP. EMBO J 11:63–70

    Article  CAS  Google Scholar 

  • Fritz JM, Dong M, Apsley KS, Martin EP, Na C-L, Sitaraman S, Weaver TE (2014) Deficiency of the BiP cochaperone ERdj4 causes constitutive endoplasmic reticulum stress and metabolic defects. Mol Biol Cell 25:431–440

    Article  Google Scholar 

  • Fu Y, Li J, Lee AS (2007) GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 67:3734–3740

    Article  CAS  Google Scholar 

  • Fumagalli F, Noack J, Bergmann T, Cebollero E, Pisoni GB, Fasana E, Fregno I, Galli C, Loi M, Soldá T, D’Antuono R, Raimondi A, Jung M, Melnyk A, Schorr S, Schreiber A, Simonelli L, Varani L, Wilson-Zbinden C, Zerbe O, Hoffmann K, Peter M, Quadroni M, Zimmermann R, Molinari M (2016) Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol 18:1173–1184

    Article  CAS  Google Scholar 

  • Gamayun I, O’Keefe S, Pick T, Klein M-C, Nguyen D, McKibbin C, Piacenti M, Williams HM, Flitch SL, Whitehead RC, Swanton L, Helms V, High S, Zimmermann R, Cavalié A (2019) Eeyarestatin compounds selectively enhance Sec61-mediated Ca2+ leakage from the endoplasmic reticulum. Cell Chem Biol 26:571–583

    Article  CAS  Google Scholar 

  • Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5:a013169

    Article  Google Scholar 

  • Gemmer M, Förster F (2020) A clearer picture of the ER translocon complex. J Cell Sci 133:jcs231340

    Article  CAS  Google Scholar 

  • Giunti R, Gamberucci A, Fulceri R, Banhegyi G (2007) Both translocon and a cation channel are involved in the passive Ca2+ leak from the endoplasmic reticulum: a mechanistic study on rat liver microsomes. Arch Biochem Biophys 462:115–121

    Article  CAS  Google Scholar 

  • Görlich D, Prehn S, Hartmann E, Kalies K-U, Rapoport TA (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71:489–503

    Article  Google Scholar 

  • Götz G, Müller A, Montenarh M, Zimmermann R, Dudek J (2009) ERj1 is a substrate of phosphorylation by CK2. Biochem Biophys Res Commun 388:637–642

    Article  Google Scholar 

  • Greiner M, Kreutzer B, Jung V, Grobholz R, Hasenfus A, Stöhr R, Franz R, Tornillo L, Dudek J, Stöckle M, Unteregger G, Kamradt J, Wullich B, Zimmermann R (2011a) Silencing of the SEC62 gene inhibits migratory and invasive potential of various tumor cells. Int J Cancer 128:2284–2295

    Article  CAS  Google Scholar 

  • Greiner M, Kreutzer B, Lang S, Jung V, Cavalié A, Unteregger G, Zimmermann R, Wullich B (2011b) Sec62 protein level is crucial for ER-stress tolerance of prostate cancer. The Prostate 71:1074–1083

    Article  CAS  Google Scholar 

  • Grumati P, Dikic I, Stolz A (2018) ER-phagy at a glance. J Cell Sci 131:JCS217364

    Article  Google Scholar 

  • Gumbart J, Schulten K (2007) Structural determinants of lateral gate opening in the protein translocon. Biochemistry 46:11147–11157

    Article  CAS  Google Scholar 

  • Haas IG, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature 306:387–389

    Article  CAS  Google Scholar 

  • Hagerstrand D, Tong A, Schumacher SE, Ilic N, Shen RR, Cheung HW, Vazquez F, Shrestha Y, Kim SY, Giacomelli AO, Rosenbluh J, Schinel AC, Spardy NA, Barbie DA, Mermel CH, Weir BA, Garraway LA, Tamayo P, Mesirov JP, Beroukhim R, Hahn WC (2013) Systematic interrogation of 3q26 identifies TLOC1 and SKL as cancer drivers. Cancer Discov 3:1044–1057

    Article  CAS  Google Scholar 

  • Hagiwara M, Maegawa K-i, Suzuki M, Ushioda R, Araki K, Matsumoto JH, Nagata K, Inaba K (2011) Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol Cell 41:432–444

    Article  CAS  Google Scholar 

  • Haigh NG, Johnson AE (2002) A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J Cell Biol 156:261–270

    Article  CAS  Google Scholar 

  • Hale SJ, Lovell SC, de Keyzer J, Stirling CJ (2010) Interactions between Kar2p and its nucleotide exchange factors Sil1p and Lhs1p are mechanistically distinct. J Biol Chem 285:21600–21606

    Article  CAS  Google Scholar 

  • Hamilton TG, Flynn GC (1996) Cer1p, a novel Hsp70-related protein required for posttranslational endoplasmic reticulum translocation in yeast. J Biol Chem 271:30610–30613

    Article  CAS  Google Scholar 

  • Hamman BD, Hendershot LM, Johnson AE (1998) BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92:747–758

    Article  CAS  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  CAS  Google Scholar 

  • Hartmann E, Sommer T, Prehn S, Görlich D, Jentsch S, Rapoport TA (1994) Evolutionary conservation of components of the protein translocation complex. Nature 367:654–657

    Article  CAS  Google Scholar 

  • Haßdenteufel S, Klein M-C, Melnyk A, Zimmermann R (2014) Protein transport into the human ER and related diseases: Sec61-channelopathies. Biochem Cell Biol 92:499–509

    Article  Google Scholar 

  • Haßdenteufel S, Johnson N, Paton AW, Paton JC, High S, Zimmermann R (2018) Chaperone-mediated Sec61 channel gating during ER import of small precursor proteins overcomes Sec61 inhibitor-reinforced energy barrier. Cell Rep 23:1373–1386

    Article  Google Scholar 

  • Haßdenteufel S, Nguyen D, Helms V, Lang S, Zimmermann R (2019) Components and mechanisms for ER import of small human presecretory proteins. FEBS Lett 593:2506–2524

