Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System

  • Chapter
  • First Online:
Glycobiology of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 29))

  • 856 Accesses

Abstract

Gangliosides are a large group of complex lipids found predominantly in the outer layer of the plasma membrane of cells, particularly abundant in nerve endings. Their half-life in the nervous system is short, and their membrane composition and content are strictly connected to their metabolism. The neobiosynthesis of gangliosides starts in the endoplasmic reticulum and is completed in the Golgi apparatus, whereas catabolism occurs primarily in lysosomes. However, the final content of gangliosides in the plasma membrane is defined by other cellular processes.

This chapter will discuss structural changes in the oligosaccharide chains of gangliosides, induced by the activity of plasma membrane-associated glycohydrolases and glycosyltransferases. Some of the plasma membrane enzymes originate from fusion processes between intracellular fractions and the plasma membrane, while, others display a different structure. Several of these plasma membrane enzymes have been characterized and some of them seem to have a specific role in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acquotti D, Fronza G, Riboni L, Sonnino S, Tettamanti G. Ganglioside lactones:1H-NMR determination of the inner ester position of GD1b-ganglioside lactone naturally occurring in human brain or produced by chemical synthesis. Glycoconj J. 1987;V4:119–27.

    Article  Google Scholar 

  • Acquotti D, Cantù L, Ragg E, Sonnino S. Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur J Biochem. 1994;225(1):271–88.

    Article  CAS  PubMed  Google Scholar 

  • Akita H, Miyagi T, Hata K, Kagayama M. Immunohistochemical evidence for the existence of rat cytosolic sialidase in rat skeletal muscles. Histochem Cell Biol. 1997;107(6):495–503.

    Google Scholar 

  • Akiyama H, Kobayashi S, Hirabayashi Y, Murakami-Murofushi K. Cholesterol glucosylation is catalyzed by transglucosylation reaction of β-glucosidase 1. Biochem Biophys Res Commun. 2013;441(4):838–43.

    Article  CAS  PubMed  Google Scholar 

  • Annunziata I, Sano R, d’Azzo A. Mitochondria-associated ER membranes (MAMs) and lysosomal storage diseases. Cell Death Dis. 2018;9(3):328.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arantes RM, Andrews NW. A role for synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J Neurosci. 2006;26(17):4630–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aureli M, Masilamani AP, Illuzzi G, Loberto N, Scandroglio F, Prinetti A, et al. Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett. 2009;583:2469–73.

    Article  CAS  PubMed  Google Scholar 

  • Aureli M, Gritti A, Bassi R, Loberto N, Ricca A, Chigorno V, et al. Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res. 2011a;37:1344–54.

    Article  Google Scholar 

  • Aureli M, Loberto N, Chigorno V, Prinetti A, Sonnino S. Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochem Res. 2011b;36:1636–44.

    Article  CAS  PubMed  Google Scholar 

  • Aureli M, Loberto N, Lanteri P, Chigorno V, Prinetti A, Sonnino S. Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J Neurochem. 2011c;116:891–9.

    Article  CAS  PubMed  Google Scholar 

  • Aureli M, Bassi R, Loberto N, Regis S, Prinetti A, Chigorno V, et al. Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts. J Inherit Metab Dis. 2012a;35:1081–91.

    Article  CAS  PubMed  Google Scholar 

  • Aureli M, Loberto N, Bassi R, Ferraretto A, Perego S, Lanteri P, Chigorno V, Sonnino S, Prinetti A. Plasma membrane-associated glycohydrolases activation by extracellular acidification due to proton exchangers. Neurochem Res. 2012b;37:1296–307.

    Article  CAS  PubMed  Google Scholar 

  • Baron R, Neff L, Louvard D, Courtoy PJ. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol. 1985;101(6):2210–22.

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Riboni L, Sonnino S, Tettamanti G. Lactonization of GD1b ganglioside under acidic conditions. Carbohydr Res. 1989;193:141–6.

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Chigorno V, Fiorilli A, Sonnino S, Tettamanti G. Exogenous gangliosides GD1b and GD1b-lactone, stably associated to rat brain P2 subcellular fraction, modulate differently the process of protein phosphorylation. J Neurochem. 1991;57:1207–11.

