A Preliminary Tactile Conduction Model Based on Neural Electrical Properties Analysis

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13456))

Included in the following conference series:

  • 2284 Accesses

Abstract

The absence of tactile feedback leads to a high rejection rate from prostheses users and impedes the functional performance of dexterous hand prostheses. To effectively deliver tactile feedback, transcutaneous electrical nerve stimulation (TENS) has attracted extensive attention in the field of tactile sensation restoration, due to its advantages of non-invasive application and homology with neural signals. However, the modulation of electrotactile stimulation parameters still depends on operators’ experience instead of a theoretical guidance. Thus, this paper establishes a preliminary tactile conduction model which is expected to provide a theoretical foundation for the adjustment of electrotactile stimulation parameters. Based on a review of studies about the electrical conduction properties of electrodes and upper-limb tissues which are related to tactile generation process, a tactile conduction model is established to describe the neural signal transduction path from electrodes to tactile nerve fibres and the influence of different stimulation parameters on subjects’ sensation experience is briefly analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., Travison, T.G., Brookmeyer, R.: Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89(3), 422–429 (2008)

    Google Scholar 

  2. Maimon-Mor, R.O., Makin, T.R.: Is an artificial limb embodied as a hand? Brain decoding in prosthetic limb users. PLoS Biol. 18(6), 1–26 (2020)

    Google Scholar 

  3. Gholinezhad, S., Dosen, S., Jakob, D.: Electrotactile feedback outweighs natural feedback in sensory integration during control of grasp force. J. Neural Eng. 18(5), 056024 (2021)

    Google Scholar 

  4. Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2016)

    Google Scholar 

  5. Engeberg, E.D., Meek, S.G.: Adaptive sliding mode control for prosthetic hands to simultaneously prevent slip and minimize deformation of grasped objects. IEEE/ASME Trans. Mechatron. 18(1), 376–385 (2013)

    Google Scholar 

  6. Abraira, V.E., Ginty, D.D.: The sensory neurons of touch. Neuron 79(4), 618–639 (2013)

    Google Scholar 

  7. Cansever, L., et al.: The effect of transcutaneous electrical nerve stimulation on chronic postoperative pain and long-term quality of life. Turk. J. Thorac. Cardiovasc. Surg. 29(4), 495–502 (2021)

    Google Scholar 

  8. Schmid, P., Bader, M., Maier, T.: Tactile information coding by electro-tactile feedback. In: Proceedings of 4th International Conference on Computer Computer-Human Interaction Research and Applications, CHIRA 2020, pp. 37–43 (2020)

    Google Scholar 

  9. Kajimoto, H., Kawakami, N., Maeda, T., Tachi, S.: Tactile feeling display using functional electrical stimulation. In: Proceedings of ICAT (1999)

    Google Scholar 

  10. Tarnaud, T., Joseph, W., Martens, L., Tanghe, E.: Dependence of excitability indices on membrane channel dynamics, myelin impedance, electrode location and stimulus waveforms in myelinated and unmyelinated fibre models. Med. Biol. Eng. Comput. 56(9), 1595–1613 (2018). https://doi.org/10.1007/s11517-018-1799-y

    Article  Google Scholar 

  11. Lee, J., Lee, H., Eizad, A., Yoon, J.: Effects of using TENS as electro-tactile feedback for postural balance under muscle fatigue condition. In: 2021 21st International Conference on Control, Automation and Systems (ICCAS), Piscataway, NJ, pp. 1410–1413. IEEE (2021)

    Google Scholar 

  12. Alonso, E., Giannetti, R., Rodríguez-Morcillo, C., Matanza, J., Muñoz-Frías, J.D.: A novel passive method for the assessment of skin-electrode contact impedance in intraoperative neurophysiological monitoring systems. Sci. Rep. 10(1), 1–11 (2020)

    Google Scholar 

  13. Watkins, R.H., et al.: Optimal delineation of single c-tactile and c-nociceptive afferents in humans by latency slowing. J. Neurophysiol. 177(4), 1608–1614 (2017)

    Article  Google Scholar 

  14. van Boxtel, A.: Skin resistance during square-wave electrical pulses of 1 to 10 mA. Med. Biol. Eng. Comput. 15(6), 679–687 (1977)

    Google Scholar 

  15. Hu, Y., Zhao, Z., Vimal, A., Hoffman, G.: Soft skin texture modulation for social robotics. In: 2018 IEEE International Conference on Soft Robotics, Piscataway, NJ, pp. 182–187. IEEE (2018)

    Google Scholar 

  16. Vargas Luna, J.L., Krenn, M., Cortés Ramírez, J.A., Mayr, W.: Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation. PLoS One 10(5), 1–15 (2015)

    Google Scholar 

  17. Chizmadzhev, Y.A., Indenbom, A.V., Kuzmin, P.I., Galichenko, S.V., Weaver, J.C., Potts, R.O.: Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophys. J. 74, 843–856 (1998)