    Article  Google Scholar 

  • Hayashi T, Su T-P (2007) Sigma-1 receptor chaperones at the ER- mitochondrion interface regulate Ca (2+) signaling and cell survival. Cell 131:596–610

    Article  CAS  Google Scholar 

  • Hayashi T, Rizzuto R, Hajnoczky G, Su T-P (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88

    Article  CAS  Google Scholar 

  • Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–723

    Article  CAS  Google Scholar 

  • Hendershot LM, Ting J, Lee AS (1988) Identity of the immunoglobulin heavy-chain-binding protein with the 78,000-dalton glucose-regulated protein and the role of posttranslational modifications in its binding function. Mol Cell Biol 8:4250–4256

    CAS  Google Scholar 

  • Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 14:1697–1709

    Article  CAS  Google Scholar 

  • Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maurice N, Mukherjee A, Goldbach C, Watkins S, Michalopoulos G, Perlmutter DH (2010) An autophagy-enhancing drug promotes degradation of mutant alpha-1-antitrypsin Z and reduces hepatic fibrosis. Science 329:229–232

    Article  CAS  Google Scholar 

  • Hipp MS, Kasturi P, Hartl FU (2019) The proteostasis network and its decline in ageing. Nat Rev 20:421–435

    Article  CAS  Google Scholar 

  • Hosoda A, Kimata Y, Tsuru A, Kohno K (2003) JPDI, a novel endoplasmic reticulum-resident protein containing both a BiP-interacting J-domain and thioredoxin-like motifs. J Biol Chem 278:2669–2676

    Article  CAS  Google Scholar 

  • Howes J, Shimizu Y, Feige M, Hendershot LM (2012) C-terminal mutations destabilize SIL1/BAP and can cause Marinesco-Sjögren syndrome. J Biol Chem 287:8552–8560

    Article  CAS  Google Scholar 

  • Itskanov S, Park E (2019) Structure of the posttranslational Sec protein-translocation channel complex from yeast. Science 363:84–87

    Article  CAS  Google Scholar 

  • ** Y, Awad W, Petrova K, Hendershot LM (2008) Regulated release of ERdj3 from unfolded proteins by BiP. EMBO J 27:2873–2882

    Article  CAS  Google Scholar 

  • ** Y, Zhuang M, Hendershot LM (2009) Erdj3, a luminal ER DnaJ homologue, binds directly to unfolded proteins in the mammalian ER: identification of critical residues. Biochemistry 48:41–49

    Article  CAS  Google Scholar 

  • Johnson N, Vilardi F, Lang S, Leznicki P, Zimmermann R, High S (2013) The signal sequence influences posttranslational ER translocation at distinct stages. PLoS One 8:e75394

    Article  CAS  Google Scholar 

  • Jung V, Kindich R, Kamradt J, Jung M, Mueller M, Schulz WA, Engers R, Stoeckle M, Zimmermann R, Wullich B (2006) Genomic and expression analysis of the 3q25-q26 amplicon reveals TLOC1/SEC62 as a probable target gene in prostate cancer. Mol Cancer Res 4:169–176

    Article  CAS  Google Scholar 

  • Kam**a HH, Andreasson C, Barducci A, Cheetham M, Cyr D, Emanuelsson C, Genevaux P, Gestwicki J, Goloubinoff P, Huerta-Cepas J, Kirstein J, Liberek K, Mayer M, Nagata K, Nillegoda NB, Pulido P, Ramos C, De los Rios P, Rospert S, Rosenzweig R, Sahi C, Taipale M, Tomiczek B, Ushioda R, Young JC, Zimmermann R, Zylicz A, Zylicz M, Craig EA, Marszalek J (2018) Function, evolution and structure of J-domain proteins. Cell Stress Chaperones 24:7–15

    Article  Google Scholar 

  • Kang SW, Ran NS, Kim SJ, Garrison JL, Taunton J, Hegde RS (2006) Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 127:999–1013

    Article  CAS  Google Scholar 

  • Kappel S, Borgström A, Stoklosa P, Dörr K, Peinelt C (2019) Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 94:66–73

    Article  CAS  Google Scholar 

  • Kassenbrock CK, Garcia PD, Walter P, Kelly RB (1988) Heavy-chain binding protein recognizes aberrant polypeptides translocated in vitro. Nature 333:90–93

    Article  CAS  Google Scholar 

  • Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, Liebmann L, Stolz A, Nietzsche S, Koch N, Mauthe M, Katona I, Qualmann B, Weis J, Reggiori F, Kurth I, Hübner CA, Dikic I (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:354–358

    Article  CAS  Google Scholar 

  • Kitao Y, Hashimoto K, Matsuyama T, Iso H, Tamatani T, Hori O, Stern DM, Kano M, Ozawa K, Ogawa S (2004) ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J Neurosci 24:1486–1496

    Article  CAS  Google Scholar 

  • Kityk R, Vogel M, Schlecht R, Bukau B, Mayer MP (2015) Pathways of allosteric regulation in Hsp70 chaperones. Nat Commun 6:8308

    Article  CAS  Google Scholar 

  • Klein M-C, Zimmermann K, Schorr S, Landini M, Klemens P, Altensell J, Jung J, Krause E, Nguyen D, Helms V, Rettig J, Fecher-Trost C, Cavalié A, Hoth M, Bogeski I, Neuhaus HE, Zimmermann R, Lang S, Haferkamp I (2018) AXER is an ATP/ADP exchanger in the membrane of the endoplasmic reticulum. Nat Commun 9:3489

    Article  Google Scholar 

  • Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochem Biophys Acta 1778:1978–2021

    Article  CAS  Google Scholar 

  • Kopp MC, Larburo N, Duraiaj V, Adams CJ, Ali MMU (2020) UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat Stuct Mol Biol 26:1053–1062

    Article  Google Scholar 

  • Körbel C, Linxweiler M, Wemmert S, Bochen F, Schick B, Meyer M, Maurer H, Menger MD, Zimmermann R, Greiner M (2018) Treatment of SEC62 over-expressing tumors by thapsigargin and trifluoperazine. BioMol Concepts 9(53):63