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Riboni L, Tettamanti G. Cultured cerebellar granule cells, but not astrocytes, produce an ester of ganglioside GD1b, presumably GD1b monolactone, from exogenous GD1b. Biochem J. 1994;302(Pt 3):937–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman KS, Cherney MM, Mahuran DJ, Tropak M, James MN. Crystal structure of beta-hexosaminidase B in complex with pyrimethamine, a potential pharmacological chaperone. J Med Chem. 2011;54:1421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bearpark TM, Stirling JL. A difference in the specificities of human liver N-acetyl-beta-hexosaminidases A and B detected by their activities towards glycosaminoglycan oligosaccharides. Biochem J. 1978;173:997–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blott EJ, Griffiths GM. Secretory lysosomes. Nat Rev Mol Cell Biol. 2002;3(2):122–31.

    Article  CAS  PubMed  Google Scholar 

  • Bremer EG, Hakomori S. GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: ganglioside may regulate growth factor receptor function. Biochem Biophys Res Commun. 1982;106(3):711–8.

    Article  CAS  PubMed  Google Scholar 

  • Brocca P, Sonnino S. Dynamic and spatial organization of surface gangliosides. Trends Glycosci Glycotechnol. 1997;9:433–45.

    Article  CAS  Google Scholar 

  • Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000;275(23):17221–4.

    Article  CAS  PubMed  Google Scholar 

  • Chambers R. Microdissection studies: I. The visible structure of cell protoplasm and death changes. Am J Physiol. 1917;43:1–12.

    Article  CAS  Google Scholar 

  • Chigorno V, Cardace G, Pitto M, Sonnino S, Ghidoni R, Tettamanti G. A radiometric assay for ganglioside sialidase applied to the determination of the enzyme subcellular location in cultured human fibroblasts. Anal Biochem. 1986;153:283–94.

    Article  CAS  PubMed  Google Scholar 

  • Chigorno V, Negroni E, Nicolini M, Sonnino S. Activity of 3-ketosphinganine synthase during differentiation and aging of neuronal cells in culture. J Lipid Res. 1997a;38:1163–9.

    Article  CAS  PubMed  Google Scholar 

  • Chigorno V, Riva C, Valsecchi M, Nicolini M, Brocca P, Sonnino S. Metabolic processing of gangliosides by human fibroblasts in culture–formation and recycling of separate pools of sphingosine. Eur J Biochem. 1997b;250:661–9.

    Article  CAS  PubMed  Google Scholar 

  • Chigorno V, Giannotta C, Ottico E, Sciannamblo M, Mikulak J, Prinetti A, et al. Sphingolipid uptake by cultured cells: complex aggregates of cell sphingolipids with serum proteins and lipoproteins are rapidly catabolized. J Biol Chem. 2005;280:2668–75.

    Article  CAS  PubMed  Google Scholar 

  • Chigorno V, Sciannamblo M, Mikulak J, Prinetti A, Sonnino S. Efflux of sphingolipids metabolically labeled with [1–3H]sphingosine, l-[3–3H]serine and [9,10–3H]palmitic acid from normal cells in culture. Glycoconj J. 2006;23:159–65.

    Article  CAS  PubMed  Google Scholar 

  • Chiricozzi E, Di Biase E, Maggioni M, Lunghi G, Fazzari M, Pomè DY, Casellato R, Loberto N, Mauri L, Sonnino S. GM1 promotes TrkA-mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. J Neurochem. 2019;149(2):231–41.

    Article  CAS  PubMed  Google Scholar 

  • Chiricozzi E, Lunghi G, Di Biase E, Fazzari M, Sonnino S, Mauri L. GM1 ganglioside is a key factor in maintaining the mammalian neuronal functions avoiding neurodegeneration. Int J Mol Sci. 2020;21(3):868.

    Article  CAS  PubMed Central  Google Scholar 

  • Chiricozzi E, Aureli M, Mauri L, Di Biase E, Lunghi G, Fazzari M, Valsecchi M, Carsana EV, Loberto N, Prinetti A, Sonnino S. Glycosphingolipids. In: Lauc G, Trbojević-Akmačić I, editors. The role of glycosylation in health and disease, Advances in experimental medicine and biology, vol. 1325. Springer; 2021a. p. 61–102.

    Chapter  Google Scholar 

  • Chiricozzi E, Di Biase E, Lunghi G, Fazzari M, Loberto N, Aureli M, Mauri L, Sonnino S. Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconj J. 2021b;38(1):101–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coates PJ. Markers of senescence? J Pathol. 2002;196:371–3.

