Abstract

Laser-induced breakdown spectroscopy (LIBS) show great potential for direct sample analysis, as the LIBS spectrum carries important information about sample composition, leading to the possibility of quantitative and qualitative (classification) analytical applications. This chapter overviews the existing approaches for quantitative LIBS analysis based on univariate and multivariate calibration. Many applications of these quantitative approaches to various sample types are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nascentes CC, Korn M d GA, Zanoni MVB. Química Analítica No Brasil: Atualidades, Tendências E Desafios. Quim Nova. 2017;40:643.

    CAS  Google Scholar 

  2. Carter JA, Barros AI, Nóbrega JA, Donati GL. Traditional calibration methods in atomic spectrometry and new calibration strategies for inductively coupled plasma mass spectrometry. Front Chem. 2018;6:504.

    Article  CAS  Google Scholar 

  3. Krug FJ, Rocha FRP. Métodos de Preparo de Amostras Para Análise Elementar. 2nd ed. São Paulo: EditSBQ; 2019.

    Google Scholar 

  4. Rocha DL, Batista AD, Rocha FRP, Donati GL, Nóbrega JA. Greening sample preparation in inorganic analysis. TrAC Trends Anal Chem. 2013;45:79.

    Article  CAS  Google Scholar 

  5. Meyers RA. Encyclopedia of analytical chemistry: applications, theory and instrumentation, supplementary volumes S1–S3. New York: Wiley-Interscience; 2011.

    Google Scholar 

  6. Smith FE, Arsenault EA. Microwave-assisted sample preparation in analytical chemistry. Talanta. 1996;43:1207.

    Article  CAS  Google Scholar 

  7. Radziemski LJ. From LASER to LIBS, the path of technology development. Spectrochim Acta B. 2002;57:1109.

    Article  Google Scholar 

  8. Noll R. Laser-induced breakdown spectroscopy: fundamentals and applications. Springer Science & Business Media; 2012.

    Book  Google Scholar 

  9. Pereira FMV, Castilho JPC, Machado RC, de Araújo AS, de Andrade DF, de Babos DV, Beletti DR, Pereira Filho ER, de Mello ML, Hilário FF, Garcia JA, Sperança MA, Gamela RR, Costa VC. Laser-induced breakdown spectroscopy (LIBS): applications and calibration strategies. 1st ed. São Paulo; 2021.

    Google Scholar 

  10. Pedarnig JD, Trautner S, Grünberger S, Giannakaris N, Eschlböck-Fuchs S, Hofstadler J. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (LIBS). Appl Sci. 2021;11:9274.

    Article  CAS  Google Scholar 

  11. Radziemski L, Cremers D. A brief history of laser-induced breakdown spectroscopy: from the concept of atoms to LIBS 2012. Spectrochim Acta B. 2013;87:3.

    Article  CAS  Google Scholar 

  12. Machado RC, Andrade DF, Babos DV, Castro JP, Costa VC, Sperança MA, Garcia JA, Gamela RR, Pereira-Filho ER. Solid sampling: advantages and challenges for chemical element determination—a critical review. J Anal At Spectrom. 2020;35:54.

    Article  CAS  Google Scholar 

  13. Cremers DDA, Radziemski LJ. Handbook of laser-induced breakdown spectroscopy. 2nd ed. Chichester, West Sussex: Wiley; 2013.

    Book  Google Scholar 

  14. Hahn DW, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc. 2012;66:347.

    Article  CAS  Google Scholar 

  15. Singh VK, Rai AK. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review. Lasers Med Sci. 2011;26:673.

    Article  Google Scholar 

  16. Galbács G. A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal Bioanal Chem. 2015;407:7537.

    Article  Google Scholar 

  17. Takahashi T, Thornton B. Quantitative methods for compensation of matrix effects and self-absorption in laser induced breakdown spectroscopy signals of solids. Spectrochim Acta B. 2017;138:31.

    Article  CAS  Google Scholar 

  18. Popov AM, Zaytsev SM, Seliverstova IV, Zakuskin AS, Labutin TA. Matrix effects on laser-induced plasma parameters for soils and ores. Spectrochim Acta B. 2018;148:205.

    Article  CAS  Google Scholar 

  19. Lednev VN, Grishin MY, Sdvizhenskii PA, Asyutin RD, Tretyakov RS, Stavertiy AY, Pershin SM. Sample temperature effect on laser ablation and analytical capabilities of laser induced breakdown spectroscopy. J Anal At Spectrom. 2019;34:607.

    Article  CAS  Google Scholar 

  20. Sabsabi M, Cielo P. Quantitative-analysis of aluminum- alloys by laser-induced breakdown spectroscopy and plasma characterization. Appl Spectrosc. 1995;49:499.

