Abstract

Laser-induced breakdown spectroscopy (LIBS) has been around for about six decades. Although in the early years it was more of a curiosity than an analytical method due to some technical complications, but since the 1990s it has evolved and spread slowly but steadily and by today it has become the established versatile and powerful analytical method known by many spectroscopists. Naturally, over the course of so many years, a lot of effort have been made, not unsuccessfully, to improve the analytical performance of LIBS. This chapter is dedicated to this progress as it attempts to briefly account for the main efforts and current state of the art of LIBS analytical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C, Han X. A review of laser-induced breakdown spectroscopy signal enhancement. Appl Spectrosc. 2018;53:1.

    Article  CAS  Google Scholar 

  2. Fu X, Li G, Dong D. Improving the detection sensitivity for laser induced breakdown spectroscopy: a review. Front Phys. 2020a;8:68.

    Article  Google Scholar 

  3. Gornushkin IB, Stevenson CL, Galbács G, Smith BW, Winefordner JD. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres. Appl Spectrosc. 2003;57:1442.

    Article  CAS  Google Scholar 

  4. Jianlong Y, Zongyu H, Yuanyuan M, Tianqi L, Yangting F, Yun W, Zheng L, Zhe W. Improvement of laser induced breakdown spectroscopy signal using gas mixture. Spectrochim Acta B. 2020;174:105992.

    Article  Google Scholar 

  5. Joon-Gon S, Yonghoon L, Do-Kyeong K. Signal enhancement of laser-induced breakdown spectroscopy by applying synchronized buffer gas pulses. Appl Phys Express. 2018;11:102401.

    Article  Google Scholar 

  6. Effenberger JA, Scott JR. Effect of atmospheric conditions on LIBS spectra (review). Sensors. 2010;10:4907.

    Article  CAS  Google Scholar 

  7. Jong-Il Yun Y, Reinhardt K, Jae-Il K. Laser-induced breakdown spectroscopy for the on-line multielement analysis of highly radioactive glass melt. Part I: characterization and evaluation of the method. Appl Spectrosc. 2002;56:437.

    Article  Google Scholar 

  8. Zeshan AU, Usman L, Rizwan A, Muhammad AB. Detection of lead in soil implying sample heating and laser-induced breakdown spectroscopy. Appl Opt. 2021;60:452.

    Article  Google Scholar 

  9. Kaimin G, Anmin C, Wanpeng X, Dan Z, Mingxing J. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy. AIP Adv. 2019;9:065214.

    Article  Google Scholar 

  10. Tavassoli SH, Gragossian A. Effect of sample temperature on laser-induced breakdown spectroscopy. Opt Laser Technol. 2009;41:481.

    Article  CAS  Google Scholar 

  11. Gao X, Liu L, Song C, Lin J. The role of spatial confinement on nanosecond YAG laser-induced Cu plasma. J Phys D Appl Phys. 2015;48:175205.

    Article  Google Scholar 

  12. Guo L, Li C, Hu W, Zhou Y, Zhang B, Cai Z, Zeng X, Lu Y. Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy. Appl Phys Lett. 2011;98:131501.

    Article  Google Scholar 

  13. Li C, Guo L, He X, Hao Z, Li X, Shen M, Zeng X, Lu Y. Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement. J Anal At Spectrom. 2014;29:638.

    Article  CAS  Google Scholar 

  14. Popov AM, Colao F, Fantoni R. Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils. J Anal At Spectrom. 2010;25:2491.

    Article  Google Scholar 

  15. Yin H, Hou Z, Yuan T, Wang Z, Ni W, Li Z. Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability. J Anal At Spectrom. 2015;30:922.

    Article  CAS  Google Scholar 

  16. Corsi M, Cristoforetti G, Hidalgo M, Iriarte D, Legnaioli S, Palleschi V, Salvetti A, Tognoni E. Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features. Appl Spectrosc. 2005;59:853.

    Article  CAS  Google Scholar 

  17. Li K, Guo L, Li X, Hao Z, Zeng X, Shen M, Qingdong Z, Yongfeng L, **aoyan Z. Characteristics of spectral lines with crater development during laser-induced breakdown spectroscopy. Appl Opt. 2016a;55:7422.

    Article  CAS  Google Scholar 

  18. Cheng L, Xun G, Qi L, Chao S, **gquan L. Spectral enhancement of laser-induced breakdown spectroscopy in external magnetic field. Plasma Sci Technol. 2015;17:919.

    Article  CAS  Google Scholar 

  19. Hao Z, Guo L, Li CM, Shen M, Zou X, Li X, Lu Y, Zeng X. Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring magnet confinement. J Anal At Spectrom. 2014;29:2309.

    Article  CAS  Google Scholar 

  20. Mason KJ, Goldberg JM. Characterization of a laser plasma in a pulsed magnetic field. Part I: spatially resolved emission studies. Appl Spectrosc. 1991a;45:370.

    Article  CAS  Google Scholar 

  21. Mason KJ, Goldberg JM. Characterization of a laser plasma in a pulsed magnetic field. Part II: time-resolved emission and absorption studies. Appl Spectrosc. 1991b;45:1444.

    Article  CAS  Google Scholar 

  22. Shen XK, Lu YF, Gebre T, Ling H, Han YX. Optical emission in magnetically confined laser-induced breakdown spectroscopy. J Appl Phys. 2006;100:3662.