    Article  PubMed  Google Scholar 

  • Crespo PM, Demichelis VT, Daniotti JL. Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases. J Biol Chem. 2010;285:29179–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J. Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci. 2005;8:606–15.

    Article  PubMed  Google Scholar 

  • Daniels LB, Coyle PJ, Chiao YB, Glew RH, Labow RS. Purification and characterization of a cytosolic broad specificity beta-glucosidase from human liver. J Biol Chem. 1981;256:13004–13.

    Article  CAS  PubMed  Google Scholar 

  • Del Favero E, Brocca P, Motta S, Rondelli V, Sonnino S, Cantu L. Nanoscale structural response of ganglioside-containing aggregates to the interaction with sialidase. J Neurochem. 2011;116:833–9.

    Article  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrie R, Rosenberg A. Anabolic sialosylation of gangliosides in situ in rat brain cortical slices. J Lipid Res. 1989;30:1259–66.

    Article  CAS  PubMed  Google Scholar 

  • Durrie R, Saito M, Rosenberg A. Endogenous glycosphingolipid acceptor specificity of sialosyltransferase systems in intact Golgi membranes, synaptosomes, and synaptic plasma membranes from rat brain. Biochemistry. 1988;27:3759–64.

    Article  CAS  PubMed  Google Scholar 

  • Evans MK, Robbins JH, Ganges MB, Tarone RE, Nairn RS, Bohr VA. Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D, and F. Relation to cellular survival and clinical features. J Biol Chem. 1993;268:4839–47.

    Article  CAS  PubMed  Google Scholar 

  • Ferreirinha F, Quattrini A, Pirozzi M, Valsecchi V, Dina G, Broccoli V, et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest. 2004;113:231–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatta AT, Levine TP. Piecing together the patchwork of contact sites. Trends Cell Biol. 2017;27(3):214–29.

    Article  CAS  PubMed  Google Scholar 

  • Gatti M, Magri S, Di Bella D, Sarto E, Taroni F, Mariotti C, Nanetti L. Spastic paraplegia type 46: novel and recurrent GBA2 gene variants in a compound heterozygous Italian patient with spastic ataxia phenotype. Neurol Sci. 2021;42(11):4741–5.

    Article  PubMed  Google Scholar 

  • Geng YQ, Guan JT, Xu XH, Fu YC. Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochem Biophys Res Commun. 2010;396:866–9.

    Article  CAS  PubMed  Google Scholar 

  • Gulbins E, Grassme H. Ceramide and cell death receptor clustering. Biochim Biophys Acta. 2002;1585:139–45.

    Article  CAS  PubMed  Google Scholar 

  • Hammer MB, Eleuch-Fayache G, Schottlaender LV, Nehdi H, Gibbs JR, Arepalli SK, et al. Mutations in NLGase cause autosomal-recessive cerebellar ataxia with spasticity. Am J Hum Genet. 2013;92:245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T. Molecular cloning of mouse ganglioside sialidase and its increased expression in neuro2a cell differentiation. J Biol Chem. 2000;275:14778.

    Article  CAS  Google Scholar 

  • Hata K, Wada T, Hasegawa A, Kiso M, Miyagi T. Purification and characterization of a membrane-associated ganglioside sialidase from bovine brain. J Biochem (Tokyo). 1998;123:899–905.

    Article  CAS  Google Scholar 

  • Holopainen JM, Angelova MI, Kinnunen PK. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J. 2000;78:830–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Shur BD, Begovac PC. Overexpressing cell surface beta 1.4-galactosyltransferase in PC12 cells increases neurite outgrowth on laminin. J Cell Sci. 1995;108(Pt 2):839–47.

    Article  CAS  PubMed  Google Scholar 

  • Iwamori M, Iwamori Y. Changes in the glycolipid composition and characteristic activation of GM3 synthase in the thymus of mouse after administration of dexamethasone. Glycoconj J. 2005;22:119–26.

    Article  CAS  PubMed  Google Scholar 

  • Jou I, Lee JH, Park SY, Yoon HJ, Joe EH, Park EJ. Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am J Pathol. 2006;168(5):1619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakugawa Y, Wada T, Yamaguchi K, Yamanami H, Ouchi K, Sato I, et al. Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci U S A. 2002;99:10718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalka D, von Reitzenstein C, Kopitz J, Cantz M. The plasma membrane ganglioside sialidase cofractionates with markers of lipid rafts. Biochem Biophys Res Commun. 2001;283:989–93.