    Article  CAS  Google Scholar 

  21. Santos D, Nunes LC, Carvalho GGA, Gomes MD, Souza PF, Leme FD, Santos LGC, Krug FJ, L. Laser-induced breakdown spectroscopy for analysis of plant materials: a review. Spectrochim Acta B. 2012;71–72:3.

    Article  Google Scholar 

  22. Braga JWB, Trevizan LC, Nunes LC, Rufini IA, Santos D, Krug FJ. Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry. Spectrochim Acta B. 2010;65:66.

    Article  Google Scholar 

  23. Wang W, Sun L, Zhang P, Chen T, Zheng L, Qi L. Study of matrix effects in laser-induced breakdown spectroscopy by laser defocus and temporal resolution. J Anal At Spectrom. 2021;36:1977.

    Article  CAS  Google Scholar 

  24. Babos DV, Cruz-Conesa A, Pereira-Filho ER, Anzano JM. Direct determination of Al and Pb in waste printed circuit boards (PCB) by laser-induced breakdown spectroscopy (LIBS): evaluation of calibration strategies and economic—environmental questions. J Hazard Mater. 2020;399:122831.

    Article  CAS  Google Scholar 

  25. Costa VC, Babos DV, Castro JP, Andrade DF, Gamela RR, Machado RC, Sperança MA, Araújo AS, Garcia JA, Pereira-Filho ER. Calibration strategies applied to laser-induced breakdown spectroscopy: a critical review of advances and challenges. J Braz Chem Soc. 2020;31:2439.

    CAS  Google Scholar 

  26. Andrade DF, Pereira-Filho ER, Amarasiriwardena D. Current trends in laser-induced breakdown spectroscopy: a tutorial review. Appl Spectrosc Rev. 2021;56:98.

    Article  Google Scholar 

  27. Musazzi S, Perini U, editors. Laser-induced breakdown spectroscopy: theory and applications, vol. 182. Berlin: Springer; 2014.

    Google Scholar 

  28. Mark H. Principles and practice of spectroscopic calibration. 1st ed. New York: Wiley-Interscience; 1991.

    Google Scholar 

  29. Donati GL, Amais RS. Fundamentals and new approaches to calibration in atomic spectrometry. J Anal At Spectrom. 2019;34:2353.

    Article  CAS  Google Scholar 

  30. Augusto AS, Barsanelli PL, Pereira FMV, Pereira-Filho ER. Calibration strategies for the direct determination of Ca, K, and Mg in commercial samples of powdered milk and solid dietary supplements using laser-induced breakdown spectroscopy (LIBS). Food Res Int. 2017;94:72.

    Article  Google Scholar 

  31. Babos DV, Barros AI, Nobrega JA, Pereira-Filho ER. Calibration strategies to overcome matrix effects in laser-induced breakdown spectroscopy: direct calcium and phosphorus determination in solid mineral supplements. Spectrochim Acta B. 2019;155:90.

    Article  CAS  Google Scholar 

  32. Millar S, Gottlieb C, Günther T, Sankat N, Wilsch G, Kruschwitz S. Chlorine determination in cement-bound materials with laser-induced breakdown spectroscopy (LIBS)—a review and validation. Spectrochim Acta B. 2018;147:1.

    Article  CAS  Google Scholar 

  33. Vieira AL, Silva TV, de Sousa FSI, Senesi GS, Júnior DS, Ferreira EC, Neto JAG. Determinations of phosphorus in fertilizers by spark discharge-assisted laser-induced breakdown spectroscopy. Microchem J. 2018;139:322.

    Article  CAS  Google Scholar 

  34. Gomes MS, de Carvalho GGA, Santos D, Krug FJ. A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: a case study with pellets of sugar cane leaves. Spectrochim Acta B. 2013;86:137.

    Article  Google Scholar 

  35. Papai R, Sato RH, Nunes LC, Krug FJ, Gaubeur I. Melted paraffin wax as an innovative liquid and solid extractant for elemental analysis by laser-induced breakdown spectroscopy. Anal Chem. 2017;89:2807.

    Article  CAS  Google Scholar 

  36. Andrade DF, Sperança MA, Pereira-Filho ER. Different sample preparation methods for the analysis of suspension fertilizers combining LIBS and liquid-to-solid matrix conversion: determination of essential and toxic elements. Anal Methods. 2017;9:5156.

    Article  CAS  Google Scholar 

  37. Andrade DF, Guedes WN, Pereira FMV. Detection of chemical elements related to impurities leached from raw sugarcane: use of laser-induced breakdown spectroscopy (LIBS) and chemometrics. Microchem J. 2018;137:443.

