Arbuscular Mycorrhizal Fungi in Agroecosystems of East-Central Argentina: Two Agricultural Practices Effects on Taxonomic Groups

  • Chapter
  • First Online:
Mycorrhizal Fungi in South America

Part of the book series: Fungal Biology ((FUNGBIO))

  • 417 Accesses

Abstract

Soil is one of the main reservoirs of biodiversity on earth due to its physical, chemical, and microclimatic heterogeneity; in particular, it harbors a great diversity of microbial communities. Changes in land uses for crop production, mainly those that involve intense agricultural management, threaten soil diversity, compromising global ecosystem functioning and services. In this chapter, we give an up-to-date overview of the effect of two no-till agricultural practices (crop rotation (CR) versus soybean monocrop** (MC)) on arbuscular mycorrhizal fungi (AMF) communities by gathering our data of five geographical locations of East-Central Argentina. The diversity was described considering AMF classification and functioning based on the morphological traits and ontogeny of spores. In addition, we analyzed our data considering three taxonomic categories: morphospecies, families, and orders. Fifty-nine AMF morphospecies were identified throughout the five geographical locations, and CR soils showed the highest AMF richness and spore density and the lowest evenness. Funneliformis mosseae and Glomus sp.4 morphospecies and Glomerales were significant indicators for CR. For MC, Acaulosporaceae and Diversisporales were significant indicators. Soil variables influenced the relative abundance of AMF depending on the family and order. Percentage of organic carbon and nitrogen was positively associated with CR and negatively with MC. Overall, no-till agricultural practices showed differences in their soil AMF communities and chemical properties, and management systems that include practices based on CR promote greater richness of AMF morphospecies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agaras B, Wall LG, Valverde C (2014) Influence of agricultural practices and seasons on the abundance and community structure of culturable pseudomonads in soils under no-till management in Argentina. Plant Soil 382(1–2):117–131

    Article  CAS  Google Scholar 

  • Albertengo J, Belloso C, Giraudo MB, Peiretti R, Permingeat H, Wall L (2013) Conservation Agriculture in Argentina. Conservation agriculture: Global prospects and challenges, 352

    Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil–borne plant pathogens–an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Boivin N, Crowther A (2021) Mobilizing the past to shape a better Anthropocene. Nat Ecol Evol 5(3):273–284

    Article  PubMed  Google Scholar 

  • Calegari A, Araujo AGD, Tiecher T, Bartz MLC, Lanillo RF, dos Santos DR et al (2020) No-till farming systems for sustainable agriculture in South America. In: No-till farming systems for sustainable agriculture. Springer, Cham, pp 533–565

    Chapter  Google Scholar 

  • Carrera LM, Buyer JS, Vinyard B, Abdul-Baki AA, Sikora LJ, Teasdale JR (2007) Effects of cover crops compost and manure amendments on soil microbial community structure in tomato production systems. Appl Soil Ecol 37:247–255

    Article  Google Scholar 

  • Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait–based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Dai Z, Veach AM, Zheng J, Xu J, Schadt CW (2020) Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass. Agric Ecosyst Environ 293:106841

    Article  CAS  Google Scholar 

  • Cofré MN (2014) Comunidades nativas de hongos micorrícicos arbusculares: respuesta frente a distintas prácticas agrícolas y efectos sobre el crecimiento de Glycine max (L.) Merril. Doctorado en Ciencias Biológicas, Universidad Nacional de Córdoba, Córdoba, Argentina, p 142

    Google Scholar 

  • Cofré MN, Ferrari AE, Becerra A, Domínguez L, Wall LG, Urcelay C (2017) Effects of crop** systems under no-till agriculture on arbuscular mycorrhizal fungi in Argentinean Pampas. Soil Use Manag 33:364–378

    Article  Google Scholar 

  • Cofré MN, Soteras F, Rosario Iglesias MD, Velázquez S, Abarca C, Risio L et al (2019) Biodiversity of arbuscular mycorrhizal fungi in South America: a review. In: Pagano M, Lugo MA (eds) Mycorrhizal fungi in South America, pp 49–72

    Chapter  Google Scholar 

  • Cofré N, Becerra AG, Marro N, Domínguez L, Urcelay C (2020) Soybean growth and foliar phosphorus concentration mediated by arbuscular mycorrhizal fungi from soils under different no-till crop** systems. Rhizosphere 16:100254