    Article  CAS  PubMed  Google Scholar 

  • Kamerling JP, Vliegenthart JF. Identification of O-cetylated N-acylneuraminic acids by mass spectrometry. Carbohydr Res. 1975;41:7–17.

    Article  CAS  PubMed  Google Scholar 

  • Kappagantula S, Andrews MR, Cheah M, Abad-Rodriguez J, Dotti CG, Fawcett JW. Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J Neurosci. 2014;34(7):2477–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolter T, Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol. 2005;21:81–103.

    Article  CAS  PubMed  Google Scholar 

  • Kolter T, Sandhoff K. Sphingolipid metabolism diseases. Biochim Biophys Acta. 2006;1758:2057–79.

    Article  CAS  PubMed  Google Scholar 

  • Kopitz J, von Reitzenstein C, Muhl C, Cantz M. Role of plasma membrane ganglioside sialidase of human neuroblastoma cells in growth control and differentiation. Biochem Biophys Res Commun. 1994;199:1188–93.

    Article  CAS  PubMed  Google Scholar 

  • Kopitz J, Muhl C, Ehemann V, Lehmann C, Cantz M. Effects of cell surface ganglioside sialidase inhibition on growth control and differentiation of human neuroblastoma cells. Eur J Cell Biol. 1997a;73:1–9.

    CAS  PubMed  Google Scholar 

  • Kopitz J, Sinz K, Brossmer R, Cantz M. Partial characterization and enrichment of a membrane-bound sialidase specific for gangliosides from human brain tissue. Eur J Biochem. 1997b;248:527–34.

    Article  CAS  PubMed  Google Scholar 

  • Korschen HG, Yildiz Y, Raju DN, Schonauer S, Bonigk W, Jansen V, et al. The non-lysosomal beta-glucosidase NLGase is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J Biol Chem. 2012;288:3381–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koynova R, Caffrey M. Phases and phase transitions of the sphingolipids. Biochim Biophys Acta. 1995;1255(3):213–36.

    Article  PubMed  Google Scholar 

  • Kytzia HJ, Sandhoff K. Evidence for two different active sites on human beta-hexosaminidase A. Interaction of GM2 activator protein with beta-hexosaminidase A. J Biol Chem. 1985;260:7568–72.

    Article  CAS  PubMed  Google Scholar 

  • Levine T, Loewen C. Inter-organelle membrane contact sites: through a glass, darkly. Curr Opin Cell Biol. 2006;18(4):371–8.

    Article  CAS  PubMed  Google Scholar 

  • Levine TP, Patel S. Signalling at membrane contact sites: two membranes come together to handle second messengers. Curr Opin Cell Biol. 2016;39:77–83.

    Article  CAS  PubMed  Google Scholar 

  • Li RX, Ladisch S. Shedding of human neuroblastoma gangliosides. Biochim Biophys Acta. 1991;1083(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  • Li YT, Li SC. Enzymatic hydrolysis of glycosphingolipids. Anal Biochem. 1999;273:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Liang F, Seyrantepe V, Landry K, Ahmad R, Ahmad A, Stamatos NM, Pshezhetsky AV. Monocyte differentiation up-regulates the expression of the lysosomal sialidase, Neu1, and triggers its targeting to the plasma membrane via major histocompatibility complex class II-positive compartments. J Biol Chem. 2006;281(37):27526–38.

    Article  CAS  PubMed  Google Scholar 

  • Lukong KE, Seyrantepe V, Landry K, Trudel S, Ahmad A, Gahl WA, Lefrancois S, Morales CR, Pshezhetsky AV. Intracellular distribution of lysosomal sialidase is controlled by the internalization signal in its cytoplasmic tail. J Biol Chem. 2001;276(49):46172–81.

    Article  CAS  PubMed  Google Scholar 

  • Lunghi G, Fazzari M, Di Biase E, Mauri L, Sonnino S, Chiricozzi E. The structure of gangliosides hides a code for determining neuronal functions. FEBS Open Bio. 2021;11(12):3193–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malekkou A, Samarani M, Drousiotou A, Votsi C, Sonnino S, Pantzaris M, Chiricozzi E, Zamba-Papanicolaou E, Aureli M, Loberto N, Christodoulou K. Biochemical characterization of the GBA2 c.1780G>C missense mutation in lymphoblastoid cells from patients with spastic ataxia. Int J Mol Sci. 2018;19(10):3099.