    Article  CAS  Google Scholar 

  38. Silvestre DM, Barbosa FM, Aguiar BT, Leme FO, Nomura CS. Feasibility study of calibration strategy for direct quantitative measurement of K and Mg in plant material by laser-induced breakdown spectrometry. Anal Chem Res. 2015;5:28.

    Article  CAS  Google Scholar 

  39. Zhu Z, Li J, Guo Y, Cheng X, Tang Y, Guo L, Li X, Lu Y, Zeng X. Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy. J Anal At Spectrom. 2018;33:205.

    Article  CAS  Google Scholar 

  40. Sweetapple MT, Tassios S. Laser-induced breakdown spectroscopy (LIBS) as a tool for in situ map** and textural interpretation of lithium in pegmatite minerals. Am Mineral. 2015;100:2141.

    Article  Google Scholar 

  41. Leme FO, Silvestre DM, Nascimento AN, Nomura CS. Feasibility of using laser induced breakdown spectroscopy for quantitative measurement of calcium, magnesium, potassium and sodium in meat. J Anal At Spectrom. 2018;33:1322.

    Article  CAS  Google Scholar 

  42. de Carvalho GGA, Nunes LC, de Souza PF, Krug FJ, Alegre TC, Santos D Jr. Evaluation of laser induced breakdown spectrometry for the determination of macro and micronutrients in pharmaceutical tablets. J Anal At Spectrom. 2010;25:803.

    Article  Google Scholar 

  43. Gu W, Song W, Yan G, Ye Q, Li Z, Afgan MS, Liu J, Song Y, Hou Z, Wang Z, Li Z. A data preprocessing method based on matrix matching for coal analysis by laser-induced breakdown spectroscopy. Spectrochim Acta B. 2021;180:106212.

    Article  CAS  Google Scholar 

  44. Barnett WB, Fassel VA, Kniseley RN. Theoretical principles of internal standardization in analytical emission spectroscopy. Spectrochim Acta B. 1968;23:643.

    Article  CAS  Google Scholar 

  45. Sperança MA, Pomares-Alfonso MS, Pereira-Filho ER. Analysis of Cuban nickeliferous minerals by laser-induced breakdown spectroscopy (LIBS): non-conventional sample preparation of powder samples. Anal Methods. 2018;10:533.

    Article  Google Scholar 

  46. Zachariadis GA, Vogiatzis C. An overview of the use of yttrium for internal standardization in inductively coupled plasma–atomic emission spectrometry. Appl Spectrosc Rev. 2010;45:220.

    Article  CAS  Google Scholar 

  47. Guezenoc J, Gallet-Budynek A, Bousquet B. Critical review and advices on spectral-based normalization methods for LIBS quantitative analysis. Spectrochim Acta B. 2019;160:105688.

    Article  CAS  Google Scholar 

  48. Šindelářová A, Pořízka P, Modlitbová P, Vrlíková L, Kiss K, Kaška M, Prochazka D, Vrábel J, Buchtová M, Kaiser J. Methodology for the implementation of internal standard to laser-induced breakdown spectroscopy analysis of soft tissues. Sensors. 2021;21:900.

    Article  Google Scholar 

  49. Juvé V, Portelli R, Boueri M, Baudelet M, Yu J. Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy. Spectrochim Acta B. 2008;63:1047.

    Article  Google Scholar 

  50. Castro JP, Pereira-Filho ER. Twelve different types of data normalization for the proposition of classification, univariate and multivariate regression models for the direct analyses of alloys by laser-induced breakdown spectroscopy (LIBS). J Anal At Spectrom. 2016;31:2005.

    Article  CAS  Google Scholar 

  51. Wu C, Sun DX, Su MG, Yin YP, Han WW, Lu QF, Dong CZ. Quantitative analysis of Pb in soil samples by laser-induced breakdown spectroscopy with a simplified standard addition method. J Anal At Spectrom. 2019;34:1478.

    Article  CAS  Google Scholar 

  52. Zhu C, Lv J, Liu K, Li Q, Tang Z, Zhou R, Zhang W, Chen J, Liu K, Li X, Zeng X. Fast detection of harmful trace elements in glycyrrhiza using standard addition and internal standard method—laser-induced breakdown spectroscopy (SAIS-LIBS). Microchem J. 2021;168:106408.

    Article  CAS  Google Scholar 

  53. Yi RX, Guo LB, Zou XH, Li JM, Hao ZQ, Yang XY, Li XY, Zeng XY, Lu YF. Background removal in soil analysis using laser- induced breakdown spectroscopy combined with standard addition method. Opt Express. 2016;24:2607.

