Long-Term Trends of the Offshore Ecosystems

  • Chapter
  • First Online:
Southern Baltic Coastal Systems Analysis

Part of the book series: Ecological Studies ((ECOLSTUD,volume 246))

  • 243 Accesses

Abstract

Long-term data sets are crucial in assessing the state of the marine systems and its ecological processes, to disentangle human-induced and natural changes, short-term fluctuations and long-term trends. A clear trend was observed in phytoplankton composition. The dominant phytoplankton classes in the Baltic Sea, diatoms and dinoflagellates, showed an opposing trend in the spring bloom of the open Baltic Proper. Diatoms decreased and dinoflagellates increased suddenly since the late 1980s. Nearly at the same time, also a shift in the macrozoobenthos occurred in the southern Baltic Sea. The biocenotic shift in the second half of the 1990s for various members of the food chain, both in pelagic and benthic habitats, is apparently a widespread phenomenon, as it has been observed even in the eastern North and Central Atlantic. It represents probably a second ecosystem regime shift within the investigation period, which is less remarkable and less known than the first one, but nevertheless needs attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alheit J, Möllmann C, Dutz J, Kornilovs G, Loewe P, Mohrholz V et al (2005) Synchronous ecological regime shifts in the Central Baltic and the North Sea in the late 1980s. ICES J Mar Sci 62:1205–1215

    Article  Google Scholar 

  • Alheit J, Licandro P, Coombs S, Garcia A, Giráldez A, Santamaria MTG, Slotte A, Tsikliras AC (2014) Reprint of “Atlantic Multidecadal Oscillation (AMO) modulates dynamics of small pelagic fishes and ecosystem regime shifts in the eastern North and Central Atlantic”. J Mar Syst 133:88–102

    Article  Google Scholar 

  • Alvarez-Fernandez S, Lindeboom H, Meesters E (2012) Temporal changes in plankton of the North Sea: community shifts and environmental drivers. Mar Ecol Prog Ser 462:21–38

    Article  Google Scholar 

  • Andersen JH, Carstensen J, Conley DJ, Dromph K, Fleming-Lehtinen V, Gustafsson BG, Josefson AB, Norkko A, Villnäs A, Murray C (2017) Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol Rev 92:135–149

    Article  Google Scholar 

  • BACC (ed) (2015) Second assessment of climate change for the Baltic Sea Basin. Regional climate studies. Springer, Berlin

    Google Scholar 

  • Choi JS, Frank KT, Petrie BD, Leggett WC (2005) Integrated assessment of a large marine ecosystem: a case study of the devolution of the Eastern Scotian Shelf, Canada. In: Gibson RN, RJA A, JDM G (eds) Oceanography and marine biology. CRC Press, Boca Raton, FL, pp 57–78

    Google Scholar 

  • Conley D, Humborg C, Rahm L, Savchuk OP, Wulff F (2002) Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ Sci Technol 36:5315–5320

    Article  CAS  Google Scholar 

  • Dippner JW, Ikauniece A (2001) Long-term zoobenthos variability in the Gulf of Riga in relation to climate variability. J Mar Syst 30:155–164

    Article  Google Scholar 

  • Dippner JW, Möller C, Kröncke I (2014) Loss of persistence of the North Atlantic oscillation and its biological implication. Front Ecol Evol 2(57):1–8

    Google Scholar 

  • Edwards M, Johns DG, Leterme SC, Sverdsen E, Richardson AJ (2006) Regional climate change and harmful algal blooms in the Northeast Atlantic. Limnol Oceanogr 51:820–829

    Article  Google Scholar 

  • European Commission (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008, establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). OJEU 164:19–40

    Google Scholar 

  • Finni T, Kononen K, Olsonen R, Wallström K (2001) The history of cyanobacterial blooms in the Baltic Sea. Ambio 30:172–178

    Article  CAS  Google Scholar 

  • Goffart A, Hecq J-H, Legendre L (2002) Changes in the development of the winter-spring phytoplankton bloom in the Bay of Calvi (NW Mediterranean) over the last two decades: a response to changing climate? Mar Ecol Prog Ser 236:45–60

    Article  Google Scholar 

  • Haase P, Frenzel M, Klotz S, Musche M, Stoll S (2016) The long-term ecological research (LTER) network: relevance, current status, future perspective and examples from marine, freshwater and terrestrial long-term observation. Ecol Indic 65:1–3

    Article  Google Scholar 

  • Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47:103–145

    Article  Google Scholar 

  • HELCOM (2015) Updated fifth Baltic Sea pollution load compilation (PLC-5.5). Baltic Sea Env Proc 145:1–143

    Google Scholar 

  • HELCOM (2017) Monitoring of phytoplankton species composition, abundance and biomass. https://helcom.fi/media/publications/Guidelines-for-monitoring-phytoplankton-species-composition-abundance-and-biomass.pdf. Accessed 12 Mar 2020