    Google Scholar 

  • Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481

    Article  CAS  Google Scholar 

  • Kroczynska B, Evangelista CM, Samant SS, Elguindi EC, Blond SY (2004) The SANT2 domain of murine tumor cell DnaJ-like protein 1 human homologue interacts with α1-antichymotrypsin and kinetically interferes with its serpin inhibitory activity. J Biol Chem 279:11432–11443

    Article  CAS  Google Scholar 

  • Kurisu J, Honma A, Miyajima H, Kondo S, Okumura M, Imaizumi K (2003) MDG1/ERdj4, an ER-resident DnaJ family member, suppresses cell death induced by ER stress. Genes Cells 8:189–202

    Article  CAS  Google Scholar 

  • Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL, Baskin CR, MacAuley A, Goodman AG, LeBoeuf RC, Katze MG (2005) Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 54:1074–1081

    Article  CAS  Google Scholar 

  • Lai CW, Otero JH, Hendershot LM, Snapp E (2012) Erdj4 protein is a soluble endoplasmic reticulum (ER) DnaJ family protein that interacts with ER-associated degradation machinery. J Biol Chem 287:7969–7978

    Article  CAS  Google Scholar 

  • Lakkaraju AKK, Thankappan R, Mary C, Garrison JL, Taunton J, Strub K (2012) Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol Biol Cell 23:2712–2722

    Article  CAS  Google Scholar 

  • Lang S, Erdmann F, Jung M, Wagner R, Cavalié A, Zimmermann R (2011) Sec61 complexes form ubiquitous ER Ca2+ leak channels. Channels 5:228–235

    Article  CAS  Google Scholar 

  • Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, Schäuble N, Jalal C, Greiner M, Haßdenteufel S, Tatzelt J, Kreutzer B, Edelmann L, Krause E, Rettig J, Somlo S, Zimmermann R, Dudek J (2012) Different effects of Sec61α-, Sec62 and Sec63-depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci 125:1958–1969

    CAS  Google Scholar 

  • Lang S, Pfeffer S, Lee P-H, Cavalié A, Helms V, Förster F, Zimmermann R (2017) An update on Sec61 channel function, mechanisms, and related diseases. Frontiers in Physiology 8:887

    Article  Google Scholar 

  • Lang S, Nguyen D, Pfeffer S, Förster F, Helms V, Zimmermann R (2019) Current state of affairs on the eukaryotic ribosome-translocon complex. Subcell Biochem 93:83–141

    Article  CAS  Google Scholar 

  • Li X, Sun S, Appathurai S, Sundaram A, Plumb R, Mariappan M (2020) A molecular mechanism for turning off IRE1α signaling during endoplasmic reticulum stress. Cell Rep 33

    Google Scholar 

  • Lin H-Y, Masso-Welch P, Di Y-P, Cai J-W, Shen J-W, Subjeck JR (1993) The 170-kDa glucose-regulated stress protein is an endoplasmic reticulum protein that binds immunoglobulin. Mol Biol Cell 4:1109–1119

    Article  CAS  Google Scholar 

  • Linxweiler M, Linxweiler J, Barth M, Benedix J, Jung V, Kim Y-J, Bohle R, Zimmermann R, Greiner M (2012) Sec62 bridges the gap from 3q amplification to molecular cell biology in non-small cell lung cancer. Am J Pathol 180:473–483

    Article  CAS  Google Scholar 

  • Linxweiler M, Schorr S, Jung M, Schäuble N, Linxweiler J, Langer F, Schäfers H-J, Cavalié A, Zimmermann R, Greiner M (2013) Targeting cell migration and the ER stress response with calmodulin antagonists: a clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells. BMC Cancer 13:574

    Article  Google Scholar 

  • Linxweiler M, Bochen F, Schick B, Wemmert S, Al Kadah B, Greiner M, Hasenfus A, Bohle R-M, Juhasz-Bӧss I, Solomayer E-F, Takacs ZF (2016) Identification of SEC62 as a potential marker for 3q amplification and cellular migration in dysplastic cervical lesions. BMC Cancer 16:676

    Article  Google Scholar 

  • Linxweiler M, Schick B, Zimmermann R (2017) Lets talk about Secs: Sec61, Sec62, Sec63 in signal transduction, oncology and personalized medicine. Signal Transduct Targeted Ther 2:e17002

    Article  Google Scholar 

  • Lloyd DJ, Wheeler MC, Gekakis N (2010) A point mutation in Sec61α leads to diabetes and hepatosteatosis in mice. Diabetes 59:460–470

    Article  CAS  Google Scholar 

  • Loi M, Raimondi A, Morone D, Molinari M (2019) ESCRT-III-driven piecemeal micro-ER-phagy remodels the ER during recovery from ER stress. Nat Commun 10:5058

    Article  Google Scholar 

  • Lomax RB, Camello C, Van Coppenolle F, Petersen OH, Tepikin AV (2002) Basal and physiological Ca2+ leak from the endoplasmic reticulum of pancreatic acinar cells. Second messenger-activated channels and translocons. J Biol Chem 277:26479–26485

    Article  CAS  Google Scholar 

  • Luo S, Mao C, Lee B, Lee AS (2006) GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 15:5688–5697

    Article  Google Scholar 

  • Lyman SK, Schekman R (1995) Interaction between BiP and Sec63p is required for the completion of protein translocation into the ER of Saccharomyces cerevisiae. J Cell Biol 131:1163–1171

    Article  CAS  Google Scholar 

  • Lyman SK, Schekman R (1997) Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88:85–96

    Article  CAS  Google Scholar 

  • Ma Y, Hendershot LM (2001) The unfolding tale of the unfolded protein response. Cell 107:827–830

    Article  CAS  Google Scholar 

  • Macario AJ, Conway de Macario E (2007) Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 12:2588–2600

    Article  CAS  Google Scholar 

  • Madeo F, Kroemer G (2009) Intricate links between ER stress and apoptosis. Mol Cell 33:669–670