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Cordeau S (2022) Conservation agriculture and agroecological weed management. Agronomy 12(4):867

    Article  Google Scholar 

  • Davison J, Moora M, Semchenko M, Adenan SB, Ahmed T, Akhmetzhanova AA et al (2021) Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol 231(2):763–776

    Article  CAS  PubMed  Google Scholar 

  • de Pontes JS, Oehl F, Pereira CD, de Toledo Machado CT, Coyne D, da Silva DKA, Maia LC (2017) Diversity of arbuscular mycorrhizal fungi in the Brazilian's Cerrado and in soybean under conservation and conventional tillage. Appl Soil Ecol 117:178–189

    Article  Google Scholar 

  • Derpsch R, Friedrich T, Kassam A, Hongwen L (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agr Biol Eng 3(1):1–25

    Google Scholar 

  • Derpsch R, Franzluebbers AJ, Duiker SW, Reicosky DC, Koeller K, Friedrich T et al (2014) Why do we need to standardize no-tillage research? Soil Till Res 137:16–22

    Article  Google Scholar 

  • Dı́az-Zorita M, Duarte GA, Grove JH (2002) A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil Till Res 65(1):1–18

    Article  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10(2):484–496

    Article  Google Scholar 

  • Figuerola ELM, Guerrero LD, Türkowsky D, Wall LG, Erijman L (2015) Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environ Microbiol 17(3):678–688

    Article  PubMed  Google Scholar 

  • Finckh MR, Wolfe MS (2006) Diversification strategies. In: Cooke BM et al (eds) The epidemiology of plant disease. Springer, pp 269–308

    Chapter  Google Scholar 

  • Grilli G, Urcelay C, Galetto L (2012) Forest fragment size and nutrient availability: complex responses of mycorrhizal fungi in native–exotic hosts. Plant Ecol 213(1):155–165

    Article  Google Scholar 

  • Hall AJ, Rebella CM, Ghersa CM, Culot J Ph (1992) Field-crop Systems of the Pampas. In: Pearson CJ (ed) Field crop ecosystems, Serie: ecosystems of the world. Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  • Hamel C (1996) Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture. Agric Ecosyst Environ 60:197–210

    Article  Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2001) Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93(6):1186–1194

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • IPCC (2019) Climate change and land

    Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Erb A, Oberholzer HR, Šmilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23(8):2118–2135

    Article  CAS  PubMed  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Article  Google Scholar 

  • Jefwa JM, Sinclair R, Maghembe JA (2006) Diversity of glomale mycorrhizal fungi in maize/sesbania intercrops and maize monocrop systems in southern Malawi. Agrofor Syst 67(2):107–114

    Article  Google Scholar 

  • Kabir Z (2005) Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci 85:23–29

    Article  Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi

    Google Scholar 

  • Kladivko EJ (2001) Tillage systems and soil ecology. Soil Till Res 61:61–76

    Article  Google Scholar 

  • Klironomos JN, McCune J, Moutoglis P (2004) Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory. Appl Soil Ecol 26:133–141

    Article  Google Scholar 

  • Koch AM, Antunes PM, Maherali H, Hart MM, Klironomos JN (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol 214:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco L, Fiorilli V, Gutjahr C (2018) Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol 220:1031–1046

    Article  PubMed  Google Scholar 

  • Longo S, Cofré N, Soteras F, Grilli G, Lugo M, Urcelay C (2016) Taxonomic and functional response of arbuscular mycorrhizal fungi to land use change in central Argentina. In: Recent advances on mycorrhizal fungi. Springer, Cham, pp 81–90

    Chapter  Google Scholar 

  • Magurno F, Sasvári Z, Barchi L, Posta K (2014) From monoculture to Norfolk system: how the number of crops in rotation can influence the biodiversity of arbuscular mycorrhiza assemblages in the soil. Open J Ecol 4(17):1080

    Article  Google Scholar 

  • Magurran AE, McGill BJ (2011) In: Magurran AE (ed) Biological diversity: Frontiers in measurement and assessment. Oxford University Press

    Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Malicka M, Magurno F, Posta K, Chmura D, Piotrowska-Seget Z (2021) Differences in the effects of single and mixed species of AMF on the growth and oxidative stress defense in Lolium perenne exposed to hydrocarbons. Ecotox Environ Safe 217:112252

    Article  CAS  Google Scholar 

  • Marro N, Caccia M, Doucet ME, Cabello M, Becerra A, Lax P (2018) Mycorrhizas reduce tomato root penetration by false root–knot nematode Nacobbus aberrans. Appl Soil Ecol 124:262–265