  • HELCOM (2018a) HELCOM thematic assessment of eutrophication 2011–2016. Supplementary report to the HELCOM “State of the Baltic Sea” report (pre-publication). https://helcom.fi/media/documents/HELCOM_Thematic-assessment-of-eutrophication-2011-2016_pre-publication.pdf. Accessed 12 Mar 2020

  • HELCOM (2018b) Inputs of hazardous substances to the Baltic Sea. Baltic Sea Env Proc 162:1–27

    Google Scholar 

  • Henriksen P (2009) Long-term changes in phytoplankton in the Kattegat, the Belt Sea, the sound and the western Baltic Sea. J Sea Res 61:114–123

    Article  Google Scholar 

  • Hjerne O, Hajdu S, Larsson U, Downing AS, Winder M (2019) Climate driven changes in timing, composition and magnitude of the Baltic Sea phytoplankton spring bloom. Front Mar Sci 6(482):1–15

    Google Scholar 

  • Jurgensone I, Carstensen J, Ikainiece A, Kalveka B (2011) Long-term changes and controlling factors of phytoplankton community in the Gulf of Riga (Baltic Sea). Estuar Coasts 34:1205–1219

    Article  CAS  Google Scholar 

  • Kahru M, Elmgren R (2014) Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11:3619–3633

    Article  Google Scholar 

  • Kahru M, Elmgren R, Savchuk OP (2016) Changing seasonality of the Baltic Sea. Biogeosciences 13:1009–1018

    Article  Google Scholar 

  • Kahru M, Elmgren R, Kaiser J, Wasmund N, Savchuk O (2020) Cyanobacterial blooms in the Baltic Sea: correlations with environmental factors. Harmful Algae 92(101739):1–6

    Google Scholar 

  • Karlberg M, Wulff A (2013) Impact of temperature and species interaction on filamentous cyanobacteria may be more important than salinity and increased pCO2 levels. Mar Biol 160:2063–2072

    Article  CAS  Google Scholar 

  • Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters – a review. Oceanogr Mar Biol Annu Rev 40:427–289

    Google Scholar 

  • Klais R, Tamminen T, Kremp A, Spilling K, Olli K (2011) Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS One 6(6):e21567

    Article  CAS  Google Scholar 

  • Kotta J, Herkül K, Jaagus J, Kaasik A, Raudsepp U, Alari V, Arula T, Haberman J, Järvet A, Kangur K, Kont A, Kull A, Laanemets J, Maljutenko I, Männik A, Nõges P, Nõges T, Ojaveer H, Peterson A, Reihan A, Rõõm R, Sepp M, Suursaar U, Tamm O, Tamm T, Tõnisson H (2018) Linking atmospheric, terrestrial and aquatic environments: regime shifts in the Estonian climate over the past 50 years. PLoS One 13(12):e0209568

    Article  CAS  Google Scholar 

  • Kröncke I, Reiss H, Dippner JW (2013) Effects of cold winters and regime shifts on macrofauna communities in the southern North Sea. Estuar Coast Shelf Sci 119:79–90

    Article  Google Scholar 

  • Kube J, Warzocha J, Powilleit M (1997) Long-term changes in the benthic communities of the Pomeranian Bay (Southern Baltic Sea). Helgoländer Meeresun 51:399–416

    Article  Google Scholar 

  • Laine A, Sandler H, Andersin A-B, Stigzelius J (1997) Long-term changes of macrozoobenthos in the Eastern Gotland Basin and the Gulf of Finland (Baltic Sea) in relation to the hydrographical regime. J Sea Res 38:135–159

    Article  Google Scholar 

  • Lennartz ST, Lehmann A, Herrford J, Malien F, Hansen H-P, Biester H, Bange HW (2014) Long-term trends at the Boknis Eck time series station (Baltic Sea), 1957–2013: does climate change counteract the decline in eutrophication? Biogeosciences 11:6323–6339

    Article  Google Scholar 

  • Maximov AA (2015) The long-term dynamics and current distribution of macrozoobenthos communities in the eastern Gulf of Finland, Baltic Sea. Russ J Mar Biol 41:300–310

    Article  Google Scholar 

  • Möllmann C, Diekmann R, Müller-Karulis B, Kornilovs G, Plikshs M, Axe P (2009) Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea. Glob Chang Biol 15:1377–1393

    Article  Google Scholar 

  • Murray CJ, Müller-Karulis B, Carstensen J, Conley DJ, Gustafsson B, Andersen JH (2019) Past, present and future eutrophication status of the Baltic Sea. Front Mar Sci 6(2):1–12

    Google Scholar 

  • Öberg J (2017) Cyanobacteria blooms in the Baltic Sea in 2017. HELCOM Baltic Sea environment fact sheets. http://helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacterial-blooms-in-the-baltic-sea/. Accessed 12 Mar 2020

  • Olenina I, Wasmund N, Hajdu S, Jurgensone I, Gromisz S, Kownacka J, Toming K, Vaiciūtė D, Olenin S (2010) Assessing impacts of invasive phytoplankton: the Baltic Sea case. Mar Pollut Bull 60:1691–1700