    Article  CAS  Google Scholar 

  • Malhotra JD, Kaufman RJ (2011) Er stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol 3:a004424

    Article  Google Scholar 

  • Mashaghi A, Bezrukavnikov S, Minde DP, Wentink AS, Kityk R, Zachmann-Brand B, Mayer MP, Kramer G, Bukau B, Tans SJ (2016) Alternative modes of client binding enable functional plasticity of Hsp70. Nature 539:448–451

    Article  CAS  Google Scholar 

  • Matlack KES, Plath K, Misselwitz B, Rapoport TA (1997) Protein transport by purified yeast sec complex and Kar2p without membranes. Science 277:938–941

    Article  CAS  Google Scholar 

  • Mayer H-A, Grau H, Kraft R, Prehn S, Kalies K-U, Hartmann E (2000) Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem 275:14550–14557

    Article  Google Scholar 

  • Melnyk A, Rieger H, Zimmermann R (2015) Co-chaperones of the mammalian endoplasmic reticulum. In: Blatch GL, Edkins AL (eds) The networking of chaperones by co-chaperones: control of cellular protein homeostasis. Springer International Publishing, Cham, pp 179–200

    Google Scholar 

  • Meunier L, Usherwood Y-K, Chung KT, Hendershot LM (2002) A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell 13:4456–4469

    Article  CAS  Google Scholar 

  • Mimura N, Hamada H, Kashio M, ** H, Toyama Y, Kimura K, Iida M, Goto S, Saisho H, Toshimori K, Koseki H, Aoe T (2007) Aberrant quality control in the endoplasmic reticulum impairs the biosynthesis of pulmonary surfactant in mice expressing mutant BiP. Cell Deat Differ 14:1475–1485

    Article  CAS  Google Scholar 

  • Molinari M (2020) ER-phagy: eating the factory. Cell 78:811–813

    CAS  Google Scholar 

  • Mori Y, Sato F, Selaru FM, Olaru A, Perry K, Kimos MC, Tamura G, Matsubara N, Wang S, Xu Y, Yin J, Zou T-T, Leggett B, Young J, Nukiwa T, Stine OC, Abraham JM, Shibata D, Meltzer SJ (2002) Instabiloty** reveals unique mutational spectra in microsatellite-unstable gastric cancers. Cancer Res 62:3641–3645

    CAS  Google Scholar 

  • Müller L, Diaz de Escauriaza M, Lajoie P, Theis M, Jung M, Müller A, Burgard C, Greiner M, Snapp EL, Dudek J, Zimmermann R (2010) Evolutionary gain of function of the ER membrane protein Sec62 from yeast to humans. Mol Biol Cell 21:691–703

    Article  Google Scholar 

  • Munro S, Pelham HRB (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300

    Article  CAS  Google Scholar 

  • Nicchitta CV, Blobel G (1993) Lumenal proteins of the mammalian endoplasmic reticulum are required to complete protein translocation. Cell 73:989–998

    Article  CAS  Google Scholar 

  • Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A, Stengel F, Arnsburg K, Gao X, Scior A, Aebersold R, Guilbride DL, Wade RC, Morimoto RI, Mayer MP, Bukau B (2015) Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524:247–251

    Article  CAS  Google Scholar 

  • Nillegoda NB, Stank A, Malinverni D, Alberts N, Szlachcic A, Barducci A, De Los RP, Wade RC, Bukau B (2017) Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. eLife 6:24560

    Article  Google Scholar 

  • Nishikawa S, Endo T (1997) The yeast Jem1p is a DnaJ-like protein of the endoplasmic reticulum membrane required for nuclear fusion. J Biol Chem 272:12889–12892

    Article  CAS  Google Scholar 

  • Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR, Xu CS, Pasolli HA, Harvey K, Hess HF, Betzig E, Blackstone C, Lippincott-Schwartz J (2016) Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354:aaf3928-1-12

    Article  Google Scholar 

  • Oka OBV, Pringle MA, Schopp IM, Braakman I, Bulleid NJ (2013) ERdj5 is the ER reductase that catalyzes the removal of non-native disulfides and correct folding of the LDL receptor. Mol Cell 50:793–804

    Article  CAS  Google Scholar 

  • Olzmann JA, Kopito RR, Christianson JA (2012) The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a013185

  • Ong HL, Liu X, Sharma A, Hegde RS, Ambudkar IS (2007) Intracellular Ca2+ release via the ER translocon activates store-operated calcium entry. Pflugers Arch 453:797–808

    Article  CAS  Google Scholar 

  • Otero JH, Lizak B, Hendershot LM (2010) Life and death of a BiP substrate. Semin Cell Dev Biol 21:472–478

    Article  CAS  Google Scholar 

  • Palade G (1975) Intracellular aspects of protein synthesis. Science 189:347–358

    Article  CAS  Google Scholar 

  • Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilche MC, Rossjohn J, Talbot UM, Paton JC (2006) AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 443:548–552

    Article  CAS  Google Scholar 

  • Pelham HRB (1990) The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci 15:483–486

    Article  Google Scholar 

  • Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Lührmann R, Wahl MC (2009) Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase. Mol Cell 35:454–466

    Article  CAS  Google Scholar 

  • Perera LA, Rato C, Yan Y, Neidhardt L, McLaughlin AH, Read RJ, Preissler S, Ron D (2019) An oligomeric-state dependent switch in the ER enzyme FICD regulates AMPylation and deAMPylation of BiP. EMBO J 38:e102177

    Article  CAS  Google Scholar 

  • Peterson BG, Glaser ML, Rapoport TA, Baldridge RD (2019) Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. eLife 8:e50903

    Article  CAS  Google Scholar 

  • Petrova K, Oyadomari S, Hendershot LM, Ron D (2008) Regulated association of misfolded endoplasmic reticulum lumenal proteins with P58/DNAJc3. EMBO J 27:2862–2872

    Article  CAS  Google Scholar 

  • Pfeffer S, Brandt F, Hrabe T, Lang S, Eibauer M, Zimmermann R, Förster F (2012) Structure and 3D arrangement of ER-membrane associated ribosomes. Structure 20:1508–1518