    Article  PubMed Central  Google Scholar 

  • Marques AR, Mirzaian M, Akiyama H, Wisse P, Ferraz MJ, Gaspar P, Ghauharali-van der Vlugt K, Meijer R, Giraldo P, Alfonso P, Irún P, Dahl M, Karlsson S, Pavlova EV, Cox TM, Scheij S, Verhoek M, Ottenhoff R, van Roomen CP, Pannu NS, van Eijk M, Dekker N, Boot RG, Overkleeft HS, Blommaart E, Hirabayashi Y, Aerts JM. Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular β-glucosidases. J Lipid Res. 2016;57(3):451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin E, Schule R, Smets K, Rastetter A, Boukhris A, Loureiro JL, et al. Loss of function of glucocerebrosidase NLGase is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet. 2013;92:238–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masserini M, Sonnino S, Ghidoni R, Chigorno V, Tettamanti G. Galactose oxidase action on GM1 ganglioside in micellar and vesicular dispersions. Biochim Biophys Acta. 1982;688(2):333–40.

    Article  CAS  PubMed  Google Scholar 

  • Matern H, Boermans H, Lottspeich F, Matern S. Molecular cloning and expression of human bile acid beta-glucosidase. J Biol Chem. 2001;276:37929–33.

    Article  CAS  PubMed  Google Scholar 

  • Matsui Y, Lombard D, Massarelli R, Mandel P, Dreyfus H. Surface glycosyltransferase activities during development of neuronal cell cultures. J Neurochem. 1986;46:144–50.

    Article  CAS  PubMed  Google Scholar 

  • Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mencarelli S, Cavalieri C, Magini A, Tancini B, Basso L, Lemansky P, et al. Identification of plasma membrane associated mature beta-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett. 2005;579:5501–6.

    Article  CAS  PubMed  Google Scholar 

  • Miyagi T, Sagawa J, Konno K, Handa S, Tsuiki S. Biochemical and immunological studies on two distinct ganglioside-hydrolyzing sialidases from the particulate fraction of rat brain. J Biochem (Tokyo). 1990a;107:787–93.

    Article  CAS  Google Scholar 

  • Miyagi T, Sagawa J, Konno K, Tsuiki S. Immunological discrimination of intralysosomal, cytosolic, and two membrane sialidases present in rat tissues. J Biochem (Tokyo). 1990b;107:794–8.

    Article  CAS  Google Scholar 

  • Miyagi T, Wada T, Iwamatsu A, Hata K, Yoshikawa Y, Tokuyama S, et al. Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J Biol Chem. 1999;274:5004–11.

    Article  CAS  PubMed  Google Scholar 

  • Miyagi T, Wada T, Yamaguchi K. Roles of plasma membrane-associated sialidase NEU3 in human cancers. Biochim Biophys Acta. 2008a;1780:532–7.

    Article  CAS  PubMed  Google Scholar 

  • Miyagi T, Wada T, Yamaguchi K, Shiozaki K, Sato I, Kakugawa Y, et al. Human sialidase as a cancer marker. Proteomics. 2008b;8:3303–11.

    Article  CAS  PubMed  Google Scholar 

  • Miyagi T, Takahashi K, Yamamoto K, Shiozaki K, Yamaguchi K. Biological and pathological roles of ganglioside sialidases. Prog Mol Biol Transl Sci. 2018;156:121–50.

    Article  CAS  PubMed  Google Scholar 

  • Monti E, Preti A, Venerando B, Borsani G. Recent development in mammalian sialidase molecular biology. Neurochem Res. 2002;27:649–63.

    Article  CAS  PubMed  Google Scholar 

  • Nath S, Mandal C, Chatterjee U, Mandal C. Association of cytosolic sialidase Neu2 with plasma membrane enhances Fas-mediated apoptosis by impairing PI3K-Akt/mTOR-mediated pathway in pancreatic cancer cells. Cell Death Dis. 2018;9(2):210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neufeld EB, Cooney AM, Pitha J, Dawidowicz EA, Dwyer NK, Pentchev PG, et al. Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem. 1996;271:21604–13.

    Article  CAS  PubMed  Google Scholar 

  • Oehler C, Kopitz J, Cantz M. Substrate specificity and inhibitor studies of a membrane-bound ganglioside sialidase isolated from human brain tissue. Biol Chem. 2002;383:1735–42.

    Article  CAS  PubMed  Google Scholar 

  • Olayioye MA, Hausser A. Integration of non-vesicular and vesicular transport processes at the Golgi complex by the PKD-CERT network. Biochim Biophys Acta. 2012;1821:1096–103.