    Article  CAS  Google Scholar 

  54. Haider AFMY, Khan ZH. Determination of Ca content of coral skeleton by analyte additive method using the LIBS technique. Opt Laser Technol. 2012;44:1654.

    Article  CAS  Google Scholar 

  55. Zivkovic S, Savovic J, Kuzmanovic M, Petrovic J, Momcilovic M. Alternative analytical method for direct determination of Mn and Ba in peppermint tea based on laser induced breakdown spectroscopy. Microchem J. 2018;137:410.

    Article  CAS  Google Scholar 

  56. Bader MA. Systematic approach to standard addition methods in instrumental analysis. J Chem Educ. 1980;57:703.

    Article  CAS  Google Scholar 

  57. Bilge G, Boyaci IH, Eseller KE, Tamer U, Cakir S. Analysis of bakery products by laser-induced breakdown spectroscopy. Food Chem. 2015;181:186.

    Article  CAS  Google Scholar 

  58. Castro JP, Babos DV, Pereira-Filho ER. Calibration strategies for the direct determination of rare earth elements in hard disk magnets using laser-induced breakdown spectroscopy. Talanta. 2020;208:120443.

    Article  CAS  Google Scholar 

  59. Virgilio A, Gonçalves DA, McSweeney T, Gomes Neto JA, Nóbrega JA, Donati GL. Multi-energy calibration applied to atomic spectrometry. Anal Chim Acta. 2017;982:31.

    Article  CAS  Google Scholar 

  60. Babos DV, Virgilio A, Costa VC, Donati GL, Pereira-Filho ER. Multi-energy calibration (MEC) applied to laser-induced breakdown spectroscopy (LIBS). J Anal At Spectrom. 2018;33:1753.

    Article  CAS  Google Scholar 

  61. Augusto AS, Castro JP, Sperança MA, Pereira-Filho EP. Combination of multi-energy calibration (MEC) and laser-induced breakdown spectroscopy (LIBS) for dietary supplements analysis and determination of Ca, Mg and K. J Braz Chem Soc. 2019;30:804.

    CAS  Google Scholar 

  62. Fortunato FM, Catelani TA, Pomares-Alfonso MS, Pereira-Filho ER. Application of multi-energy calibration for determination of chromium and nickel in nickeliferous ores by laser-induced breakdown spectroscopy. Anal Sci. 2019;35:165.

    Article  CAS  Google Scholar 

  63. Carvalho AAC, Cozer LA, Luz MS, Nunes LC, Rocha FRP, Nomura CS. Multi-energy calibration and sample fusion as alternatives for quantitative analysis of high silicon content samples by laser-induced breakdown spectrometry. J Anal At Spectrom. 2019;34:1701.

    Article  CAS  Google Scholar 

  64. Andrade DF, Fortunato FM, Pereira-Filho ER. Calibration strategies for determination of the in content in discarded liquid crystal displays (LCD) from mobile phones using laser-induced breakdown spectroscopy (LIBS). Anal Chim Acta. 2019;1061:42.

    Article  CAS  Google Scholar 

  65. Li X, Zhao T, Zhong Q, Nie S, **ao H, Zhao S, Huang W, Fan Z. Iterative multi-energy calibration and its application in online alloy smelting process monitoring using laser-induced breakdown spectroscopy. J Anal At Spectrom. 2020;35:2171.

    Article  CAS  Google Scholar 

  66. Hao ZQ, Liu L, Zhou R, Ma YW, Li XY, Guo LB, Lu YF, Zeng XY. One-point and multi-line calibration method in laser-induced breakdown spectroscopy. Opt Express. 2018;26:22926.

    Article  CAS  Google Scholar 

  67. Gamela RR, Costa VC, Babos DV, Araújo AS, Pereira-Filho ER. Direct determination of Ca, K, and Mg in cocoa beans by laser-induced breakdown spectroscopy (LIBS): evaluation of three univariate calibration strategies for matrix matching. Food Anal Methods. 2020;13:1017.

    Article  Google Scholar 

  68. Vieira AL, Ferreira EC, Júnior DS, Senesi GS, Neto JAG. Spark discharge-libs: evaluation of one-point and multi-voltage calibration for p and al determination. At Spectrosc. 2021;42:18.

    CAS  Google Scholar 

  69. Yuan R, Tang Y, Zhu Z, Hao Z, Li J, Yu H, Yu Y, Guo L, Zeng X, Lu Y. Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration. Anal Chim Acta. 2019;1064:11.