    Article  Google Scholar 

  23. Liu Y, Baudelet M, Richardson M. Elemental analysis by microwave-assisted laserinduced breakdown spectroscopy: evaluation on ceramics. J Anal At Spectrom. 2010;25:1316.

    Article  CAS  Google Scholar 

  24. Al Shuaili AA, Al Hadhrami AM, Wakil MA, Alwahabi ZT. Improvement of palladium limit of detection by microwave-assisted laser induced breakdown spectroscopy. Spectrochim Acta B. 2019;159:105666.

    Article  Google Scholar 

  25. Wakila MA, Alwahabi ZT. Microwave-assisted laser induced breakdown molecular spectroscopy: quantitative chlorine detection. J Anal At Spectrom. 2019;34:1892.

    Article  Google Scholar 

  26. Viljanen J, Sun Z, Alwahabi ZT. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions. Spectrochim Acta B. 2016;118:29.

    Article  CAS  Google Scholar 

  27. Tampo M, Miyabe M, Akaoka K, Oba M, Ohba H, Maruyama Y, Ikuo W. Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling. J Anal At Spectrom. 2014;29:886.

    Article  CAS  Google Scholar 

  28. Ayed Nassef O, Elsayed-Ali HE. Spark discharge assisted laser induced breakdown spectroscopy. Spectrochim Acta B. 2005;60:1564.

    Article  Google Scholar 

  29. Sobral H, Robledo-Martinez A. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges. Spectrochim Acta B. 2016;124:67.

    Article  CAS  Google Scholar 

  30. Tereszchuk KA, Vadillo JM, Laserna JJ. Glow-discharge-assisted laser-induced breakdown spectroscopy: increased sensitivity in solid analysis. Appl Spectrosc. 2008;62:1262.

    Article  CAS  Google Scholar 

  31. De Giacomo A, Rifai RA, Gardette V, Salajková Z, Dell'Aglio M. Nanoparticle enhanced laser ablation and consequent effects on laser induced plasma optical emission. Spectrochim Acta B. 2020;166:105794.

    Article  Google Scholar 

  32. Dell'Aglio M, Rifai RA, De Giacomo A. Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review. Spectrochim Acta B. 2018;148:105.

    Article  CAS  Google Scholar 

  33. Jantzi SC, Motto-Ros V, Trichard F, Markushin Y, Melikechi N, De Giacomo A. Sample treatment and preparation for laser-induced breakdown spectroscopy. Spectrochim Acta B. 2016;115:52.

    Article  CAS  Google Scholar 

  34. Palásti DJ, Albrycht P, Janovszky P, Paszkowska K, Geretovszky Z, Galbács G. Nanoparticle enhanced laser induced breakdown spectroscopy of liquid samples by using modified surface-enhanced Raman scattering substrates. Spectrochim Acta B. 2020;166:105793.

    Article  Google Scholar 

  35. Palásti DJ, Villy LP, Kohut A, Ajtai T, Geretovszky Z, Galbács G. Laser-induced breakdown spectroscopy signal enhancement effect for argon caused by the presence of gold nanoparticles. Spectrochim Acta B. 2022;193:106435.

    Article  Google Scholar 

  36. Piepmeier EH, Malmstadt HV. Q-switched laser energy absorption in the plume of an aluminum alloy. Anal Chem. 1969;41:700.

    Article  CAS  Google Scholar 

  37. Scott RH, Strasheim A. Time-resolved direct-reading spectrochemical analysis using a laser source with medium pulse-repetition rate. Spectrochim Acta. 1971;26B:707.

    Article  Google Scholar 

  38. Cui M, Deguchi Y, Wang Z, Fujita Y, Liu R, Shiou F-J, Zhao S. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochim Acta B. 2018;142:14.

    Article  CAS  Google Scholar 

  39. Legnaioli S, Lorenzetti G, Pardini L, Cavalcanti GH, Palleschi V. Double and multiple pulse LIBS techniques. In: Laser-induced breakdown spectroscopy: theory and applications. Series in optical sciences 182. Springer; 2014.

    Google Scholar 

  40. Babushok V, Delucia FC Jr, Gottfried JL, Munson CA, Miziolek AW. Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochim Acta B. 2006;61:999.

    Article  Google Scholar 

  41. Scaffidi J, Angel SM, Cremers DA. Emission enhancement mechanisms in dual-pulse laser-induced breakdown spectroscopy. Anal Chem. 2006;78:24.

    Article  Google Scholar 

  42. Bogaerts A, Chen Z, Autrique D. Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation. Spectrochim Acta B. 2008;63:746.

    Article  Google Scholar 

  43. Cristoforetti G, Tiberi M, Simonelli A, Marsili P, Giammanco F. Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble. Appl Opt. 2012;51:B30.

    Article  CAS  Google Scholar 

  44. De Giacomo A, Dell'Aglio M, De Pascale O, Capitelli M. From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples. Spectrochim Acta B. 2007;62:721.

    Article  Google Scholar 

  45. Lazic V, Jovicevic S. Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects. Spectrochim Acta B. 2014;101:288.

    Article  CAS  Google Scholar 

  46. Galbács G, Budavári V, Geretovszky Z. Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer. J Anal At Spectrom. 2005;20:974.

    Article  Google Scholar 

  47. Galbács G, Jedlinszki N, Herrera K, Omenetto N, Smith BW, Winefordner JD. A study of ablation, spatial, and temporal characteristics of laser-induced plasmas generated bymultiple collinear pulses. Appl Spectrosc. 2010;64:161.