    Article  CAS  Google Scholar 

  • Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, Becker T, Beckmann R, Zimmermann R, Förster F (2014) Structure of the mammalian oligosaccharyl-transferase in the native ER protein translocon. Nat Commun 5:4072

    Article  Google Scholar 

  • Pfeffer S, Burbaum L, Unverdorben P, Pech M, Chen Y, Zimmermann R, Beckmann R, Förster F (2015) Structure of the native Sec61 protein-conducting channel. Nat Commun 6:8403

    Article  CAS  Google Scholar 

  • Pfeffer S, Dudek J, Ng B, Schaffa M, Albert S, Plitzko J, Baumeister W, Zimmermann R, Freeze H, Engel BD, Förster F (2017) Dissecting the molecular organization of the translocon-associated protein complex. Nat Commun 8:14516

    Article  CAS  Google Scholar 

  • Pilon M, Schekman R, Römisch K (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 16:4540–4548

    Article  CAS  Google Scholar 

  • Plemper RK, Böhmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895

    Article  CAS  Google Scholar 

  • Pobre KFR, Poet GJ, Hendershot LM (2019) The endoplasmic reticulum (ER) chaperone BiP is a major regulator of ER functions: getting by with a little help from ERdj friends. J Biol Chem 294:2098–2108

    Article  CAS  Google Scholar 

  • Polier S, Dragovic Z, Hartl FU, Bracher A (2008) Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133:1068–1079

    Article  CAS  Google Scholar 

  • Preissler S, Chambers JE, Crespillo-Casado A, Avezov E, Miranda E, Perez J, Hendershot LM, Harding HP, Ron D (2015) Physiological modulation of BiP activity by trans-promoter engagement of the interdomain linker. eLife 4:e08961

    Article  Google Scholar 

  • Preston AM, Hendershot LM (2013) Examination of a second node of translational control in the unfolded protein response. J Cell Sci 126:4253–4261

    CAS  Google Scholar 

  • Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    Article  CAS  Google Scholar 

  • Ron D, Harding HP (2012) Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb Perspect Biol 4:a013177

    Article  Google Scholar 

  • Roos A, Buchkremer S, Labisch T, Gatz C, Brauers E, Nolte K, Goebel HH, Zimmermann R, Senderek J, Weis J (2014) Severe degenerative myopathy in woozy mice: chaperonopathy and specific nuclear envelope pathology due to Sil1 dysfuction in a model for Marinesco-Sjögren syndrome. Acta Neuropathol 127:761–777

    Article  CAS  Google Scholar 

  • Rothblatt JA, Deshaies RJ, Sanders SL, Daum G, Schekman R (1989) Multiple genes are required for protein assembly into the endoplasmic reticulum in yeast. J Cell Biol 109:2641–2652

    Article  CAS  Google Scholar 

  • Ruggiano A, Foresti O, Carvalho P (2014) ER-associated degradation: protein quality control and beyond. J Cell Biol 204:869–879

    Article  CAS  Google Scholar 

  • Rutkowski DT, Kang SW, Goodman AG, Garrison JL, Taunton J, Katze MG, Kaufman RJ, Hedge RS (2007) The role of p58IPK in protecting the stressed endoplasmic reticulum. Mol Biol Cell 18:3681–3691

    Article  CAS  Google Scholar 

  • Sadler I, Chiang A, Kurihara T, Rothblatt JA, Way J, Silver PA (1989) A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. J Cell Biol 109:2665–2675

    Article  CAS  Google Scholar 

  • Sambrook JF (1990) The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell 61:197–199

    Article  CAS  Google Scholar 

  • Schäfer A, Wolf DH (2009) Sec61p is part of the endoplasmic reticulum-associated degradation machinery. EMBO J 28:2874–2884

    Article  Google Scholar 

  • Schäuble N, Lang S, Jung M, Cappel S, Schorr S, Ulucan Ö, Linxweiler J, Dudek J, Blum R, Helms V, Paton AW, Paton JC, Cavalié A, Zimmermann R (2012) BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J 31:3282–3296

    Article  Google Scholar 

  • Schekman R (2004) Merging cultures in the study of membrane traffic. Nat Cell Biol 6:483–486

    Article  CAS  Google Scholar 

  • Schekman R (2005) Peroxisomes: another branch of the secretory pathway? Cell 122:1–7

    Article  CAS  Google Scholar 

  • Schlecht R, Erbse AH, Bukau B, Mayer MP (2011) Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18:345–351

    Article  CAS  Google Scholar 

  • Schlenstedt G, Harris S, Risse B, Lill R, Silver PA (1995) A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70. J Cell Biol 129:979–988

    Article  CAS  Google Scholar 

  • Schmidt BZ, Perlmutter DH (2005) Grp78, Grp94, and Grp170 interact with alpha-1-antitrypsin mutants that are retained in the endoplasmic reticulum. Am J Phsiol Gastrointest Lver Physiol 289:G444–G455

    Article  CAS  Google Scholar 

  • Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R, DiMaio F, Baker D, Chambers MG, Su H, Li D, Rapoport TA, Liao M (2017) Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548:352–355

    Article  CAS  Google Scholar 

  • Schorr S, Klein M-C, Gamayun I, Melnyk A, Jung M, Schäuble N, Wang Q, Hemmis B, Bochen F, Greiner M, Lampel P, Urban SK, Haßdenteufel S, Dudek J, Chen X-Z, Wagner R, Cavalié A, Zimmermann R (2015) Co-chaperone specificity in gating of the polypeptide conducting channel in the membrane of the human endoplasmic reticulum. J Biol Chem 290:18621–18635

    Article  CAS  Google Scholar 

  • Schorr S, Nguyen D, Haßdenteufel S, Nagaraj N, Cavalié A, Greiner M, Weissgerber P, Loi M, Paton AW, Paton JC, Molinari M, Förster F, Dudek J, Lang S, Helms V, Zimmermann R (2020) Proteomics identifies signal peptide features determining the substrate specificity in human Sec62/Sec63-dependent ER protein import. FEBS J 287:4612–4640