    Article  CAS  PubMed  Google Scholar 

  • Papini N, Anastasia L, Tringali C, Croci G, Bresciani R, Yamaguchi K, et al. The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J Biol Chem. 2004;279:16989–95.

    Article  CAS  PubMed  Google Scholar 

  • Preti A, Fiorilli A, Lombardo A, Caimi L, Tettamanti G. Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex. J Neurochem. 1980;35:281–96.

    Article  CAS  PubMed  Google Scholar 

  • Prinetti A, Chigorno V, Tettamanti G, Sonnino S. Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem. 2000a;275:11658–65.

    Article  CAS  PubMed  Google Scholar 

  • Prinetti A, Marano N, Prioni S, Chigorno V, Mauri L, Casellato R, et al. Association of Src-family protein tyrosine kinases with sphingolipids in rat cerebellar granule cells differentiated in culture. Glycoconj J. 2000b;17:223–32.

    Article  CAS  PubMed  Google Scholar 

  • Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, et al. Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells develo** in vitro. J Biol Chem. 2001;276:21136–45.

    Article  CAS  PubMed  Google Scholar 

  • Prinz WA. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J Cell Biol. 2014;205(6):759–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proshin S, Yamaguchi K, Wada T, Miyagi T. Modulation of neuritogenesis by ganglioside-specific sialidase (Neu 3) in human neuroblastoma NB-1 cells. Neurochem Res. 2002;27:841–6.

    Article  CAS  PubMed  Google Scholar 

  • Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO, Schultz SW, Vietri M, Nisi V, Bucci C, Brech A, Johansen T, Stenmark H. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature. 2015;520(7546):234–8.

    Article  CAS  PubMed  Google Scholar 

  • Rao SK, Huynh C, Proux-Gillardeaux V, Galli T, Andrews NW. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J Biol Chem. 2004;279(19):20471–9.

    Article  CAS  PubMed  Google Scholar 

  • Reddy A, Caler EV, Andrews NW. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell. 2001;106:157–69.

    Article  CAS  PubMed  Google Scholar 

  • Riboni L, Sonnino S, Acquotti D, Malesci A, Ghidoni R, Egge H, et al. Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. J Biol Chem. 1986;261:8514–9.

    Article  CAS  PubMed  Google Scholar 

  • Riboni L, Prinetti A, Bassi R, Tettamanti G. Cerebellar granule cells in culture exhibit a ganglioside-sialidase presumably linked to the plasma membrane. FEBS Lett. 1991;287:42–6.

    Article  CAS  PubMed  Google Scholar 

  • Riboni L, Viani P, Bassi R, Prinetti A, Tettamanti G. The role of sphingolipids in the process of signal transduction. Prog Lipid Res. 1997;36(2–3):153–95.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JA, Piddini E, Hasegawa T, Miyagi T, Dotti CG. Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci. 2001;21:8387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman JE. Mechanisms of intracellular protein transport. Nature. 1994;372(6501):55–63.

    Article  CAS  PubMed  Google Scholar 

  • Samarani M, Loberto N, Soldà G, Straniero L, Asselta R, Duga S, Lunghi G, Zucca FA, Mauri L, Ciampa MG, Schiumarini D, Bassi R, Giussani P, Chiricozzi E, Prinetti A, Aureli M, Sonnino S. A lysosome-plasma membrane-sphingolipid axis linking lysosomal storage to cell growth arrest. FASEB J. 2018;32(10):5685–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saqr HE, Pearl DK, Yates AJ. A review and predictive models of ganglioside uptake by biological membranes. J Neurochem. 1993;61:395–411.

    Article  CAS  PubMed  Google Scholar 

  • Schengrund CL, Repman MA. Density-dependent changes in gangliosides and sialidase activity of murine neuroblastoma cells. J Neurochem. 1982;39:940–7.

    Article  CAS  PubMed  Google Scholar 

  • Schengrund CL, Rosenberg A. Intracellular location and properties of bovine brain sialidase. J Biol Chem. 1970;245:6196–200.

    Article  CAS  PubMed  Google Scholar 

  • Schengrund CL, Rosenberg A, Repman MA. Ecto-ganglioside-sialidase activity of herpes simplex virus-transformed hamster embryo fibroblasts. J Cell Biol. 1976;70:555–61.