    Article  Google Scholar 

  48. Jedlinszki N, Galbács G. An evaluation of the analytical performance of collinear multipulse laser induced breakdown spectroscopy. Microchem J. 2011;97:255.

    Article  CAS  Google Scholar 

  49. Prochazka D, Pořízka P, Novotný J, Hrdlička A, Novotný K, Šperka P, Kaiser J. Triple pulse LIBS: laser-induced breakdown spectroscopy signal enhancement by combination of pre-ablation and re-heating laser pulses. J Anal At Spectrom. 2020;35:293.

    Article  CAS  Google Scholar 

  50. Chan SY, Cheung NH. Analysis of solids by laser ablation and resonance enhanced laserinduced plasma spectroscopy. Anal Chem. 2000;72:2087.

    Article  CAS  Google Scholar 

  51. Lui S, Cheung NH. Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: elucidation of enhancement mechanisms. Appl Phys Lett. 2002;81:5114.

    Article  CAS  Google Scholar 

  52. Lui SL, Cheung NH. Minimally destructive analysis of aluminum alloys by resonanceenhanced laser-induced plasma spectroscopy. Anal Chem. 2005;77:2617.

    Article  CAS  Google Scholar 

  53. Goueguel C, Laville S, Vidal F, Chaker M, Sabsabi M. Resonant laser-induced breakdown spectroscopy for analysis of lead traces in copper alloys. J Anal At Spectrom. 2011;26:2452.

    Article  CAS  Google Scholar 

  54. Li J, Guo L, Zhao N, Yang X, Yi R, Li K, Zeng Q, Li X, Zeng X, Lu Y. Determination of cobalt in low-alloy steels using laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Talanta. 2016b;151:234.

    Article  CAS  Google Scholar 

  55. Li J, Hao Z, Zhao N, Zhou R, Yi R, Tang S, Guo L, Li X, Zeng X, Lu Y. Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Opt Express. 2017;25:4945.

    Article  CAS  Google Scholar 

  56. Loudyi H, Rifai K, Laville S, Vidal F, Chaker M, Sabsabi M. Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueoussolutions with laser-induced fluorescence (LIF). J Anal At Spectrom. 2009;24:1421.

    Article  CAS  Google Scholar 

  57. Akshaya K, Yueh FY, Miller T, Singh JP. Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a Meinhard nebulizer. Appl Opt. 2003;42:6040.

    Article  Google Scholar 

  58. Cahoon EM, Almirall JR. Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy. Anal Chem. 2012;84:2239.

    Article  CAS  Google Scholar 

  59. Fang X, Rafi Ahmad S. Sample presentation considerations in laser-induced breakdown spectroscopy in aqueous solution. Appl Spectrosc. 2007;61:1021.

    Article  CAS  Google Scholar 

  60. Nadir A, Semira ÜY, Dilek AA, Şerife Y. Ultrasonic nebulizationsample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy. Spectrochim Acta B. 2012;74–75:87.

    Google Scholar 

  61. Jiang L, Sui M, Fan Y, Su H, Xue Y, Zhong S. Micro-gas column assisted laser induced breakdown spectroscopy (MGC-LIBS): a metal elements detection method for bulk water in-situ analysis. Spectrochim Acta B. 2021;177:106065.

    Article  CAS  Google Scholar 

  62. Sobral H, Sanginés R, Trujillo-Vázquez A. Detection of trace elements in ice and water by laser-induced breakdown spectroscopy. Spectrochim Acta B. 2012;78:62.

    Article  CAS  Google Scholar 

  63. Metzinger A, Kovács-Széles É, Almási I, Galbács G. An assessment of the potential of laser induced breakdown spectroscopy (LIBS) for the analysis of cesium in liquid samples of biological origin. Appl Spectrosc. 2014;68:789.

    Article  CAS  Google Scholar 

  64. Metzinger A, Nagy A, Gáspár A, Márton Z, Kovács-Széles É, Galbács G. The feasibility of liquid sample microanalysis using polydimethylsiloxane microfluidic chips with in-channel and in-port laser-induced breakdown spectroscopy detection. Spectrochim Acta B. 2016;126:23.

    Article  CAS  Google Scholar 

  65. Yang X, Hao Z, Shen M, Yi RX, Li J, Yu H, Guo L, **angyou L, **aoyan Z, Yongfeng L. Simultaneous determination of La, Ce, Pr, and Nd elements in aqueous solution using surfaceenhanced laser-induced breakdown spectroscopy. Talanta. 2017;163:127.

    Article  CAS  Google Scholar 

  66. Choi D, Gong Y, Nam S-H, Han S-H, Yoo J, Lee Y. Laser-induced breakdown spectroscopy (LIBS) analysis of calcium ions dissolved in water using filter paper substrates: an ideal internal standard for precision improvement. Appl Spectrosc. 2014;68:198.

    Article  CAS  Google Scholar 

  67. Zhichao Z, Wenbao J, Qing S, **aoyan Y, Daqian H, Zi W, Yu W, Yongsheng L. Determination of magnesium and sodium in brine by filter paper adsorption laser-induced breakdown spectroscopy. Anal Lett. 2022;55:1771.

    Article  Google Scholar 

  68. Lin Q, Wei Z, Xu M, Wang S, Niu G, Liu K, Duan Y, Yang J. Laser-induced breakdown spectroscopy for solution sample analysis using porous electrospun ultrafine fibers as a solid-phase support. RSC Adv. 2014;4:14392.