    Article  CAS  Google Scholar 

  • Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  Google Scholar 

  • Schubert D, Klein M-C, Haßdenteufel S, Caballero-Oteyza A, Yang L, Proietti M, Bulashevska A, Kemming J, Kühn J, Winzer S, Rusch S, Fliegauf M, Schäffer AA, Pfeffer S, Geiger R, Cavalié A, Cao H, Yang F, Li Y, Rizzi M, Eibel H, Kobbe R, Marks A, Peppers BP, Hostoffer RW, Puck JM, Zimmermann R, Grimbacher B (2018) Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 (SEC61A1). J Allergy Clin Immunol 141:1427–1438

    Article  CAS  Google Scholar 

  • Schulmann K, Brasch FE, Kunstmann E, Engel C, Pagenstecher C, Vogelsang H, Krüger S, Vogel T, Knaebel H-P, Rüschoff J, Hahn SA, von Knebel-Doeberitz M, Moeslein G, Meltzer SJ, Schackert HK, Tympner C, Mangold E, Schmiegel W, for the German HNPCC consortium (2005) HNPCC-associated small bowel cancer: clinical and molecular characteristics. Gastroenterology 128:590–599

    Article  CAS  Google Scholar 

  • Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, Breitbach-Faller N, Rudinik-Schoneborn S, Blaschek A, Wolf N, Harting I, North K, Smith J, Muntoni F, Brockington M, Quijano-Roy S, Renault F, Herrmann R, Hendeshot LM, Schröder JM, Lochmüller H, Topaloglu H, Voit T, Weis J, Ebinger F, Zerres K (2005) Mutations in Sil1 cause Marinesco-Sjögren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Gen 37:1312–1314

    Article  CAS  Google Scholar 

  • Shaffer KL, Sharma A, Snapp EL, Hegde RS (2005) Regulation of protein compartmentalization expands the diversity of protein function. Dev Cell 9:545–554

    Article  CAS  Google Scholar 

  • Shen Y, Hendershot LM (2004) ERdj3p, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP’s interactions with unfolded substrates. Mol Biol Cell 16:40–50

    Article  Google Scholar 

  • Shen Y, Meunier L, Hendershot LM (2002) Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J Biol Chem 277:15947–15956

    Article  CAS  Google Scholar 

  • Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18:7499–7509

    Article  CAS  Google Scholar 

  • Shiu RP, Pouyssegur J, Pasta I (1977) Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci USA 74:3840–3844

    Article  CAS  Google Scholar 

  • Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17:367–379

    CAS  Google Scholar 

  • Silberstein S, Sclenstedt G, Silver PA (1998) A role for the DnaJ homologue Scj1p in protein folding in the yeast endoplasmic reticulum. J Cell Biol 143:921–933

    Article  CAS  Google Scholar 

  • Skowronek MH, Rotter M, Haas IG (1999) Molecular characterization of a novel mammalian DnaJ-like Sec63p homolog. Biol Chem 380:1133–1138

    Article  CAS  Google Scholar 

  • Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090

    Article  CAS  Google Scholar 

  • Soromani C, Zeng N, Hollemeyer K, Heinzel E, Klein M-C, Tretter T, Seaman MNJ, Römisch K (2012) N-acetylation and phosphorylation of Sec61 complex subunits in the ER membrane. BMC Cell Biol 13:34

    Article  CAS  Google Scholar 

  • Steel GJ, Fullereton DM, Tyson JR, Stirling CJ (2004) Coordinated activation of Hsp70 chaperones. Science 303:98–101

    Article  CAS  Google Scholar 

  • Sundaram A, Plumb R, Appathurai S, Mariappan M (2017) The Sec61 translocon limits IRE1a signaling during the unfolded protein response. eLife 6:e27187

    Article  Google Scholar 

  • Svärd M, Biterova EI, Bourhis J-M, Guy JE (2011) The crystal structure of the human co-chaperone P58IPK. PloS One 6:e22337

    Article  Google Scholar 

  • Synofzik M, Haack TB, Kopajtich R, Gorza M, Rapoport D, Greiner M, Schönfeld C, Freiberg C, Schorr S, Holl RW, Gonzalez MA, Fritsche A, Fallier-Becker P, Zimmermann R, Strom TM, Meitinger T, Züchner S, Schüle R, Schöls L, Prokisch H (2014) Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Gen 95:689–697

    Article  CAS  Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2008) Mediators of endoplasmic reticulum-stress-induced apoptosis. EMBO rep 7:880–885

    Article  Google Scholar 

  • Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190

    Article  CAS  Google Scholar 

  • Takacs FZ, Radosa JC, Linxweiler M, Kasohah M, Bohle RM, Bochen F, Unger C, Solomayer E-F, Schick B, Juhasz-Böss I (2019a) Identification of 3q oncogene SEC62 as a marker for distant metastasis and poor clinical outcome in invasive ductal breast cancer. Arch Gynecol Obstet 299:1405–1413

    Article  CAS  Google Scholar 

  • Takacs FZ, Radosa JC, Bochen F, Juhasz-Böss I, Solomayer E-F, Bohle RM, Breitbach RM, Schick B, Linxweiler M (2019b) Sec62/Ki67 and p16/Ki67 dual-staining immunocytochemistry in vulvar cytology for the identification of vulvar intraepithelial neoplasia and vulvar cancer: a pilot study. Arch Gynecol Obstet 299:825–833

    Article  CAS  Google Scholar 

  • Takacs FZ, Radosa JC, Bohle RM, Bochen F, Juhasz-Böss I, Solomayer E-F, Schick B, Linxweiler (2019c) Sec62/Ki67 dual staining in cervical cytology specimens: a new marker for high-grade dysplasia. Arch Gynecol Obstet 299:481–488

    Article  CAS  Google Scholar 

  • Tatu U, Helenius A (1997) Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol 136:555–565

    Article  CAS  Google Scholar 

  • Thibault G, Ng DTW (2012) The ERAD pathways of budding yeast. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a013193