    Article  CAS  PubMed  Google Scholar 

  • Schneider-Jakob HR, Cantz M. Lysosomal and plasma membrane ganglioside GM3 sialidases of cultured human fibroblasts. Differentiation by detergents and inhibitors. Biol Chem Hoppe Seyler. 1991;372:443–50.

    Article  CAS  PubMed  Google Scholar 

  • Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res. 2000;257:162–71.

    Article  CAS  PubMed  Google Scholar 

  • Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361:1651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  • Soderblom C, Stadler J, Jupille H, Blackstone C, Shupliakov O, Hanna MC. Targeted disruption of the Mast syndrome gene SPG21 in mice impairs hind limb function and alters axon branching in cultured cortical neurons. Neurogenetics. 2010;11:369–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonnino S, Ghidoni R, Chigorno V, Masserini M, Tettamanti G. Recognition by two-dimensional thin-layer chromatography and densitometric quantification of alkali-labile gangliosides from the brain of different animals. Anal Biochem. 1983;128:104–14.

    Article  CAS  PubMed  Google Scholar 

  • Sonnino S, Chigorno V, Valsecchi M, Bassi R, Acquotti D, Cantu L, et al. Relationship between the regulation of membrane enzyme activities by gangliosides and a possible ganglioside segregation in membrane microdomains. Indian J Biochem Biophys. 1990;27:353–8.

    CAS  PubMed  Google Scholar 

  • Sonnino S, Cantu L, Corti M, Acquotti D, Venerando B. Aggregative properties of gangliosides in solution. Chem Phys Lipids. 1994;71:21–45.

    Article  CAS  PubMed  Google Scholar 

  • Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G. Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev. 2006;106:2111–25.

    Article  CAS  PubMed  Google Scholar 

  • Svennerholm L, Månsson JE, Li YT. Isolation and structural determination of a novel ganglioside, a disialosylpentahexosylceramide from human brain. J Biol Chem. 1973;248(2):740–2.

    Article  CAS  PubMed  Google Scholar 

  • Tettamanti G, Morgan IG, Gombos G, Vincendon G, Mandel P. Sub-synaptosomal localization of brain particulate neuraminidose. Brain Res. 1972;47:515–8.

    Article  CAS  PubMed  Google Scholar 

  • Tettamanti G, Preti A, Lombardo A, Bonali F, Zambotti V. Parallelism of subcellular location of major particulate neuraminidase and gangliosides in rabbit brain cortex. Biochim Biophys Acta. 1973;306:466–77.

    Article  CAS  PubMed  Google Scholar 

  • Tettamanti G, Preti A, Lombardo A, Suman T, Zambotti V. Membrane-bound neuraminidase in the brain of different animals: behaviour of the enzyme on endogenous sialo derivatives and rationale for its assay. J Neurochem. 1975;25:451–6.

    Article  CAS  PubMed  Google Scholar 

  • Triggs-Raine B, Mahuran DJ, Gravel RA. Naturally occurring mutations in GM2 gangliosidosis: a compendium. Adv Genet. 2001;44:199–224.

    Article  CAS  PubMed  Google Scholar 

  • Tringali C, Papini N, Fusi P, Croci G, Borsani G, Preti A, Tortora P, Tettamanti G, Venerando B, Monti E. Properties of recombinant human cytosolic sialidase HsNEU2. The enzyme hydrolyzes monomerically dispersed GM1 ganglioside molecules. J Biol Chem. 2004;279:3169–79.

    Article  CAS  PubMed  Google Scholar 

  • Tringali C, Anastasia L, Papini N, Bianchi A, Ronzoni L, Cappellini MD, et al. Modification of sialidase levels and sialoglycoconjugate pattern during erythroid and erytroleukemic cell differentiation. Glycoconj J. 2007a;24:67–79.

    Article  CAS  PubMed  Google Scholar 

  • Tringali C, Lupo B, Anastasia L, Papini N, Monti E, Bresciani R, et al. Expression of sialidase Neu2 in leukemic K562 cells induces apoptosis by impairing Bcr-Abl/Src kinases signaling. J Biol Chem. 2007b;282:14364–72.

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Saito S, Wada T, Yamaguchi K, Satoh M, Arai Y, et al. Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J Biol Chem. 2006;281:7756–64.

    Article  CAS  PubMed  Google Scholar 

  • Valaperta R, Chigorno V, Basso L, Prinetti A, Bresciani R, Preti A, et al. Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J. 2006;20:1227–9.