    Article  CAS  Google Scholar 

  69. Guanhong W, Duixiong S, Maogen S, Chenzhong D. LIBS detection of heavy metal elements in liquid solutions by using wood pellet as sample matrix. Plasma Sci Technol. 2014;16:598.

    Article  Google Scholar 

  70. Wang X, Shi L, Lin Q, Zhu X, Duan Y. Simultaneous and sensitive analysis of Ag(I), Mn(II), and Cr(III) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent. J Anal At Spectrom. 2014;29:1098.

    Article  CAS  Google Scholar 

  71. Díaz Pace DM, D'Angelo CA, Bertuccelli D, Bertuccelli G. Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion. Spectrochim Acta B. 2006;61:929.

    Article  Google Scholar 

  72. Nam S-H, Kwon S-W, Lee Y. Feasibility of separation and quantification of inorganic arsenic species using ion-exchange membranes and laser-induced breakdown spectroscopy. Anal Lett. 2018;51:2835.

    Article  CAS  Google Scholar 

  73. Schmidt NE, Goode SR. Analysis of aqueous solutions by laser-induced breakdown spectroscopy of ion exchange membranes. Appl Spectrosc. 2002;56:370.

    Article  CAS  Google Scholar 

  74. Wang X, Wei Y, Lin Q, Zhang J, Duan Y. Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser induced breakdown spectroscopy. Anal Chem. 2015;87:5577.

    Article  CAS  Google Scholar 

  75. Chen M, Yuan T, Hou Z, Wang Z, Wang Y. Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy. Spectrochim Acta B. 2015;112:23.

    Article  CAS  Google Scholar 

  76. Eseller KE, Tripathi MM, Yueh F-Y, Singh JP. Elemental analysis of slurry samples with laser induced breakdown spectroscopy. Appl Opt. 2010;49:C21.

    Article  Google Scholar 

  77. Wisbrun R, Schechter I, Niessner R, Schroder H, Kompa K. Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy. Anal Chem. 1994;66:2964.

    Article  CAS  Google Scholar 

  78. Wu M, Wang X, Niu G, Zhao Z, Zheng R, Liu Z, Zhao Z, Duan Y. Ultrasensitive and simultaneous detection of multielements in aqueous samples based on biomimetic array combined with laser-induced breakdown spectroscopy. Anal Chem. 2021;93:10196.

    Article  CAS  Google Scholar 

  79. Dong D, Jiao L, Dua X, Zhao C. Ultrasensitive nanoparticle enhanced laser-induced breakdown spectroscopy using a super-hydrophobic substrate coupled with magnetic confinement. Chem Commun. 2017;53:4546.

    Article  CAS  Google Scholar 

  80. Alvarez-Llamas C, Pisonero J, Bordel N. A novel approach for quantitative LIBS fluorine analysis. J Anal At Spectrom. 2017;32:162.

    Article  CAS  Google Scholar 

  81. Anzano J, Cajal J, Lasheras R, Escudero M, Canudo J, Laguna M, Anwar J. Determination of lanthanides in fossil samples using laser induced breakdown spectroscopy. J Chem Soc Pak. 2017;39:516.

    CAS  Google Scholar 

  82. Asimellis G, Michos N, Fasaki I, Kompitsas M. Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy. Spectrochim Acta B. 2008;63:1338.

    Article  Google Scholar 

  83. Bhatt CR, Yueh FY, Singh JP. Univariate and multivariate analyses of rare earth elements by laser-induced breakdown spectroscopy. Appl Opt. 2017;56:2280.

    Article  CAS  Google Scholar 

  84. Chinni RC, Cremers DA, Radziemski LJ, Bostian MB, Navarro-Northrup C. Detection of uranium using laser-induced breakdown spectroscopy. Appl Spectrosc. 2009;63:1238.

    Article  CAS  Google Scholar 

  85. Darwiche S, Benrabbah R, Benmansour M, Morvan D. Impurity detection in solid and molten silicon by laser induced breakdown spectroscopy. Spectrochim Acta B. 2012;74–75:115.

    Article  Google Scholar 

  86. Davari SA, Taylor PA, Standley RW, Mukherjee D. Detection of interstitial oxygen contents in Czochralski grown silicon crystals using internal calibration in laser-induced breakdown spectroscopy (LIBS). Talanta. 2019;193:192.

    Article  CAS  Google Scholar 

  87. Díaz D, Hahn DW, Molina A. Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy. Spectrochim Acta B. 2017;136:106.

    Article  Google Scholar 

  88. El-Deftar MM, Robertson J, Foster S, Lennard C. Evaluation of elemental profiling methods, including laser-induced breakdown spectroscopy (LIBS), for the differentiation of cannabis plant material grown in different nutrient solutions. Forensic Sci Int. 2015;251:95.

    Article  CAS  Google Scholar 

  89. Fichet P, Mauchien P, Moulin C. Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy. Appl Spectrosc. 1999;53:1111.

    Article  CAS  Google Scholar 

  90. Freedman A, Iannarilli FJ, Wormhoudt JC. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy. Spectrochim Acta B. 2005;60:1076.

    Article  Google Scholar 

  91. Fu X, Li G, Tian H, Dong D. Detection of cadmium in soils using laserinduced breakdown spectroscopy combined with spatial confinement and resin enrichment. RSC Adv. 2018;8:39635.