    Article  Google Scholar 

  • Marro N, Cofré N, Grilli G, Alvarez C, Labuckas D, Maestri D, Urcelay C (2020) Soybean yield, protein content and oil quality in response to interaction of arbuscular mycorrhizal fungi and native microbial populations from mono-and rotation-cropped soils. Appl Soil Ecol 152:103575

    Article  Google Scholar 

  • Marro N, Grilli G, Soteras F, Caccia M, Longo S, Cofré N, Borda V, Burni M, Janoušková M, Urcelay C (2022) The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta‐analysis. New Phytol. https://doi.org/10.1111/nph.18102

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: Community Ecology Package. R package version 2.5–7

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microb 69:2816–2824

    Article  CAS  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, Silva GA (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Öpik M, Davison J, Moora M, Pärtel M, Zobel M (2016) Response to comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351(6275):826–826

    Article  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc Roy Soc Lond B: Bio 276:4237–4245

    Google Scholar 

  • Rillig MC, Wright SF, Kimball BA, Pinter PJ, Wall GW, Ottman MJ, Leavitt SW (2001) Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Glob Chang Biol 7(3):333–337

    Article  Google Scholar 

  • Roberts DW (2019) labdsv: ordination and multivariate analysis for ecology package. R package version 2.0–1

    Google Scholar 

  • Robinson-Boyer L, Grzyb I, Jeffries P (2009) Shifting the balance from qualitative to quantitative analysis of arbuscular mycorrhizal communities in field soils. Fungal Ecol 2:1–9

    Article  Google Scholar 

  • Ryan MH, Graham JH (2018) Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol 220(4):1092–1107

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 2nd edn. Academic Press Ltd, London

    Google Scholar 

  • Soteras F, Grilli G, Cofré MN, Marro N, Becerra A (2015) Arbuscular mycorrhizal fungal composition in high montane forests with different disturbance histories in central Argentina. Appl Soil Ecol 85:30–37

    Article  Google Scholar 

  • Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18(1):1–14

    Article  PubMed  Google Scholar 

  • Tiemann LK, Grandy AS, Atkinson EE, Marin‐Spiotta E, McDaniel MD (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett 18(8):761–771

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden MG, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Verbruggen E, Röling WF, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MG (2010) Positive effects of organic farming on below‐ground mutualists: large‐scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186(4):968–979

    Article  CAS  PubMed  Google Scholar 

  • Veresoglou SD, Caruso T, Rillig MC (2013) Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant Soil 368(1):507–518

    Article  CAS  Google Scholar 

  • Viglizzo EF, Pordomingo AJ, Castro MG, Lértora FA (2003) Environmental assessment of agriculture at a regional scale in the Pampas of Argentina. Environ Monit Assess 87(2):169–195

    Article  CAS  PubMed  Google Scholar 

  • Viglizzo EF, Frank FC, Carreno LV, Jobbagy EG, Pereyra H, Clatt J, Pincen D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob Chang Biol 17:959–973

    Article  Google Scholar 

  • Wang H, Wang S, Yu Q, Zhang Y, Wang R, Li J, Wang X (2020) No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. J Environ Manag 261:110261

    Article  CAS  Google Scholar 

  • Zhao X, Liu SL, Pu C, Zhang XQ, Xue JF, Ren YX et al (2017) Crop yields under no-till farming in China: a meta-analysis. Eur J Agron 84:67–75

    Article  Google Scholar 

Download references

Acknowledgments

NC, NM, GG, and FS are staff researchers from CONICET. The authors acknowledge the assistance of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Córdoba both of which provided the research facilities used for this study. This work was financially supported by Fondo para la Investigacion Cientıfica y Tecnologica (FONCyT), PICT 2018-BID 3376, PICT-2020-SERIE A-01188, and PAE-36976-PID53 and PID89 (Agencia Nacional de Promoción Científica y Tecnológica, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelia Cofré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cofré, N., Marro, N., Grilli, G., Soteras, F. (2022). Arbuscular Mycorrhizal Fungi in Agroecosystems of East-Central Argentina: Two Agricultural Practices Effects on Taxonomic Groups. In: Lugo, M.A., Pagano, M.C. (eds) Mycorrhizal Fungi in South America. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-12994-0_10

Download citation

Publish with us

Policies and ethics

Navigation