    Article  CAS  Google Scholar 

  70. Nunes LC, Rocha FRP, Krug FJ. Slope ratio calibration for analysis of plant leaves by laser-induced breakdown spectroscopy. J Anal At Spectrom. 2019;34:2314.

    Article  CAS  Google Scholar 

  71. Costa VC, de Mello ML, Babos DV, Castro JP, Pereira-Filho ER. Calibration strategies for determination of Pb content in recycled polypropylene from car batteries using laser-induced breakdown spectroscopy (LIBS). Microchem J. 2020;159:105558.

    Article  CAS  Google Scholar 

  72. Krutchkoff RG. Classical and inverse regression methods of calibration. Technometrics. 1967;9:425.

    Article  Google Scholar 

  73. Duponchel L, Bousquet B, Pelascini F, Motto-Ros V. Should we prefer inverse models in quantitative LIBS analysis? J Anal At Spectrom. 2020;35:794.

    Article  CAS  Google Scholar 

  74. de Carvalho GGA, Santos D, Nunes LC, Gomes MS, Leme F d O, Krug FJ. Effects of laser focusing and fluence on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy. Spectrochim Acta B. 2012;74–75:162.

    Article  Google Scholar 

  75. Machado RC, Babos DV, Andrade DF, Pereira-Filho ER. A novel strategy for direct elemental determination using laser-induced breakdown spectroscopy: fluence calibration. J Anal At Spectrom. 2021;36:2132.

    Article  CAS  Google Scholar 

  76. Zhang T, Tang H, Li H. Chemometrics in laser-induced breakdown spectroscopy. J Chemometr. 2018;32:1.

    Article  Google Scholar 

  77. Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. Anal Chim Acta. 1986;185:1.

    Article  CAS  Google Scholar 

  78. Brereton RG. Introduction to multivariate calibration in analytical chemistry. Analyst. 2000;125:2125.

    Article  CAS  Google Scholar 

  79. Ayyalasomayajula KK, Yu-Yueh F, Singh JP, McIntyre DL, Jain J. Application of laser-induced breakdown spectroscopy for total carbon quantification in soil samples. Appl Optics. 2012;51:149.

    Article  Google Scholar 

  80. Wang J, Xue S, Zheng P, Chen Y, Peng R. Determination of lead and copper in Ligusticum wallichii by laser-induced breakdown spectroscopy. Anal Lett. 2017;50:2000.

    Article  CAS  Google Scholar 

  81. Sperança MA, Andrade DF, Castro JP, Pereira-Filho ER. Univariate and multivariate calibration strategies in combination with laser-induced breakdown spectroscopy (LIBS) to determine Ti on sunscreen: a different sample preparation procedure. Opt Laser Technol. 2019;109:648.

    Article  Google Scholar 

  82. Ayyalasomayajula KK, McIntyre DL, Jain J, Singh JP, Yu-Yueh F. Determination of elemental impurities in plastic calibration standards using laser-induced breakdown spectroscopy. Appl Optics. 2012;51:B1.

    Article  Google Scholar 

  83. Wen S, Jiang-tao L, Cui-** L, Chun-hou Z. Quantitative analysis of P in compound fertilizer by laser-induced breakdown spectroscopy coupled with linear multivariate calibration. Spectrosc Spect Anal. 2019;39:1958.

    Google Scholar 

  84. Yaroshchyk P, Death DL, Spencer SJ. Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS. J Anal At Spectrom. 2012;27:92.

    Article  CAS  Google Scholar 

  85. Zaytsev SM, Popov AM, Chernykh EV, Voronina RD, Zorov NB, Labutin TA. Comparison of single- and multivariate calibration for determination of Si, Mn, Cr and Ni in high-alloyed stainless steels by laser-induced breakdown spectrometry. J Anal At Spectrom. 2014;29:1417.

    Article  CAS  Google Scholar 

  86. Devangad P, Unnikrishnan VK, Tamboli MM, Shameem KMM, Nayak R, Choudhari KS, Santhosh C. Quantification of Mn in glass matrices using laser induced breakdown spectroscopy (LIBS) combined with chemometric approaches. Anal Methods. 2016;8:7177.

    Article  CAS  Google Scholar 

  87. Takahashi T, Thornton B, Sato T, Ohki T, Ohki K, Sakka T. Temperature based segmentation for spectral data of laser-induced plasmas for quantitative compositional analysis of brass alloys submerged in water. Spectrochim Acta B. 2016;124:87.

    Article  CAS  Google Scholar 

  88. Hernández-García R, Villanueva-Tagle ME, Calderón-Piñar F, Durruthy-Rodríguez MD, Aquino FWB, Pereira-Filho ER, Pomares-Alfonso MS. Quantitative analysis of lead zirconate titanate (PZT) ceramics by laser-induced breakdown spectroscopy (LIBS) in combination with multivariate calibration. Microchem J. 2017;130:21.