    Article  CAS  Google Scholar 

  92. Fu X, Zhao C, Ma S, Tian H, Dong D, Li GL. Determining available potassium in soil by laser-induced breakdown spectroscopy combined with cation exchange membrane adsorption. J Anal At Spectrom. 2020b;35:2697.

    Article  CAS  Google Scholar 

  93. Gao P, Yang P, Zhou R, Ma S, Zhang W, Hao Z, Tang S, Li X, Zeng X. Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence. Appl Opt. 2018;57:8942.

    Article  CAS  Google Scholar 

  94. Gautier C, Fichet P, Menuta D, Lacour JL, Hermite DL, Dubessy J. Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy. Spectrochim Acta B. 2004;59:975.

    Article  Google Scholar 

  95. Gondal MA, Hussain T. Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy. Talanta. 2007;71:73.

    Article  CAS  Google Scholar 

  96. Gornushkin IB, Kim JE, Smith BW, Baker SA, Winefordner JD. Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark. Appl Spectrosc. 1997a;51:1055.

    Article  CAS  Google Scholar 

  97. Gornushkin IB, Baker SA, Smith BW, Winefordner JD. Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence. Spectroc Acta B. 1997b;52:1653.

    Article  Google Scholar 

  98. Hemmerlin M, Meilland R, Falk H, Wintzens P, Pauleri L. Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysiscomparison with spark-optical emissions spectrometry figures of merit. Spectrochim Acta B. 2001;56:661.

    Article  Google Scholar 

  99. Hilbk-Kortenbruck F, Noll R, Wintjens P, Falk H, Becker C. Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectroc Acta B. 2001;56:933.

    Article  Google Scholar 

  100. Idris N, Kurniawan H, Lie TJ. Characteristics of hydrogen emission in laser plasma induced by focusing fundamental Q-sw YAG laser on solid samples. Jpn J Appl Phys. 2004;43:4221.

    Article  CAS  Google Scholar 

  101. Ishizuka T. Laser emission spectrography of rare earth elements. Anal Chem. 1973;45:538.

    Article  CAS  Google Scholar 

  102. Jabbar A, Akhtar M, Mehmmod S, Iqbal M, Ahmed R, Baig MA. Quantification of copper remediation in the Allium cepa L. leaves using electric field assisted laser induced breakdown pectroscopy. Spectrochim Acta B. 2019;162:105719.

    Article  CAS  Google Scholar 

  103. Jensen LC, Langford SC, Dickinson JT, Addleman RS. Mechanistic studies of laser-induced breakdown spectroscopy of model environmental samples. Spectrochim Acta B. 1995;50:1501.

    Article  Google Scholar 

  104. Jiang X, Hayden P, Costello JT, Kennedy ET. Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: optimization of parameters for detection of carbon and sulfur in steel. Spectrochim Acta B. 2014;101:106.

    Article  CAS  Google Scholar 

  105. Kang J, Jiang Y, Li R, Chen Y. Sensitive elemental analysis with high repetition rate laser-ablation spark-induced breakdown spectroscopy combined with lock-in signal detection. Spectrochim Acta B. 2019;155:50.

    Article  CAS  Google Scholar 

  106. Khater MA, Costello JT, Kennedy ET. Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits. Appl Spectrosc. 2002;56:970.

    Article  CAS  Google Scholar 

  107. Knight AK, Scherbarth NL, Cremers DA, Ferris MJ. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl Spectrosc. 2000;54:331.

    Article  CAS  Google Scholar 

  108. Labutin TA, Popov AM, Raikov SN, Zaytsev SM, Labutina NA, Zorov NB. Determination of chlorine in concrete by laser-induced breakdown spectroscopy in air. J Appl Spectrosc. 2013;80:315.

    Article  CAS  Google Scholar 

  109. Labutin TA, Zaytsev SM, Popov AM, Zorov NB. A novel approach to sensitivity evaluation of laser-induced breakdown spectroscopy for rare earth elements determination. J Anal At Spectrom. 2016;31:2223.

    Article  CAS  Google Scholar 

  110. Liu L, Hao Z. Quantitative determination of tantalum and niobium in tantalum–niobium ore using laser-induced breakdown spectroscopy. Appl Opt. 2019;58:461.

    Article  CAS  Google Scholar 

  111. Loebe K, Uhl A, Lucht H. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy. Appl Opt. 2003;42:6166.

    Article  CAS  Google Scholar 

  112. Mei-Ting H, Yin-Hua J, Yu-Qi C, Run-Hua L. Quantitative analysis of trace elements in bismuth brass with high repetition rate laser-ablation spark-induced breakdown spectrum. Rhhz Test. 2021;70:10.

    Google Scholar 

  113. Pearce TJ, Martin J, Bromley B, Zigler A, Dix M (2000) Chemostratigraphy - the elemental solution using LIBS-OES. In: LIBS 2000 book of abstracts. First international conference on laser induced plasma spectroscopy and applications, Tirrenia, p 66.

    Google Scholar 

  114. Radziemski LJ, Cremers DA. Laser-induced breakdown spectroscopy: principles, applications and instruments. Proc SPIE. 1990;1318:71.

    Article  CAS  Google Scholar 

  115. Radziemski LJ, Cremers DA, Benelli K, Khoo C, Harris RD. Use of the vacuum ultraviolet spectral region for LIBS-based Martian geology and exploration. Spectrochim Acta B. 2004;60:237.