  • Tirasophon W, Welihinda AA, Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinas/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12:1812–1824

    Article  CAS  Google Scholar 

  • Toyn J, Hibbs AR, Sanz P, Crowe J, Meyer DI (1988) In vivo and in vitro analysis of ptl1, a yeast ts mutant with a membrane-associated defect in protein translocation. EMBO J 7:4347–4353

    Article  CAS  Google Scholar 

  • Tyedmers J, Lerner M, Bies C, Dudek J, Skowronek MH, Haas IG, Heim N, Nastainczyk W, Volkmer J, Zimmermann R (2000) Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc Natl Acad Sci USA 97:7214–7219

    Article  CAS  Google Scholar 

  • Tyedmers J, Lerner M, Nastainczyk W, Zimmermann R (2003) Calumenin and reticulocalbin are associated with the protein translocase of the mammalian endoplasmic reticulum. J Biol Sci 5:70–75

    Google Scholar 

  • Tyedmers J, Lerner M, Wiedmann M, Volkmer J, Zimmermann R (2005) Polypeptide chain binding proteins mediate completion of cotranslational protein translocation into the mammalian endoplasmic reticulum. EMBO Rep 4:505–510

    Article  Google Scholar 

  • Tyson JR, Stirling CJ (2000) LHS1 and SIL1 provide a luminal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 19:6440–6452

    Article  CAS  Google Scholar 

  • Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321:569–572

    Article  CAS  Google Scholar 

  • Ushioda R, Miyamoto A, Inoue M, Watanabe S, Okumura M, Maegawa K-i, Uegaki K, Fujii S, Fukuda Y, Umitsu M, Takagi J, Inaba K, Mikoshiba K, Nagata K (2016) Redox-assisted regulation of Ca2+ homeostasis in the endoplasmic reticulum by disulfide reductase ERdj5. Proc Natl Acad Sci 113:E6055–E6063

    Article  CAS  Google Scholar 

  • Van Coppenolle F, Vanden Abeele F, Slomianny C, Flourakis M, Hesketh J, Dewailly E, Prevarskaya N (2004) Ribosome-translocon complex mediates calcium leakage from endoplasmic reticulum stores. J Cell Sci 117:4135–4142

    Article  Google Scholar 

  • Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44

    Article  Google Scholar 

  • Van Nieuwenhove E, Barber J, Smeets E, Neumann J, Willemsen M, Pasciuto E, Prezzemolo T, Lagou V, Seldeslachts L, Malengier-Devlies B, Metzemaekers M, Haßdenteufel S, Kerstens A, van der Kant R, Rousseau F, Schymkowitz J, Lang S, Zimmerman R, Schlenner S, Munck S, Proost P, Matthys P, Devalck C, Boeckx N, Claessens F, Wouters C, Humblet-Baron S, Meyts I, Liston A (2020) Defective Sec61α1 underlies a novel cause of autosomal dominant severe congenital neutropenia. J Allergy Clin Immunol 146:1180–1192

    Article  Google Scholar 

  • Van PN, Peter F, Söling H-D (1989) Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. J Biol Chem 264:17494–17501

    Article  CAS  Google Scholar 

  • Vasic V, Denkert N, Schmidt CC, Riedel D, Stein A, Meinecke M (2020) Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins. Nat Cell Biol 22:274–281

    Article  CAS  Google Scholar 

  • Vincenz-Donnelly L, Holthusen H, Körner R, Hansen EC, Presto J, Johansson J, Sawarkar R, Hartl FU, Hipp MS (2018) High capacity of the endoplasmic reticulum to prevent secretion and aggregation of amyloidogenic proteins. EMBO J 37:337–350

    Article  CAS  Google Scholar 

  • Vishnu N, Jadoon Khan M, Karsten F, Groschner LN, Waldeck-Weiermair M, Rost R, Hallström S, Imamura H, Graier WF, Malli R (2014) ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca2+ release. Mol Biol Cell 25:368–379

    Article  Google Scholar 

  • Voorhees RM, Hegde RS (2016) Structure of the Sec61 channel opened by a signal peptide. Science 351:88–91

    Article  CAS  Google Scholar 

  • Voorhees RM, Fernández IS, Scheres SHW, Hegde RS (2014) Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157:1632–1643

    Article  CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  Google Scholar 

  • Wang X, Johnsson N (2005) Protein kinase CK2 phosphorylates Sec63p to stimulate the assembly of the endoplasmic reticulum protein translocation apparatus. J Cell Sci 118:723–732

    Article  CAS  Google Scholar 

  • Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress response. EMBO J 17:5708–5717

    Article  CAS  Google Scholar 

  • Weitzmann A, Volkmer J, Zimmermann R (2006) The nucleotide exchange factor activity of Grp170 may explain the non-lethal phenotype of loss of Sil1 function in man and mouse. FEBS Lett 580:5237–5240

    Article  CAS  Google Scholar 

  • Weitzmann A, Baldes C, Dudek J, Zimmermann R (2007) The heat shock protein 70 molecular chaperone network in the pancreatic endoplasmic reticulum - a quantitative approach. FEBS J 274:5175–5187

    Article  CAS  Google Scholar 

  • Wemmert S, Lindner Y, Linxweiler J, Wagenpfeil S, Bohle R, Niewald M, Schick B (2016) Initial evidence for Sec62 as a prognostic marker in advanced head and neck squamous cell carcinoma. Oncol Lett 11:1661–1670

    Article  CAS  Google Scholar 

  • Weng T-H, Steinchen W, Beatrix B, Berninghausen O, Becker T, Bange G, Cheng J, Beckmann R (2021) Architecture of the active post-translational SEC translocon. EMBO J 40:e105643

    Article  CAS  Google Scholar 

  • Wentink AS, Nillegoda NB, Feufel J, Ubartaitė G, Schneider CP, De Los RP, Hennig J, Barducci A, Bukau B (2020) Molecular dissection of amyloid disaggregation by human HSP70. Nature 587:483–488