    Article  CAS  PubMed  Google Scholar 

  • Valaperta R, Valsecchi M, Rocchetta F, Aureli M, Prioni S, Prinetti A, et al. Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. J Neurochem. 2007;100:708–19.

    Article  CAS  PubMed  Google Scholar 

  • Valsecchi M, Palestini P, Chigorno V, Sonnino S, Tettamanti G. Changes in the ganglioside long-chain base composition of rat cerebellar granule cells during differentiation and aging in culture. J Neurochem. 1993;60(1):193–6.

    Article  CAS  PubMed  Google Scholar 

  • Valsecchi M, Palestini P, Chigorno V, Sonnino S. Age-related changes of the ganglioside long-chain base composition in rat cerebellum. Neurochem Int. 1996;28:183–7.

    Article  CAS  PubMed  Google Scholar 

  • Van Weely S, Brandsma M, Strijland A, Tager JM, Aerts JM. Demonstration of the existence of a second, non-lysosomal glucocerebrosidase that is not deficient in Gaucher disease. Biochim Biophys Acta. 1993;1181:55–62.

    Article  PubMed  Google Scholar 

  • Veldman RJ, Klappe K, Hinrichs J, Hummel I, van der Schaaf G, Sietsma H, et al. Altered sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus. FASEB J. 2002;16:1111–3.

    Article  CAS  PubMed  Google Scholar 

  • Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM. Role of ceramide in cellular senescence. J Biol Chem. 1995;270:30701–8.

    Article  CAS  PubMed  Google Scholar 

  • Venerando B, Cestaro B, Fiorilli A, Ghidoni R, Preti A, Tettamanti G. Kinetics of Vibrio cholerae sialidase action on gangliosidic substrates at different supramolecular-organizational levels. Biochem J. 1982;203(3):735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venerando B, Fiorilli A, Croci G, Tringali C, Goi G, Mazzanti L, et al. Acidic and neutral sialidase in the erythrocyte membrane of type 2 diabetic patients. Blood. 2002;99:1064–70.

    Article  CAS  PubMed  Google Scholar 

  • Vilcaes AA, Demichelis VT, Daniotti JL. Trans-activity of plasma membrane-associated ganglioside sialyltransferase in mammalian cells. J Biol Chem. 2011;286(36):31437–46. https://doi.org/10.1074/jbc.M111.257196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradova MV, Michaud L, Mezentsev AV, Lukong KE, El-Alfy M, Morales CR, Potier M, Pshezhetsky AV. Molecular mechanism of lysosomal sialidase deficiency in galactosialidosis involves its rapid degradation. Biochem J. 1998;330(Pt 2):641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Reitzenstein C, Kopitz J, Schuhmann V, Cantz M. Differential functional relevance of a plasma membrane ganglioside sialidase in cholinergic and adrenergic neuroblastoma cell lines. Eur J Biochem. 2001;268:326–33.

    Article  Google Scholar 

  • Wada T, Yoshikawa Y, Tokuyama S, Kuwabara M, Akita H, Miyagi T. Cloning, expression, and chromosomal map** of a human ganglioside sialidase. Biochem Biophys Res Commun. 1999;261:21–7.

    Article  CAS  PubMed  Google Scholar 

  • Wallom KL, Fernández-Suárez ME, Priestman DA, et al. Glycosphingolipid metabolism and its role in ageing and Parkinson’s disease. Glycoconj J. 2022;39(1):39–53.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wu G, Miyagi T, Lu ZH, Ledeen RW. Sialidase occurs in both membranes of the nuclear envelope and hydrolyzes endogenous GD1a. J Neurochem. 2009;111(2):547–54.

    Article  CAS  PubMed  Google Scholar 

  • Xu YH, Barnes S, Sun Y, Grabowski GA. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res. 2010;51:1643–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz Y, Matern H, Thompson B, Allegood JC, Warren RL, Ramirez DM, et al. Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J Clin Invest. 2006;116:2985–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu RK. Development regulation of ganglioside metabolism. Prog Brain Res. 1994;101:31–44.

    Article  CAS  PubMed  Google Scholar 

  • Yu RK, Bieberich E, **a T, Zeng G. Regulation of ganglioside biosynthesis in the nervous system. J Lipid Res. 2004;45:783–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

All the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aureli, M. et al. (2023). Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System. In: Schengrund, CL., Yu, R.K. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-12390-0_11

Download citation

Publish with us

Policies and ethics

Navigation