    Article  Google Scholar 

  116. Ramli M, Khumaeni A, Kurniawan KH, Tjia MO, Kagawa K. Spectrochemical analysis of Cs in water and soil using low pressure laser induced breakdown spectroscopy. Spectrochim Acta B. 2017;132:8.

    Article  CAS  Google Scholar 

  117. Sarkar A, Alamelu D, Aggarwal SK. Determination of thorium and uranium in solution by laser-induced breakdown spectrometry. Appl Opt. 2008;47:G58.

    Article  CAS  Google Scholar 

  118. Senesia GS, Harmon RS. Laser-induced breakdown spectroscopy: a unique analytical tool for the geosciences. Spectrosc Eur. 2021;33:15.

    Article  Google Scholar 

  119. Shen XK, Wang H, **e ZQ, Gao Y, Ling H, Lu YF. Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Appl Opt. 2009;48:2551.

    Article  CAS  Google Scholar 

  120. Singh VK, Rai AK, Rai PK, **dal PK. Cross-sectional study of kidney stones by laserinduced breakdown spectroscopy. Lasers Med Sci. 2009;24:749.

    Article  CAS  Google Scholar 

  121. Sun Q, Tran M, Smith BW, Winefordner JD. Direct determination of P, Al, Ca, Cu, Mn, Zn, Mg and Fe in plant materials by laser-induced plasma spectroscopy. Can J Anal Sci Spectrosc. 1999;44:164.

    CAS  Google Scholar 

  122. Tran M, Sun Q, Smith B, Winefordner JD. Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy. Anal Chim Acta. 2000;419:153.

    Article  CAS  Google Scholar 

  123. Uhl A, Loebe K, Kreuchwig L. Fast analysis of wood preservers using laser induced breakdown spectroscopy. Spectrochim Acta B. 2001;56:795.

    Article  Google Scholar 

  124. **ng P, Dong J, Yu P, Zheng H, Liu X, Hu S, Zhu Z. Uantitative analysis of lithium in brine by laser-induced breakdown spectroscopy based on convolutional neural network. Anal Chim Acta. 2021;1178:338799.

    Article  CAS  Google Scholar 

  125. Hahn DW, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc. 2012;66:347.

    Article  CAS  Google Scholar 

  126. Gornushkin IB, Anzano JM, King LA, Smith BW, Omenetto N, Winefordner JD. Curve of growth methodology applied to laser-induced plasma emission spectroscopy. Spectrochim Acta B. 1999a;54:491.

    Article  Google Scholar 

  127. Tognoni E, Palleschi V, Corsi M, Cristoforetti G, Omenetto N, Gornushkin I, Smith BW, Winefordner JD. From sample to signal in laser-induced breakdown spectroscopy: a complex route to quantitative analysis in laser induced breakdown spectroscopy, fundamentals and applications. Cambridge University Press; 2009.

    Google Scholar 

  128. Galbács G, Jedlinszki N, Cseh G, Galbács Z, Túri L. Accurate quantitative analysis of gold alloys using multi-pulse laser induced breakdown spectroscopy and a correlation-based calibration method. Spectrochim Acta B. 2008;63:591.

    Article  Google Scholar 

  129. Galbács G. A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal Bioanal Chem. 2015;407:7537.

    Article  Google Scholar 

  130. Guezenoc J, Gallet-Budynek A, Bousquet B. Critical review and advices on spectral-based normalization methods for LIBS quantitative analysis. Spectrochim Acta B. 2019;160:105688.

    Article  CAS  Google Scholar 

  131. Tognoni E, Cristoforetti G. Signal and noise in laser induced breakdown spectroscopy: an introductory review. Opt Laser Technol. 2016;79:164.

    Article  CAS  Google Scholar 

  132. Zorov NB, Gorbatenko AA, Labutin TA, Popov AM. A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction. Spectrochim Acta B. 2010;65:642.

    Article  Google Scholar 

  133. Runge EF, Minck RW, Brian FR. Spectrochemical analysis using a pulsed laser source. Spectrochim Acta B. 1964;20:733.

    Article  CAS  Google Scholar 

  134. Juvé V, Portelli R, Boueri M, Baudelet M, Yu J. Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy. Spectrochim Acta B. 2008;63:1047.

    Article  Google Scholar 

  135. Sarkar A, Mishra RK, Kaushik CP, Wattal PK, Alamelu D, Aggarwal SK. Analysis of barium borosilicate glass matrix for uranium determination by using ns-IR-LIBS in air and Ar atmosphere. Radiochim Acta. 2014;102:805.

    Article  CAS  Google Scholar 

  136. Šindelářová A, Pořízka P, Modlitbová P, Vrlíková L, Kiss M, Kaška M, Prochazka D, Vrábel J, Buchtová M, Kaiser J. Methodology for the implementation of internal standard to laser-induced breakdown spectroscopy analysis of soft tissues. Sensors. 2021;21:900.

    Article  Google Scholar 

  137. de Oliveira Borges F, Ospina JU, de Holanda Cavalcanti G, Farias EE, Rocha AA, Ferreira PILB, Gomes GC, Mello A. CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect. J Anal At Spectrom. 2018;33:629.

    Article  Google Scholar 

  138. Kwak JH, Lenth C, Salb C, Ko EJ, Kim KW, Park K. Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy. Spectrochim Acta B. 2009;64:1105.