    Article  CAS  Google Scholar 

  • Wirth A, Jung M, Bies C, Frien M, Tyedmers J, Zimmermann R, Wagner R (2003) The Sec61p complex is a dynamic precursor activated channel. Mol Cell 12:261–268

    Article  CAS  Google Scholar 

  • Wu Y, Whitman I, Molmenti E, Moore K, Hippenmeyer P, Perlmutter DH (1994) A lag in intracellular degradation of mutant alpha-1-anitrypsin correlates with the liver disease phenotype in homzygous PiZZ alpha-1-anitrypsin deficiency. Porc Natl Acad Sci USA 91:9014–9018

    Article  CAS  Google Scholar 

  • Wu X, Cabanos C, Rapoport TA (2019) Structure of the post-translational protein translocation machinery of the ER membrane. Nature 566:136–139

    Article  CAS  Google Scholar 

  • Wuytack F, Raeymaekers L, Missiaen L (2002) Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32:279–305

    Article  CAS  Google Scholar 

  • Xu M, Marsh HM, Sevier CS (2016) A conserved cysteine within the ATPase domain of the endoplasmic reticulum chaperone Bi Pis necessary for a complete complement of BiP activities. J Mol Biol 428:4168–4184

    Article  CAS  Google Scholar 

  • Yamamoto YH, Kasai A, Omori H, Takino T, Sugihara M, Umemoto T, Hamasaki M, Hatta T, Natsume T, Morimoto RI, Arai R, Waguri S, Sato M, Sato K, Bar-Nun S, Yoshimori T, Noda T, Nagata S (2020) ERdj8 governs the size of autophagosomes during the formation process. J Cell Biol 219:e201903127

    Article  CAS  Google Scholar 

  • Yan M, Li J, Sha B (2011) Structural analysis of the Sil1-BiP complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor. Biochem J 438:447–455

    Article  CAS  Google Scholar 

  • Yan Y, Rato C, Rohland L, Preissler S, Ron D (2019) MANF antagonizes nucleotide exchange by the endoplasmic reticulum chaperone BiP. Nat Commun 10:541

    Article  CAS  Google Scholar 

  • Yong J, Bischof H, Burgstaller S, Siirin M, Murphy A, Malli R, Kaufman RJ (2019) Mitochondria supply ATP to the ER through a mechanism antagonized by cytosolic Ca+. eLife 8:e49682

    Article  Google Scholar 

  • Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) XBP1 Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins: involvement of basic-leucine zipper transcription factors. J Biol Chem 273:33741–33749

    Article  CAS  Google Scholar 

  • Yu M, Haslam RHA, Haslam DB (2000) HEDJ, an Hsp40 Co-chaperone localized to the endoplasmic reticulum of human cells. J Biol Chem 275:24984–24992

    Article  CAS  Google Scholar 

  • Zahedi RP, Völzing C, Schmitt A, Frien M, Jung M, Dudek J, Wortelkamp S, Sickmann A, Zimmermann R (2009) Analysis of the membrane proteome of canine pancreatic rough microsomes identifies a novel Hsp40, termed ERj7. Proteomics 9:3463–3473

    Article  CAS  Google Scholar 

  • Zhang B, Miller TF III (2012) Long-timescale dynamics and regulation of sec-facilitated protein translocation. Cell Rep 2:927–937

    Article  CAS  Google Scholar 

  • Zhang J, Zhu Q, Wang XE, Yu J, Chen X, Wang J, Wang X, **ao J, Wang C-C, Wang L (2018) Secretory kinase Fam20C tunes endoplasmic reticulum redox state via phosphorylation of Ero1α. EMBO J 37:e98699

    Article  Google Scholar 

  • Zhao L, Longo-Guess C, Harris BS, Lee JW, Ackerman SL (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37:974–979

    Article  CAS  Google Scholar 

  • Zhao L, Rosales C, Seburn K, Ron D, Ackerman SL (2009) Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjögren syndrome. Human Mol Gen 19:25–35

    Article  Google Scholar 

  • Zhuravieva A, Gierasch L (2015) Substrate-binding domain conformational dynamics mediate Hsp70 allostery. Proc Natl Acad Sci USA 112:E2865–E2873

    Google Scholar 

  • Zimmermann R, Lang S (2020) A little AXER ABC: ATP, BiP, and Calcium form a triumvirate orchestrating energy homeostasis of the endoplasmic reticulum. Contact. https://doi.org/10.1177/2515256420926795

  • Zimmermann R, Eyrisch S, Ahmad M, Helms V (2011) Protein translocation across the ER membrane. Biochim Biophys Acta 1808:912–924

    Article  CAS  Google Scholar 

  • Ziska A, Tatzelt J, Dudek J, Paton AW, Paton JC, Zimmermann R, Haßdenteufel S (2019) The signal peptide plus a cluster of positive charges in prion protein dictate chaperone-mediated Sec61-channel gating. Biol Open 8:bio040691

    Article  CAS  Google Scholar 

  • Zupicich J, Brenner SE, Skarnes WC (2001) Computational prediction of membrane-tethered transcription factors. Genome Biol 2:501–506

    Article  Google Scholar 

Download references

Acknowledgments

This review is dedicated to the memory of Dr Thomas Dierks (Bielefeld, Germany), who established the reconstitution of BiP and Grp170 together with microsomal membrane proteins into proteoliposomes in our lab in Göttingen in 1995. We are grateful to Anke Ziska (Homburg) for cloning the novel BiP variants and to Drs Thorsten Möhlmann and Ekkehard Neuhaus (both Technical University Kaiserslautern, Kaiserslautern, Germany) for giving us access to their BIACORE 2000 system. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the International Research Training Group 1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melnyk, A., Lang, S., Sicking, M., Zimmermann, R., Jung, M. (2023). Co-chaperones of the Human Endoplasmic Reticulum: An Update. In: Edkins, A.L., Blatch, G.L. (eds) The Networking of Chaperones by Co-Chaperones. Subcellular Biochemistry, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-031-14740-1_9

Download citation

Publish with us

Policies and ethics

Navigation