    Article  CAS  Google Scholar 

  • Olli K, Klais R, Tamminen T, Ptacnik R, Andersen T (2011) Long term changes in the Baltic Sea phytoplankton community. Boreal Environ Res 16(Suppl. A):3–14

    Google Scholar 

  • Olofsson M, Suikkanen S, Kobos J, Wasmund N, Karlson B (2019) Basin-specific changes in filamentous cyanobacteria community composition across four decades in the Baltic Sea. Harmful Algae 91(101685):1–12

    Google Scholar 

  • Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010

    Article  CAS  Google Scholar 

  • Reid PC, de Fatima BM, Svendsen E (2001) A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fish Res 50:163–171

    Article  Google Scholar 

  • Rousi H, Laine AO, Peltonen H et al (2013) Long-term changes in coastal zoobenthos in the northern Baltic Sea: the role of abiotic environmental factors. ICES J Mar Sci 70:440–451

    Article  Google Scholar 

  • Spilling K, Olli K, Lehtoranta J, Kremp A, Tedesco L, Tamelander T, Klais R, Peltonen H, Tamminen T (2018) Shifting diatom-dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling. Front Mar Sci 5(327):1–15

    Google Scholar 

  • Suikkanen S, Pulina S, Engström-Öst J, Lehtiniemi M, Lehtinen S, Brutemark A (2013) Climate change and eutrophication induced shifts in Northern summer plankton communities. PLoS One 8(6):e66475

    Article  CAS  Google Scholar 

  • Vahtera E, Conley D, Gustafson B, Kuosa H, Pitkänen H, Savchuck O, Tamminen T, Viitasalo M, Voss M, Wasmund N, Wulff F (2007) Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36:186–194

    Article  CAS  Google Scholar 

  • Wasmund N (2002) Harmful algal blooms in coastal waters of the South-Eastern Baltic Sea. In: Schernewski G, Schiewer U (eds) Baltic coastal ecosystems. Springer, Berlin, pp 93–116

    Chapter  Google Scholar 

  • Wasmund N (2017) Recruitment of bloom-forming cyanobacteria from winter/spring populations in the Baltic Sea verified by a mesocosm approach. Boreal Environ Res 22:445–455

    Google Scholar 

  • Wasmund N, Siegel H (2008) Phytoplankton. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, NJ, pp 441–481

    Chapter  Google Scholar 

  • Wasmund N, Nausch G, Matthäus W (1998) Phytoplankton spring blooms in the southern Baltic Sea – spatio-temporal development and long-term trends. J Plankton Res 20:1099–1117

    Article  Google Scholar 

  • Wasmund N, Tuimala J, Suikkanen S, Vandepitte L, Kraberg A (2011) Long-term trends in phytoplankton composition in the Western and Central Baltic Sea. J Mar Syst 87:145–159

    Article  Google Scholar 

  • Wasmund N, Nausch G, Feistel R (2013) Silicate consumption: an indicator for long term trends in spring diatom development in the Baltic Sea. J Plankton Res 35:393–406

    Article  CAS  Google Scholar 

  • Wasmund N, Kownacka J, Göbel J, Jaanus A, Johansen M, Jurgensone I, Lehtinen S, Powilleit M (2017) The diatom/dinoflagellate index as an indicator of ecosystem changes in the Baltic Sea. 1. Principle and handling instruction. Front Mar Sci 4(22):1–13

    Google Scholar 

  • Wasmund N, Nausch G, Gerth M, Busch S, Burmeister C, Hansen R, Sadkowiak B (2019) Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change. Mar Ecol Prog Ser 622:1–16

    Article  CAS  Google Scholar 

  • Weijerman M, Lindeboom H, Zuur AF (2005) Regime shifts in marine ecosystems of the North Sea and Wadden Sea. Mar Ecol Prog Ser 298:21–39

    Article  CAS  Google Scholar 

  • Zettler ML, Frankowski J, Röhner M (2006) Long term changes of macrozoobenthos in the Arkona Basin (Baltic Sea). Boreal Environ Res 11:247–260

    Google Scholar 

  • Zettler ML, Friedland R, Gogina M, Darr A (2017) Variation in benthic long-term data of transitional waters: is interpretation more than speculation? PLoS One 12(4):e0175746

    Article  Google Scholar 

  • Zhao HK, Duan XY, Raga GB, Klotzbach PJ (2018) Changes in characteristics of rapidly intensifying western North Pacific tropical cyclones related to climate regime shifts. J Clim 31:8163–8179

    Article  Google Scholar 

Download references

Acknowledgement

Besides the original phytoplankton data from the Leibniz Institute of Baltic Sea Research, also foreign phytoplankton data from the ICES Dataset on Ocean Hydrography (The International Council for the Exploration of the Sea, Copenhagen) were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Zettler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wasmund, N., Zettler, M.L. (2023). Long-Term Trends of the Offshore Ecosystems. In: Schubert, H., Müller, F. (eds) Southern Baltic Coastal Systems Analysis. Ecological Studies, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-031-13682-5_17

Download citation

Publish with us

Policies and ethics

Navigation