    Article  Google Scholar 

  89. Costa VC, Pereira FMV. Laser-induced breakdown spectroscopy applied to the rapid identification of different types of polyethylene used for toy manufacturing. J Chemometr. 2020;34:1.

    Article  Google Scholar 

  90. Castro JP, Pereira-Filho ER, Bro R. Laser-induced breakdown spectroscopy (LIBS) spectra interpretation and characterization using parallel factor analysis (PARAFAC): a new procedure for data and spectral interference processing fostering the waste electrical and electronic equipment (WEEE) recycling process. J Anal At Spectrom. 2020;35:1115.

    Article  CAS  Google Scholar 

  91. Andrade DF, Pereira-Filho ER, Konieczynski P. Comparison of ICP OES and LIBS analysis of medicinal herbs rich in flavonoids from Eastern Europe. J Braz Chem Soc. 2017;28:838.

    CAS  Google Scholar 

  92. Goueguel CL, Soumare A, Nault C, Nault J. Direct determination of soil texture using laser-induced breakdown spectroscopy and multivariate linear regressions. J Anal At Spectrom. 2019;34:1588.

    Article  CAS  Google Scholar 

  93. Costa VC, Aquino FWB, Paranhos CM, Pereira-Filho ER. Use of laser-induced breakdown spectroscopy for the determination of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) concentrations in PC/ABS plastics from e-waste. Waste Manag. 2017;70:121.

    Article  Google Scholar 

  94. Ding Y, **a G, Ji H, **ong X. Accurate quantitative determination of heavy metals in oily soil by laser induced breakdown spectroscopy (LIBS) combined with interval partial least squares (IPLS). Anal Methods. 2019;11:3657.

    Article  CAS  Google Scholar 

  95. Zhang T-L, Wu S, Tang H-S, Wang K, Duan Y-X, Li H. Progress of chemometrics in laser-induced breakdown spectroscopy analysis. Chin J Anal Chem. 2015;43:939.

    Article  CAS  Google Scholar 

  96. Li L-N, Liu X-F, Yang F, Xu W-M, Wang J-Y, Shu R. A review of artificial neural network based chemometrics applied in laser-induced breakdown spectroscopy analysis. Spectrochim Acta B. 2021;180:106183.

    Article  CAS  Google Scholar 

  97. Ferreira EC, Milori DMBP, Ferreira EJ, Da Silva RM, Martin-Neto L. Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system. Spectrochim Acta B. 2008;63:1216.

    Article  Google Scholar 

  98. D’Andrea E, Pagnotta S, Grifoni E, Legnaioli S, Lorenzetti G, Palleschi V, Lazzerini B. A hybrid calibration-free/artificial neural networks approach to the quantitative analysis of LIBS spectra. Appl Phys B Lasers Opt. 2015;118:353.

    Article  Google Scholar 

  99. El Haddad J, Bruyère D, Ismaël A, Gallou G, Laperche V, Michel K, Canioni L, Bousquet B. Application of a series of artificial neural networks to on-site quantitative analysis of lead into real soil samples by laser induced breakdown spectroscopy. Spectrochim Acta B. 2014;97:57.

    Article  Google Scholar 

  100. Lu C, Wang B, Jiang X, Zhang J, Niu K, Yuan Y. Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks. Plasma Sci Technol. 2018;21:034014.

    Article  Google Scholar 

  101. D’Andrea E, Pagnotta S, Grifoni E, Lorenzetti G, Legnaioli S, Palleschi V, Lazzerini B. An artificial neural network approach to laser-induced breakdown spectroscopy quantitative analysis. Spectrochim Acta B. 2014;99:52.

    Article  Google Scholar 

  102. Li K, Guo L, Li C, Li X, Shen M, Zheng Z, Yu Y, Hao R, Hao Z, Zeng Q, Lu Y, Zeng X. Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network. J Anal At Spectrom. 2015;30:1623.

    Article  CAS  Google Scholar 

  103. Lorenzetti G, Legnaioli S, Grifoni E, Pagnotta S, Palleschi V. Laser-based continuous monitoring and resolution of steel grades in sequence casting machines. Spectrochim Acta B. 2015;112:1.

    Article  CAS  Google Scholar 

  104. Inakollu P, Philip T, Rai AK, Yueh F-Y, Singh JP. A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods. Spectrochim Acta B. 2009;64:99.