    Google Scholar 

  18. Yang, H., Meijer, H.G.E., Doll, R.J., Buitenweg, J.R., Van Gils, S.A.: Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation. Biol. Cybern. 109(4), 479–491 (2015)

    Google Scholar 

  19. Kuhn, A., Keller, T., Lawrence, M., Morari, M.: The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 255–262 (2010)

    Google Scholar 

  20. Dahl, C., Kristian, M., Andersen, O.K.: Estimating nerve excitation thresholds to cutaneous electrical stimulation by finite element modeling combined with a stochastic branching nerve fiber model. Med. Biol. Eng. Comput. 49(4), 385–395 (2011)

    Google Scholar 

  21. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Google Scholar 

  22. Kajimoto, H.: Electro-tactile display with tactile primary color approach. In: International Conference on Intelligent Robots & Systems (2004)

    Google Scholar 

  23. Stefano, M., Cordella, F., Loppini, A., Filippi, S., Zollo, L.: A multiscale approach to axon and nerve stimulation modelling: a review. IEEE Trans. Neural Syst. Rehabil. Eng. 9, 397–407 (2021)

    Google Scholar 

  24. Frankenhaeuser, B., Huxley, A.F.: The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data. J. Physiol. 171(2), 302–315 (1964)

    Google Scholar 

  25. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B. Biol. Sci. 221(1222), 87–102 (1984)

    Google Scholar 

  26. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Google Scholar 

  27. Qinghui, Z., Bin, F.: Design of blind image perception system based on edge detection. In: Transducer Microsystem Technologies, pp. 2–4 (2019)

    Google Scholar 

  28. Goganau, I., Sandner, B., Weidner, N., Fouad, K., Blesch, A.: Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury. Exp. Neurol 300, 247–258 (2018)

    Google Scholar 

  29. Saal, H.P., Delhaye, B.P., Rayhaun, B.C., Bensmaia, S.J.: Simulating tactile signals from the whole hand with millisecond precision. Proc. Natl. Acad. Sci. U. S. A 114(28), E5693–E5702 (2017)

    Google Scholar 

  30. Lee, W.W., et al.: A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot 4(32), eaax2198 (2019)

    Google Scholar 

  31. Raspopovic, S., et al.: Bioengineering: restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(22), 222ra19 (2014)

    Google Scholar 

  32. Vallbo, A.B., Johansson, R.S.: Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum. Neurobiol. 3(1), 3–14 (1984)

    Google Scholar 

  33. Greffrath, W., Schwarz, S.T., Büsselberg, D., Treede, R.D.: Heat-induced action potential discharges in nociceptive primary sensory neurons of rats. J. Neurophysiol. 102(1), 424–436 (2009)

    Google Scholar 

  34. Morse, R.P., Allingham, D., Stocks, N.G.: Stimulus-dependent refractoriness in the Frankenhaeuser-Huxley model. J. Theor. Biol. 382, 397–404 (2015)

    Google Scholar 

  35. McIntyre, C., Richardson, A.G., Grill, W.M.: Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J. Neurophysiol. 87(2), 995–1006 (2002)

    Google Scholar 

  36. Zhao, L., Liu, Y., Ma, Z.: Research progress of tactile representation technology. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/J. Comput. Des. Comput. Graph 30(11), 1979–2000 (2018)

    Google Scholar 

  37. Hodgkin, A.L., Huxley, A.F.: Action potentials recorded from inside a nerve fibre. Nature 6, 710–711 (1939)

    Google Scholar 

  38. Chizmadzhev, Y.A., Indenbom, A.V., Kuzmin, P.I., Galichenko, S.V., Weaver, J.C., Potts, R.O.: Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophys. J. 74(2), 843–856 (1998)

    Google Scholar 

  39. Stephens-Fripp, B., Alici, G., Mutlu, R.: A review of non-invasive sensory feedback methods for transradial prosthetic hands. IEEE Access 6, 6878–6899 (2018)

    Google Scholar 

  40. Tamè, L., Tucciarelli, R., Sadibolova, R., Sereno, M.I., Longo, M.R.: Reconstructing neural representations of tactile space. Neuroimage 229, 117730 (2021)

    Google Scholar 

  41. Vance, C.G.T., Rakel, B.A., Dailey, D.L., Sluka, K.A.: Skin impedance is not a factor in transcutaneous electrical nerve stimulation effectiveness. J. Pain Res. 8, 571–580 (2015)

    Google Scholar 

  42. Bütikofer, R., Lawrence, P.D.: Electrocutaneous nerve stimulation-II: stimulus waveform selection. IEEE Trans. Biomed. Eng. 26(2), 69–75 (1979)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 62003222) and the Research Fund of Liaoning Provincial Department of Education (Grant No. LQGD2020018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kairu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Li, K. (2022). A Preliminary Tactile Conduction Model Based on Neural Electrical Properties Analysis. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13456. Springer, Cham. https://doi.org/10.1007/978-3-031-13822-5_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13822-5_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13821-8

  • Online ISBN: 978-3-031-13822-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation