Curvilinear Magnetic Architectures for Biomedical Engineering

  • Chapter
  • First Online:
Curvilinear Micromagnetism

Abstract

The field of autonomous motile micro/nanomotors that can propel in the liquid environment strongly benefits from the use of magnetic materials, winning in the long-time deterministic locomotion and controllability of such microscopic objects. This chapter reviews the applications of curved magnetic micro/nanostructures to be employed for biomedical and environmental applications. In this respect, after introducing the basic principle and examples of the self-propelled micro-objects, we further focus here on the locomotion of the magnetically decorated microscopic objects and the influence of their shape on the character and pattern of the motion. Namely, we consider the properties of magnetically capped spherical Janus particles, rod-like, tubular, and other asymmetric objects, e.g., microhelices, with magnetic functionalization. Finally, we describe the applications of such magnetic objects in environmental remediation, biosensing and drug delivery, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Peng, Y. Tu, D.A. Wilson, Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46(17), 5289–5310 (2017)

    Article  Google Scholar 

  2. H. Wang, M. Pumera, Fabrication of micro/nanoscale motors. Chem. Rev. 115(16), 8704–8735 (2015)

    Article  Google Scholar 

  3. F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila, A. Nourhani, J. Wang, Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2021)

    Google Scholar 

  4. V. Garcia-Gradilla, S. Sattayasamitsathit, F. Soto, F. Kuralay, C. Yardımcı, D. Wiitala, M. Galarnyk, J. Wang, Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. Small 10(20), 4154–4159 (2014)

    Google Scholar 

  5. B.E.F. de Ávila, P. Angsantikul, J. Li, M. Angel Lopez-Ramirez, D.E. Ramírez-Herrera, S. Thamphiwatana, C. Chen, J. Delezuk, R. Samakapiruk, V. Ramez, M. Obonyo, L. Zhang, J. Wang, Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nature Commun. 8(1), 1–9 (2017)

    Google Scholar 

  6. S. Wang, X. Liu, Y. Wang, D. Xu, C. Liang, J. Guo, X. Ma, Biocompatibility of artificial micro/nanomotors for use in biomedicine. Nanoscale 11(30), 14099–14112 (2019)

    Article  Google Scholar 

  7. X. Ma, K. Hahn, S. Sanchez, Catalytic mesoporous janus nanomotors for active cargo delivery. J. Am. Chem. Soc. 137(15), 4976–4979 (2015)

    Article  Google Scholar 

  8. C. Peters, M. Hoop, S. Pané, B.J. Nelson, C. Hierold, Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests. Adv. Mater. 28(3), 533–538 (2016)

    Article  Google Scholar 

  9. H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit, O.G. Schmidt, Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12(1), 327–337 (2018)

    Article  Google Scholar 

  10. Z. Wu, X. Lin, X. Zou, J. Sun, Q. He, Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl. Mater. Interfaces 7(1), 250–255 (2015)

    Article  Google Scholar 

  11. S.M. Beladi-Mousavi, B. Khezri, L. Krejčová, Z. Heger, Z. Sofer, A.C. Fisher, M. Pumera, Recoverable bismuth-based microrobots: capture, transport, and on-demand release of heavy metals and an anticancer drug in confined spaces. ACS Appl. Mater. Interfaces 11(14), 13359–13369 (2019)

    Article  Google Scholar 

  12. L. Ren, N. Nama, J.M. McNeill, F. Soto, Z. Yan, W. Liu, W. Wang, J. Wang, T.E. Mallouk, 3D steerable, acoustically powered microswimmers for single-particle manipulation. Sci. Adv. 5(10), eaax3084 (2019)

    Google Scholar 

  13. R.P. Feynman, in There’s Plenty of Room at the Bottom (Reinhold, New York, 1961), pp. 282–296

    Google Scholar 

  14. Z. Wu, Y. Chen, D. Mukasa, O.S. Pak, W. Gao, Medical micro/nanorobots in complex media. Chem. Soc. Rev. 49(22), 8088–8112 (2020)

    Article  Google Scholar 

  15. M. Guix, C.C. Mayorga-Martinez, A. Merkoçi, Nano/micromotors in (bio)chemical science applications. Chem. Rev. 114(12), 6285–6322 (2014)

    Article  Google Scholar 

  16. C. Hu, S. Pané, B.J. Nelson, Soft micro- and nanorobotics. Ann. Rev. Control, Robot. Auton. Syst. 1(1), 53–75 (2018)

    Google Scholar 

  17. W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126(41) (2004) 13424–13431

    Google Scholar 

  18. J. Feng, J. Yuan, S.K. Cho, 2-D steering and propelling of acoustic bubble-powered microswimmers. Lab Chip 16(12), 2317–2325 (2016)

    Article  Google Scholar 

  19. M. Kaynak, A. Ozcelik, A. Nourhani, P.E. Lammert, V.H. Crespi, T.J. Huang, Acoustic actuation of bioinspired microswimmers. Lab Chip 17(3), 395–400 (2017)

    Article  Google Scholar 

  20. O. Dincel, T. Ueta, J. Kameoka, Acoustic driven microbubble motor device. Sens. Actuators, A 295, 343–347 (2019)

    Google Scholar 

  21. A.M. Boymelgreen, T. Balli, T. Miloh, G. Yossifon, Active colloids as mobile microelectrodes for unified label-free selective cargo transport. Nat. Commun. 9(1), 1–8 (2018)

    Article  Google Scholar 

  22. A.F. Demirörs, M.T. Akan, E. Poloni, A.R. Studart, Active cargo transport with janus colloidal shuttles using electric and magnetic fields. Soft Matter 14(23), 4741–4749 (2018)

    Article  ADS  Google Scholar 

  23. Y. Wu, A. Fu, G. Yossifon, Active particles as mobile microelectrodes for selective bacteria electroporation and transport. Sci. Adv. 6(5) (2020)

    Google Scholar 

  24. V. Sridhar, B.W. Park, M. Sitti, Light-driven janus hollow mesoporous TiO\(_2\)-Au microswimmers. Adv. Func. Mater. 28(25), 1704902 (2018)

    Article  Google Scholar 

  25. R. Dong, Y. Cai, Y. Yang, W. Gao, B. Ren, Photocatalytic micro/nanomotors: From construction to applications. Acc. Chem. Res. 51(9), 1940–1947 (2018)

    Article  Google Scholar 

  26. Z. Wu, X. Lin, Y. Wu, T. Si, J. Sun, Q. He, Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano 8(6), 6097–6105 (2014)

    Article  Google Scholar 

  27. Y. Zong, J. Liu, R. Liu, H. Guo, M. Yang, Z. Li, K. Chen, An optically driven bistable janus rotor with patterned metal coatings. ACS Nano 9(11), 10844–10851 (2015)

    Article  Google Scholar 

  28. K.E. Peyer, S. Tottori, F. Qiu, L. Zhang, B.J. Nelson, Magnetic helical micromachines. Chem. Eur. J. 19(1), 28–38 (2013)

    Article  Google Scholar 

  29. A.M. Maier, C. Weig, P. Oswald, E. Frey, P. Fischer, T. Liedl, Magnetic propulsion of microswimmers with DNA-based flagellar bundles. Nano Lett. 16(2), 906–910 (2016)

    Article  ADS  Google Scholar 

  30. H. Xu, M. Medina-Sánchez, O.G. Schmidt, Magnetic micromotors for multiple motile sperm cells capture, transport, and enzymatic release. Angew. Chem. 132(35), 15139–15147 (2020)

    Article  ADS  Google Scholar 

  31. H. Zhou, C.C. Mayorga-Martinez, S. Pané, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021)

    Article  Google Scholar 

  32. L. Ren, W. Wang, T.E. Mallouk, Two forces are better than one: combining chemical and acoustic propulsion for enhanced micromotor functionality. Acc. Chem. Res. 51(9), 1948–1956 (2018)

    Article  Google Scholar 

  33. C. Chen, S. Tang, H. Teymourian, E. Karshalev, F. Zhang, J. Li, F. Mou, Y. Liang, J. Guan, J. Wang, Chemical/light-powered hybrid micromotors with “on-the-fly’’ optical brakes. Angewandte Chemie Int. Ed. 57(27), 8110–8114 (2018)

    Article  Google Scholar 

  34. H. Wang, M. Pumera, Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chem. Soc. Rev. 49(10), 3211–3230 (2020)

    Article  Google Scholar 

  35. J. Wang, Nanomachines: Fundamentals and Applications (Wiley, New York, 2013)

    Book  Google Scholar 

  36. D. Pantarotto, W.R. Browne, B.L. Feringa, Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chem. Commun. 13, 1533–1535 (2008)

    Article  Google Scholar 

  37. D. Xu, C. Zhou, C. Zhan, Y. Wang, Y. You, X. Pan, J. Jiao, R. Zhang, Z. Dong, W. Wang, X. Ma, Enzymatic micromotors: Enzymatic micromotors as a mobile photosensitizer platform for highly efficient on-chip targeted antibacteria photodynamic therapy (adv. funct. mater. 17/2019). Adv. Funct. Mater. 29(17), 1970112 (2019)

    Google Scholar 

  38. X. Chen, C. Zhou, W. Wang, Colloidal motors 101: a beginner’s guide to colloidal motor research. Chem. Asian J. 14(14), 2388–2405 (2019)

    Article  Google Scholar 

  39. L. Ricotti, B. Trimmer, A.W. Feinberg, R. Raman, K.K. Parker, R. Bashir, M. Sitti, S. Martel, P. Dario, A. Menciassi, Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2(12) (2017)

    Google Scholar 

  40. L. Baraban, R. Streubel, D. Makarov, L. Han, D. Karnaushenko, O.G. Schmidt, G. Cuniberti, Fuel-free locomotion of janus motors: magnetically induced thermophoresis. ACS Nano 7(2), 1360–1367 (2013)

    Article  Google Scholar 

  41. L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O.G. Schmidt, Catalytic janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6(4), 3383–3389 (2012)

    Article  Google Scholar 

  42. T.R. Kline, W.F. Paxton, T.E. Mallouk, A. Sen, Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 44(5), 744–746 (2005)

    Article  Google Scholar 

  43. T. Li, J. Li, H. Zhang, X. Chang, W. Song, Y. Hu, G. Shao, E. Sandraz, G. Zhang, L. Li, J. Wang, Magnetically propelled fish-like nanoswimmers. Small 12(44), 6098–6105 (2016)

    Article  Google Scholar 

  44. W. Gao, X. Feng, A. Pei, C.R. Kane, R. Tam, C. Hennessy, J. Wang, Bioinspired helical microswimmers based on vascular plants. Nano Lett. 14(1), 305–310 (2014)

    Article  ADS  Google Scholar 

  45. L.O. Mair, B.A. Evans, A. Nacev, P.Y. Stepanov, R. Hilaman, S. Chowdhury, S. Jafari, W. Wang, B. Shapiro, I.N. Weinberg, Magnetic microkayaks: propulsion of microrods precessing near a surface by kilohertz frequency, rotating magnetic fields. Nanoscale 9(10), 3375–3381 (2017)

    Article  Google Scholar 

  46. A.A. Solovev, S. Sanchez, M. Pumera, Y.F. Mei, O.G. Schmidt, Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv. Func. Mater. 20(15), 2430–2435 (2010)

    Article  Google Scholar 

  47. Y. Mei, A.A. Solovev, S. Sanchez, O.G. Schmidt, Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40(5), 2109 (2011)

    Article  Google Scholar 

  48. F. Mushtaq, A. Asani, M. Hoop, X.Z. Chen, D. Ahmed, B.J. Nelson, S. Pané, Highly efficient coaxial TiO\(_2\)-PtPd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies. Adv. Func. Mater. 26(38), 6995–7002 (2016)

    Article  Google Scholar 

  49. K. Yuan, V. de la Asunción-Nadal, B. Jurado-Sánchez, A. Escarpa, 2D nanomaterials wrapped janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion. Chem. Mater. 32(5), 1983–1992 (2020)

    Article  Google Scholar 

  50. L. Zhang, J.J. Abbott, L. Dong, K.E. Peyer, B.E. Kratochvil, H. Zhang, C. Bergeles, B.J. Nelson, Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 9(10), 3663–3667 (2009)

    Article  ADS  Google Scholar 

  51. E.J. Smith, D. Makarov, S. Sanchez, V.M. Fomin, O.G. Schmidt, Magnetic microhelix coil structures. Phys. Rev. Lett. 107(9), 097204 (2011)

    Article  ADS  Google Scholar 

  52. M.A. Zeeshan, S. Pané, S.K. Youn, E. Pellicer, S. Schuerle, J. Sort, S. Fusco, A.M. Lindo, H.G. Park, B.J. Nelson, Graphite coating of iron nanowires for nanorobotic applications: Synthesis, characterization and magnetic wireless manipulation. Adv. Func. Mater. 23(7), 823–831 (2013)

    Article  Google Scholar 

  53. L. Zhang, T. Petit, Y. Lu, B.E. Kratochvil, K.E. Peyer, R. Pei, J. Lou, B.J. Nelson, Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano 4(10), 6228–6234 (2010)

    Article  Google Scholar 

  54. A. Ghosh, P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9(6), 2243–2245 (2009)

    Article  ADS  Google Scholar 

  55. L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D. Bell, B.J. Nelson, Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94(6), 064107 (2009)

    Article  ADS  Google Scholar 

  56. X.Z. Chen, M. Hoop, F. Mushtaq, E. Siringil, C. Hu, B.J. Nelson, S. Pané, Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today 9, 37–48 (2017)

    Article  Google Scholar 

  57. D. Yamamoto, A. Shioi, Self-propelled nano/micromotors with a chemical reaction: underlying physics and strategies of motion control. Kona Powder Part. J. 32, 2–22 (2015)

    Article  Google Scholar 

  58. W. Wang, W. Duan, S. Ahmed, T.E. Mallouk, A. Sen, Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8(5), 531–554 (2013)

    Article  Google Scholar 

  59. J. Li, B. Esteban-Fernández de ávila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017)

    Google Scholar 

  60. E.M. Purcell, Life at low reynolds number. Am. J. Phys. 45(1), 3–11 (1977)

    Article  ADS  Google Scholar 

  61. K.E. Peyer, L. Zhang, B.J. Nelson, Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4), 1259–1272 (2013)

    Article  ADS  Google Scholar 

  62. C. Pauer, O. du Roure, J. Heuvingh, T. Liedl, J. Tavacoli, Programmable design and performance of modular magnetic microswimmers. Adv. Mater. 33(16), 2006237 (2021)

    Article  Google Scholar 

  63. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99(4), 048102 (2007)

    Article  ADS  Google Scholar 

  64. X.Z. Chen, N. Shamsudhin, M. Hoop, R. Pieters, E. Siringil, M.S. Sakar, B.J. Nelson, S. Pané, Magnetoelectric micromachines with wirelessly controlled navigation and functionality. Mater. Horiz. 3(2), 113–118 (2016)

    Article  Google Scholar 

  65. Z. Ye, M. Sitti, Dynamic trap** and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab Chip 14(13), 2177–2182 (2014)

    Article  Google Scholar 

  66. T.O. Tasci, P.S. Herson, K.B. Neeves, D.W.M. Marr, Surface-enabled propulsion and control of colloidal microwheels. Nat. Commun. 7(1), 1–6 (2016)

    Article  Google Scholar 

  67. C.E. Sing, L. Schmid, M.F. Schneider, T. Franke, A. Alexander-Katz, Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc. Natl. Acad. Sci. 107(2), 535–540 (2010)

    Article  ADS  Google Scholar 

  68. T. Li, A. Zhang, G. Shao, M. Wei, B. Guo, G. Zhang, L. Li, W. Wang, Janus microdimer surface walkers propelled by oscillating magnetic fields. Adv. Func. Mater. 28(25), 1706066 (2018)

    Article  Google Scholar 

  69. I.S.M. Khalil, V. Magdanz, S. Sanchez, O.G. Schmidt, S. Misra, Precise localization and control of catalytic janus micromotors using weak magnetic fields. Int. J. Adv. Rob. Syst. 12(1), 2 (2015)

    Article  Google Scholar 

  70. H. Ye, Y. Wang, X. Liu, D. Xu, H. Yuan, H. Sun, S. Wang, X. Ma, Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removals. J. Colloid Interface Sci. 588, 510–521 (2021)

    Article  ADS  Google Scholar 

  71. M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, D. Babič, Self-assembled artificial cilia. Proc. Natl. Acad. Sci. 107(5), 1844–1847 (2010)

    Article  ADS  Google Scholar 

  72. B. Jang, A. Hong, C. Alcantara, G. Chatzipirpiridis, X. Martí, E. Pellicer, J. Sort, Y. Harduf, Y. Or, B.J. Nelson, S. Pané, Programmable locomotion mechanisms of nanowires with semihard magnetic properties near a surface boundary. ACS Appl. Mater. Interfaces 11(3), 3214–3223 (2019)

    Article  Google Scholar 

  73. A.A. Solovev, Y. Mei, E. Bermúdez Ureña, G. Huang, O.G. Schmidt, Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5(14), 1688–1692 (2009)

    Google Scholar 

  74. Y. Mei, G. Huang, A.A. Solovev, E. Bermúdez Ureña, I. Mönch, F. Ding, T. Reindl, R.K.Y. Fu, P.K. Chu, O.G. Schmidt, Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20(21), 4085–4090 (2008)

    Google Scholar 

  75. O.G. Schmidt, K. Eberl, Thin solid films roll up into nanotubes. Nature 410(6825), 168–168 (2001)

    Article  ADS  Google Scholar 

  76. K.M. Manesh, M. Cardona, R. Yuan, M. Clark, D. Kagan, S. Balasubramanian, J. Wang, Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano 4(4), 1799–1804 (2010)

    Article  Google Scholar 

  77. W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 133(31), 11862–11864 (2011)

    Article  Google Scholar 

  78. Z. Wu, Y. Wu, W. He, X. Lin, J. Sun, Q. He, Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem. Int. Ed. 52(27), 7000–7003 (2013)

    Article  Google Scholar 

  79. F. Qiu, B.J. Nelson, Magnetic helical micro- and nanorobots: Toward their biomedical applications. Engineering 1(1), 021–026 (2015)

    Article  Google Scholar 

  80. T. Xu, G. Hwang, N. Andreff, S. Régnier, The rotational propulsion characteristics of scaled-up helical microswimmers with different heads and magnetic positioning, in 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2013), pp 1114–1120

    Google Scholar 

  81. G. Chatzipirpiridis, C. de Marco, E. Pellicer, O. Ergeneman, J. Sort, B.J. Nelson, S. Pané, Template-assisted electroforming of fully semi-hard-magnetic helical microactuators. Adv. Eng. Mater. 20(9), 1800179 (2018)

    Article  Google Scholar 

  82. A.M. Leshansky, K.I. Morozov, B.Y. Rubinstein, Shape-controlled anisotropy of superparamagnetic micro-/nanohelices. Nanoscale 8(29), 14127–14138 (2016)

    Google Scholar 

  83. J. Kim, S.E. Chung, S.E. Choi, H. Lee, J. Kim, S. Kwon, Programming magnetic anisotropy in polymeric microactuators. Nat. Mater. 10(10), 747–752 (2011)

    Article  ADS  Google Scholar 

  84. C. Peters, O. Ergeneman, P.D.W. García, M. Müller, S. Pané, B.J. Nelson, C. Hierold, Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applications. Adv. Func. Mater. 24(33), 5269–5276 (2014)

    Article  Google Scholar 

  85. S. Gervasoni, A. Terzopoulou, C. Franco, A. Veciana, N. Pedrini, J.T. Burri, C. de Marco, E.C. Siringil, X. Chen, B.J. Nelson, J. Puigmartí-Luis, S. Pané, CANDYBOTS: A new generation of 3D-printed sugar-based transient small-scale robots. Adv. Mater. 32(52), 2005652 (2020)

    Article  Google Scholar 

  86. H.W. Huang, F.E. Uslu, P. Katsamba, E. Lauga, M.S. Sakar, B.J. Nelson, Adaptive locomotion of artificial microswimmers. Sci. Adv. 5(1), eaau1532 (2019)

    Google Scholar 

  87. S. Fusco, H.W. Huang, K.E. Peyer, C. Peters, M. Häberli, A. Ulbers, A. Spyrogianni, E. Pellicer, J. Sort, S.E. Pratsinis, B.J. Nelson, M.S. Sakar, S. Pané, Shape-switching microrobots for medical applications: the influence of shape in drug delivery and locomotion. ACS Appl. Mater. Interfaces 7(12), 6803–6811 (2015)

    Article  Google Scholar 

  88. S. Fusco, M.S. Sakar, S. Kennedy, C. Peters, R. Bottani, F. Starsich, A. Mao, G.A. Sotiriou, S. Pané, S.E. Pratsinis, D. Mooney, B.J. Nelson, An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater. 26(6), 952–957 (2014)

    Article  Google Scholar 

  89. Q. Chen, P. Lv, J. Huang, T.Y. Huang, H. Duan, Intelligent shape-morphing micromachines. Research 2021, 1–16 (2021)

    Google Scholar 

  90. H.W. Huang, M.S. Sakar, A.J. Petruska, S. Pané, B.J. Nelson, Soft micromachines with programmable motility and morphology. Nat. Commun. 7(1), 1–10 (2016)

    Article  Google Scholar 

  91. W. Hu, G.Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690), 81–85 (2018)

    Article  ADS  Google Scholar 

  92. J. Cui, T.Y. Huang, Z. Luo, P. Testa, H. Gu, X.Z. Chen, B.J. Nelson, L.J. Heyderman, Nanomagnetic encoding of shape-morphing micromachines. Nature 575(7781), 164–168 (2019)

    Article  ADS  Google Scholar 

  93. Y. Alapan, A.C. Karacakol, S.N. Guzelhan, I. Isik, M. Sitti, Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 6(38), eabc6414 (2020)

    Google Scholar 

  94. E. Karshalev, B. Esteban-Fernández de Ávila, J. Wang, Micromotors for “chemistry-on-the-fly”. J. Am. Chem. Soc. 140(11), 3810–3820 (2018)

    Google Scholar 

  95. A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B.J. Nelson, Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27(19), 2981–2988 (2015)

    Article  Google Scholar 

  96. F. Carpi, C. Pappone, Stereotaxis niobe® magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. Expert Rev. Med. Devices 6(5), 487–498 (2009)

    Article  Google Scholar 

  97. Q. Zhang, R. Dong, Y. Wu, W. Gao, Z. He, B. Ren, Light-driven Au-WO\(_3\)@C janus micromotors for rapid photodegradation of dye pollutants. ACS Appl. Mater. Interfaces 9(5), 4674–4683 (2017)

    Article  Google Scholar 

  98. F. Mushtaq, M. Guerrero, M.S. Sakar, M. Hoop, A.M. Lindo, J. Sort, X. Chen, B.J. Nelson, E. Pellicer, S. Pané, Magnetically driven Bi\(_2\)O\(_3\)/BiOCl-based hybrid microrobots for photocatalytic water remediation. J. Mater. Chem. A 3(47), 23670–23676 (2015)

    Article  Google Scholar 

  99. M. Guix, J. Orozco, M. García, W. Gao, S. Sattayasamitsathit, A. Merkoçi, A. Escarpa, J. Wang, Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6(5), 4445–4451 (2012)

    Article  Google Scholar 

  100. L. Wang, A. Kaeppler, D. Fischer, J. Simmchen, Photocatalytic TiO\(_2\) micromotors for removal of microplastics and suspended matter. ACS Appl. Mater. Interfaces 11(36), 32937–32944 (2019)

    Article  Google Scholar 

  101. D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sánchez, Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 16(4), 2860–2866 (2016)

    Article  ADS  Google Scholar 

  102. A.L. Andrady, Microplastics in the marine environment. Mar. Pollut. Bull. 62(8), 1596–1605 (2011)

    Article  Google Scholar 

  103. S.E. Nelms, J. Barnett, A. Brownlow, N. Davison, R. Deaville, T.S. Galloway, P.K. Lindeque, D. Santillo, B.J. Godley, Microplastics in marine mammals stranded around the british coast: ubiquitous but transitory? Sci. Rep. 9(1), 1–8 (2019)

    Article  Google Scholar 

  104. K. Kim, J. Guo, Z. Liang, D. Fan, Artificial micro/nanomachines for bioapplications: Biochemical delivery and diagnostic sensing. Adv. Func. Mater. 28(25), 1705867 (2018)

    Article  Google Scholar 

  105. H. Wang, M.G. Potroz, J.A. Jackman, B. Khezri, T. Marić, N.J. Cho, M. Pumera, Bioinspired spiky micromotors based on sporopollenin exine capsules. Adv. Func. Mater. 27(32), 1702338 (2017)

    Article  Google Scholar 

  106. L. Kong, J. Guan, M. Pumera, Micro- and nanorobots based sensing and biosensing. Curr. Opin. Electrochem. 10, 174–182 (2018)

    Article  Google Scholar 

  107. H. Ye, Y. Wang, D. Xu, X. Liu, S. Liu, X. Ma, Design and fabrication of micro/nano-motors for environmental and sensing applications. Appl. Mater. Today 23, 101007 (2021)

    Article  Google Scholar 

  108. D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh, G.U. Flechsig, J. Wang, Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131(34), 12082–12083 (2009)

    Article  Google Scholar 

  109. B. Jurado-Sánchez, M. Pacheco, J. Rojo, A. Escarpa, Magnetocatalytic graphene quantum dots janus micromotors for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56(24), 6957–6961 (2017)