    Article  Google Scholar 

  105. Bhatt B, Angeyo KH, Dehayem-Kamadjeu A. LIBS development methodology for forensic nuclear materials analysis. Anal Methods. 2018;10:791.

    Article  CAS  Google Scholar 

  106. Lu Z, Mo J, Yao S, Zhao J, Lu J. Rapid determination of the gross calorific value of coal using laser-induced breakdown spectroscopy coupled with artificial neural networks and genetic algorithm. Energy Fuel. 2017;31:3849.

    Article  CAS  Google Scholar 

  107. Wang J, Shi M, Zheng P, Xue S, Peng R. Quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens f. biserrata by laser-induced breakdown spectroscopy combined with artificial neural networks. J Appl Spectrosc. 2018;85:190.

    Article  CAS  Google Scholar 

  108. Hu Y, Li Z, Lü T. Determination of elemental concentration in geological samples using nanosecond laser-induced breakdown spectroscopy. J Anal At Spectrom. 2017;32:2263.

    Article  CAS  Google Scholar 

  109. Galbács G, Gornushkin IB, Smith BW, Winefordner JD. Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation. Spectrochim Acta B. 2001;56:1159.

    Article  Google Scholar 

  110. Galbács G, Jedlinszki N, Cseh G, Galbács Z, Túri L. Accurate quantitative analysis of gold alloys using multi-pulse laser induced breakdown spectroscopy and a correlation-based calibration method. Spectrochim Acta B. 2008;63:591.

    Article  Google Scholar 

  111. Galbács G, Gornushkin IB, Winefordner JD. Generalization of a new calibration method based on linear correlation. Talanta. 2004;63:351.

    Article  Google Scholar 

  112. Meng T, **g X, Yan Z, Pedrycz W. A survey on machine learning for data fusion. Inf Fusion. 2020;57:115.

    Article  Google Scholar 

  113. Brereton RG, Jansen J, Lopes J, Marini F, Pomerantsev A, Rodionova O, Roger JM, Walczak B, Tauler R. Chemometrics in analytical chemistry-part I: history, experimental design and data analysis tools. Anal Bioanal Chem. 2017;409:5891.

    Article  CAS  Google Scholar 

  114. Geladi P. Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectrochim Acta B. 2003;58:767.

    Article  Google Scholar 

  115. Lahat D, Adali T, Jutten C. Multimodal data fusion: an overview of methods, challenges, and prospects. Proc IEEE. 2015;103:1449.

    Article  Google Scholar 

  116. Borràs E, Ferré J, Boqué R, Mestres M, Aceña L, Busto O. Data fusion methodologies for food and beverage authentication and quality assessment—a review. Anal Chim Acta. 2015;891:1.

    Article  Google Scholar 

  117. Guedes WN, Pereira FMV. Classifying impurity ranges in raw sugarcane using laser-induced breakdown spectroscopy (LIBS) and sum fusion across a tuning parameter window. Microchem J. 2018;143:331.

    Article  CAS  Google Scholar 

  118. Szymańska E. Modern data science for analytical chemical data—a comprehensive review. Anal Chim Acta. 2018;1028:1.

    Article  Google Scholar 

  119. Stefas D, Gyftokostas N, Kourelias P, Nanou E, Kokkinos V, Bouras C, Couris S. Discrimination of olive oils based on the olive cultivar origin by machine learning employing the fusion of emission and absorption spectroscopic data. Food Control. 2021;130:108318.

    Article  CAS  Google Scholar 

  120. Gamela RR, Costa VC, Sperança MA, Pereira-Filho ER. Laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WDXRF) data fusion to predict the concentration of K, Mg and P in bean seed samples. Food Res Int. 2020;132:109037.

    Article  CAS  Google Scholar 

  121. Gamela RR, Pereira-Filho ER, Pereira FMV. Minimal-invasive analytical method and data fusion: an alternative for determination of Cu, K, Sr, and Zn in cocoa beans. Food Anal Methods. 2021;14:545.

    Article  Google Scholar 

  122. Andrade DF, Almeida E, Carvalho HWP, Pereira-Filho ER, Amarasiriwardena D. Chemical inspection and elemental analysis of electronic waste using data fusion—application of complementary spectroanalytical techniques. Talanta. 2021;225:122025.

    Article  CAS  Google Scholar 

  123. Santos MC, Pereira FMV. Direct analysis of human hair before and after cosmetic modification using a recent data fusion method. J Braz Chem Soc. 2020;31:33.

    CAS  Google Scholar 

  124. de Oliveira DM, Fontes LM, Pasquini C. Comparing laser induced breakdown spectroscopy, near infrared spectroscopy, and their integration for simultaneous multi-elemental determination of micro- and macronutrients in vegetable samples. Anal Chim Acta. 2019;1062:28.