    Article  Google Scholar 

  139. Yan J, Shi Y, Liu K, Li H, Tang Z, Chen W, Jiang W, Li Q, Tang Y, Li X. The distribution of high-quality internal standard lines and their selection method based on the Q-value in portable laserinduced breakdown spectroscopy. Anal Methods. 2021;13:3829.

    Article  CAS  Google Scholar 

  140. Yang J, Li X, Xu J, Ma X. A calibration-free laser-induced breakdown spectroscopy (CFLIBS) quantitative analysis method based on the auto-selection of an internal reference line and optimized estimation of plasma temperature. Appl Spectrosc. 2018;72:129.

    Article  CAS  Google Scholar 

  141. Russo R. Laser ablation. Appl Spectrosc. 1995;49:15A.

    Article  Google Scholar 

  142. Yue Z, Sun C, Gao L, Zhang Y, Shabbir S, Xu W, Wu M, Zou L, Tan Y, Chen F, Yu J. Machine learning efficiently corrects LIBS spectrum variation due to change of laser fluence. Opt Express. 2020;28:14345.

    Article  CAS  Google Scholar 

  143. Oh SY, Yueh FY, Singh JP, Herman CC, Zeigler K. Preliminary evaluation of laser induced breakdown spectroscopy for slurry samples. Spectrochim Acta B. 2009;64:113.

    Article  Google Scholar 

  144. Huang F, Tian Y, Li Y, Ye W, Lu Y, Guo J, Zheng R. Normalization of underwater laser-induced breakdown spectroscopy using acoustic signals measured by a hydrophone. Appl Opt. 2021;60:1595.

    Article  Google Scholar 

  145. Bolger JA. Semi-quantitative laser-induced breakdown spectroscopy for analysis of mineral drill core. Appl Spectrosc. 2000;54:181.

    Article  CAS  Google Scholar 

  146. Body D, Chadwick BL. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system. Spectrochim Acta B. 2001;56:725.

    Article  Google Scholar 

  147. Fabre C, Cousin A, Wiens RC, Ollila A, Gasnault O, Maurice S, Sautter V, Forni O, Lasue J, Tokar R, Vaniman D, Melikechi N. In situ calibration using univariate analyses based on the onboard ChemCam targets: first prediction of Martian rock and soil compositions. Spectrochim Acta B. 2014;99:34.

    Article  CAS  Google Scholar 

  148. Yu KG, Zhao YR, Liu F, He Y. Laser-induced breakdown spectroscopy coupled with multivariate chemometrics for variety discrimination of soil. Sci Rep. 2016;6:27574.

    Article  CAS  Google Scholar 

  149. Kurniawan H, Suliyanti MM, Lie TJ, Kagawa K, Tjia MO. Application of primary plasma standardization to Nd-YAG laser-induced shock wave plasma spectrometry for quantitative analysis of high concentration Au–Ag–Cu alloy. Spectrochim Acta B. 2001;56:1407.

    Article  Google Scholar 

  150. Xu L, Bulatov V, Gridin VV, Schechter I. Absolute analysis of particulate materials by laser-induced breakdown spectroscopy. Anal Chem. 1997;69:2103.

    Article  CAS  Google Scholar 

  151. Galbács G, Kevei-Bárány I, Szőke E, Jedlinszki N, Gornushkin IB, Galbács MZ. A study of stalagmite samples from Baradla Cave (Hungary) by laser induced plasma spectrometry with automatic signal correction. Microchem J. 2011;99:406.

    Article  Google Scholar 

  152. Fortes FJ, Cortés M, Simón MD, Cabalín LM, Laserna JJ. Chronocultural sorting of archaeological bronze objects using laser-induced breakdown spectrometry. Anal Chim Acta. 2005;554:136.

    Article  CAS  Google Scholar 

  153. Lazic V, Fantoni R, Colao F, Santagata A, Morone A, Spizzichino V. Quantitative laser induced breakdown spectroscopy analysis of ancient marbles and corrections for the variability of plasma parameters and of ablation rate. J Anal At Spectrom. 2004;19:429.

    Article  CAS  Google Scholar 

  154. Cabalín LM, González A, Ruiz J, Laserna JJ. Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy. Spectrochim Acta B. 2010;65:680.

    Article  Google Scholar 

  155. De Giacomo A, Dell’Aglio M, De Pascale O, Gaudiuso R, Santagata A, Teghil R. Laserinduced breakdown spectroscopy methodology for the analysis of copper based alloys used in ancient artworks. Spectrochim Acta B. 2008;63:585.

    Article  Google Scholar 

  156. Gornushkin IB, Smith BW, Potts GE, Omenetto N, Winefordner JD. Some considerations on the correlation between signal and background in laser induced breakdown spectroscopy using single-shot analysis. Anal Chem. 1999b;71:5447.

    Article  CAS  Google Scholar 

  157. Chaléard C, Mauchien P, Andre N, Übbing J, Lacour JL, Geertsen C. Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry. J Anal At Spectrom. 1997;12:183.

    Article  Google Scholar 

  158. Chen G, Yeung ES. Acoustic signal as an internal standard for quantitation in lasergenerated plumes. Anal Chem. 1988;60:2258.

    Article  CAS  Google Scholar 

  159. Palanco S, Laserna J. Spectral analysis of the acoustic emission of laserproduced plasmas. Appl Opt. 2003;42:6078.

    Article  Google Scholar 

  160. Cheung NH, Yeung ES. Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown. Appl Spectrosc. 1993;47:882.

    Article  CAS  Google Scholar 

  161. Cheung NH, Ng CW, Ho WF, Yeung ES. Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions. Appl Surf Sci. 1998;127:274.