    Article  Google Scholar 

  110. Y. Zhang, L. Zhang, L. Yang, C.I. Vong, K.F. Chan, W.K.K. Wu, T.N.Y. Kwong, N.W.S. Lo, M. Ip, S.H. Wong, J.J.Y. Sung, P.W.Y. Chiu, L. Zhang, Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. Sci. Adv. 5(1), eaau9650 (2019)

    Google Scholar 

  111. H. Wang, G. Zhao, M. Pumera, Beyond platinum: Bubble-propelled micromotors based on Ag and MnO\(_2\) catalysts. J. Am. Chem. Soc. 136(7), 2719–2722 (2014)

    Article  Google Scholar 

  112. R. Liu, A. Sen, Autonomous nanomotor based on copper-platinum segmented nanobattery. J. Am. Chem. Soc. 133(50), 20064–20067 (2011)

    Article  Google Scholar 

  113. M. Koleoso, X. Feng, Y. Xue, Q. Li, T. Munshi, X. Chen, Micro/nanoscale magnetic robots for biomedical applications. Materials Today Bio 8, 100085 (2020)

    Article  Google Scholar 

  114. J. Wu, S. Balasubramanian, D. Kagan, K.M. Manesh, S. Campuzano, J. Wang, Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1(1), 1–6 (2010)

    Article  Google Scholar 

  115. G. Chatzipirpiridis, O. Ergeneman, J. Pokki, F. Ullrich, S. Fusco, J.A. Ortega, K.M. Sivaraman, B.J. Nelson, S. Pané, Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. Adv. Healthcare Mater. 4(2), 209–214 (2015)

    Article  Google Scholar 

  116. F. Ullrich, S. Fusco, G. Chatzipirpiridis, S. Pané, B.J. Nelson, Recent progress in magnetically actuated microrobotics for ophthalmic therapies. Europ. Ophthalm. Rev. 08(02), 120 (2014)

    Article  Google Scholar 

  117. X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu, J. Xu, T. Xu, T. Tang, L. Bian, Y.X.J. Wang, K. Kostarelos, L. Zhang, Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017)

    Google Scholar 

  118. D. Zhong, W. Li, Y. Qi, J. He, M. Zhou, Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxia for FL/PA/MR imaging-guided enhanced radio-photodynamic synergetic therapy. Adv. Func. Mater. 30(17), 1910395 (2020)

    Article  Google Scholar 

  119. H. Zhang, Z. Li, C. Gao, X. Fan, Y. Pang, T. Li, Z. Wu, H. **e, Q. He, Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot. 6(52), eaaz9519 (2021)

    Google Scholar 

  120. S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim, S.Y. Kim, S.H., Park, J.H., Jeon, S.W. Kim, C. Moon, B.J. Nelson, J.Y. Kim, S.W. Yu, H. Choi, Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4(30), eaav4317 (2019)

    Google Scholar 

  121. G. Go, S.G. Jeong, A. Yoo, J. Han, B. Kang, S. Kim, K.T. Nguyen, Z. **, C.S. Kim, Y.R. Seo, J.Y. Kang, J.Y., Na, E.K Song, Y. Jeong, J.K. Seon, J.O. Park, E. Choi, Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robot. 5(38), eaay6626 (2020)

    Google Scholar 

  122. B. Wang, K.F. Chan, K. Yuan, Q Wang, X. **a, L. Yang, H. Ko, Y.X.J. Wang, J.J.Y. Sung, P.W.Y. Chiu, L. Zhang, Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 6(52) eabd2813 (2021)

    Google Scholar 

  123. Q. Wang, K.F. Chan, K. Schweizer, X. Du, D. **, S.C.H. Yu, B.J. Nelson, L. Zhang, Ultrasound doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7(9), eabe5914 (2021)

    Google Scholar 

  124. W. Wang, C. Zhou, A journey of nanomotors for targeted cancer therapy: principles, challenges, and a critical review of the state-of-the-art. Adv. Healthcare Mater. 10(2), 2001236 (2021)

    Article  MathSciNet  Google Scholar 

  125. L. Huang, J.L. Moran, W. Wang, Designing chemical micromotors that communicate-a survey of experiments. JCIS Open 2, 100006 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larysa Baraban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baraban, L. et al. (2022). Curvilinear Magnetic Architectures for Biomedical Engineering. In: Makarov, D., Sheka, D.D. (eds) Curvilinear Micromagnetism. Topics in Applied Physics, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-031-09086-8_7

Download citation

Publish with us

Policies and ethics

Navigation