    Article  Google Scholar 

  125. Xu D, Zhao R, Li S, Chen S, Jiang Q, Zhou L, Shi Z. Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China. Eur J Soil Sci. 2019;70:162.

    Article  CAS  Google Scholar 

  126. Xu X, Du C, Ma F, Shen Y, Wu K, Liang D, Zhou J. Detection of soil organic matter from laser-induced breakdown spectroscopy (LIBS) and mid-infrared spectroscopy (FTIR-ATR) coupled with multivariate techniques. Geoderma. 2019;355:113905.

    Article  CAS  Google Scholar 

  127. Manrique-Martinez JA, Lopez-Reyes G, Alvarez-Perez A, Bozic T, Veneranda M, Sanz-Arranz A, Saiz J, Medina-Garcia J, Rull-Perez F. Evaluation of multivariate analyses and data fusion between Raman and laser-induced breakdown spectroscopy in binary mixtures and its potential for solar system exploration. J Raman Spectrosc. 2020;51:1.

    Article  Google Scholar 

  128. Araújo AS, Castro JP, Sperança MA, Andrade DF, Mello ML, Pereira-Filho ER. Multiway calibration strategies in laser-induced breakdown spectroscopy: a proposal. Anal Chem. 2021;93:6291.

    Article  Google Scholar 

  129. Costa VC, Castro JP, Andrade DF, Victor Babos D, Garcia JA, Sperança MA, Catelani TA, Pereira-Filho ER. Laser-induced breakdown spectroscopy (LIBS) applications in the chemical analysis of waste electrical and electronic equipment (WEEE). TrAC Trends Anal Chem. 2018;108:65.

    Article  CAS  Google Scholar 

  130. Elmasry G, Kamruzzaman M, Sun D-W, Allen P. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit Rev Food Sci Nutr. 2012;52:999.

    Article  Google Scholar 

  131. Wu D, Sun D-W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review—part I: fundamentals. Innov Food Sci Emerg Technol. 2013;19:1.

    Article  Google Scholar 

  132. Gamela RR, Sperança MA, Andrade DF, Pereira-Filho ER. Hyperspectral images: a qualitative approach to evaluate the chemical profile distribution of Ca, K, Mg, Na and P in edible seeds employing laser-induced breakdown spectroscopy. Anal Methods. 2019;11:5543.

    Article  CAS  Google Scholar 

  133. Amigo JM, Babamoradi H, Elcoroaristizabal S. Hyperspectral image analysis. A tutorial. Anal Chim Acta. 2015;896:34.

    Article  CAS  Google Scholar 

  134. Edelman GJ, Gaston E, van Leeuwen TG, Cullen PJ, Aalders MCG. Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci Int. 2012;223:28.

    Article  CAS  Google Scholar 

  135. Wu D, Meng L, Yang L, Wang J, Fu X, Du X, Li S, He Y, Huang L. Feasibility of laser-induced breakdown spectroscopy and hyperspectral imaging for rapid detection of thiophanate-methyl residue on mulberry fruit. Int J Mol Sci. 2019;20:1.

    Google Scholar 

  136. Garcia JA, da Silva JRA, Pereira-Filho ER. LIBS as an alternative method to control an industrial hydrometallurgical process for the recovery of Cu in waste from electro-electronic equipment (WEEE). Microchem J. 2021;164:106007.

    Article  CAS  Google Scholar 

  137. Carter S, Clough R, Fisher A, Gibson B, Russell B. Atomic spectrometry update: review of advances in the analysis of metals, chemicals and materials. J Anal At Spectrom. 2021;36:2241.

    Article  CAS  Google Scholar 

  138. Lazic V, Jovićević S. Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects. Spectrochim Acta B. 2014;101:288.

    Article  CAS  Google Scholar 

  139. Jantzi SC, Motto-Ros V, Trichard F, Markushin Y, Melikechi N, De Giacomo A. Sample treatment and preparation for laser-induced breakdown spectroscopy. Spectrochim Acta B. 2016;115:52.

    Article  CAS  Google Scholar 

  140. Costa VC, Augusto AS, Castro JP, Machado RC, Andrade DF, Babos DV, Sperança MA, Gamela RR, Pereira-Filho ER. Laser induced-breakdown spectroscopy (LIBS): histórico, fundamentos, aplicações e potencialidades. Quim Nova. 2019;42:527.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edenir Rodrigues Pereira-Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro, J.P. et al. (2022). Quantitative Analysis. In: Galbács, G. (eds) Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-14502-5_2

Download citation

Publish with us

Policies and ethics

Navigation