    Article  Google Scholar 

  162. Hrdlička A, Zaorálková L, Galiová M, Čtvrtníčková T, Kanický V, Otruba V, Novotný K, Krásenský P, Kaiser J, Malina R, Páleníková K. Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles. Spectrochim Acta B. 2009;64:74.

    Article  Google Scholar 

  163. Feng J, Wang Z, Li Z, Ni W. Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters. Spectrochim Acta B. 2010;65:549.

    Article  Google Scholar 

  164. Panne U, Haisch C, Clara M, Niessner R. Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy. Part I: normalization and plasma diagnostics. Spectrochim Acta B. 1998;53:1957.

    Article  Google Scholar 

  165. Rammelkamp K. Investigation of LIBS and Raman data analysis methods in the context of insitu planetary exploration. Humboldt University; 2019.

    Google Scholar 

  166. Limbeck A, Brunnbauer L, Lohninger H, Pořízka P, Modlitbova P, Kaiser J, Janovszky P, Kéri A, Galbács G. Methodology and applications of elemental map** by laser induced breakdown spectroscopy. Anal Chim Acta. 2021;1147:72.

    Article  CAS  Google Scholar 

  167. Jolivet L, Leprince M, Moncayo S, Sorbier L, Lienemann C-P, Motto-Ros V. Review of the recent advances and applications of LIBS-based imaging. Spectrochim Acta B. 2019;151:41.

    Article  CAS  Google Scholar 

  168. Motto-Ros V, Moncayo S, Fabre C, Busser B. LIBS imaging applications, laser-induced breakdown spectroscopy. 2nd ed. Elsevier; 2020.

    Google Scholar 

  169. Fabre C, Devismes D, Moncayo S, Pelascini F, Trichard F, Lecomte A, Bousquet B, Cauzid J, Motto-Ros V. Elemental imaging by laser-induced breakdown spectroscopy for the geological characterization of minerals. J Anal At Spectrom. 2018;33:1345.

    Article  CAS  Google Scholar 

  170. Gimenez Y, Busser B, Trichard F, Kulesza A, Laurent JM, Zaun V, Lux F, Benoit JM, Panczer G, Dugourd P, Tillement O, Pelascini F, Sancey L, Motto-Ros V. 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep. 2016;6:29936.

    Article  CAS  Google Scholar 

  171. Menut D, Fichet P, Lacour JL, Rivoallan A, Mauchien P. Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface map** on conductive and nonconductive samples. Appl Opt. 2003;42:6063.

    Article  CAS  Google Scholar 

  172. Zorba V, Mao X, Russo RE. Femtosecond laser induced breakdown spectroscopy of Cu at the micron/sub-micron scale. Spectrochim Acta B. 2015;113:37.

    Article  CAS  Google Scholar 

  173. Zorba V, Mao X, Russo RE. Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis. Spectrochim Acta B. 2011;66:189.

    Article  Google Scholar 

  174. Wang X, Liang Z, Meng Y, Wang T, Hang W, Huang B. Submicroanalysis of solid samples with near-field enhanced atomic emission spectroscopy. Spectrochim Acta B. 2018;141:1.

    Article  CAS  Google Scholar 

  175. Li W, Li X, Li X, Hao Z, Lu Y, Zeng X. A review of remote laser-induced breakdown spectroscopy. Appl Spectrosc Rev. 2020;55:1.

    Article  CAS  Google Scholar 

  176. Narlagiri LM, Bharati MSS, Beeram R, Banerjee D, Soma VR. Recent trends in laser-based standoff detection of hazardous molecules. Trends Anal Chem. 2022;153:116645.

    Article  CAS  Google Scholar 

  177. Sallé B, Mauchien P, Maurice S. Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects. Spectrochim Acta B. 2007;62:739.

    Article  Google Scholar 

  178. Chin SL. Femtosecond laser filamentation. Springer; 2010.

    Book  Google Scholar 

  179. Rohwetter PH, Stelmaszczyk K, Wöste L, Ackermann R, Méjean G, Salmon E, Kasparian J, Yu J, Wolf JP. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation. Spectrochim Acta B. 2005;60:1025.

    Article  Google Scholar 

  180. Fobar DG, **ao X, Burger M, Le S, Berre A, Motta T, Jovanovic I. Robotic delivery of laser-induced breakdown spectroscopy for sensitive chlorine measurement in dry cask storage systems. Prog Nucl Energy. 2018;109:188.

    Article  CAS  Google Scholar 

  181. Gottfried JL, De Lucia FC, Munson CA, Miziolek AW. Doublepulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection. Spectrochim Acta B. 2007;62:1405.

    Article  Google Scholar 

  182. Barnett PD, Lamsal N, Angel SM. Standoff laser-induced breakdown spectroscopy (LIBS) using a miniature wide field of view spatial heterodyne spectrometer with sub-microsteradian collection optics. Appl Spectrosc. 2017;71:583.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge the financial support received from the National Research, Development and Innovation Office (Hungary) through project No. K 129063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Galbács .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galbács, G., Palásti, D.J., Janovszky, P.M. (2022). State-of-the-Art Analytical Performance. In: Galbács, G. (eds) Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-14502-5_4

Download citation

Publish with us

Policies and ethics

Navigation