Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

Modern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical even in the case of local tuning, and prohibitive whenever global search is vital (e.g., multi-model tasks, simulation-based miniaturization, circuit re-design within extended ranges of operating frequencies). This work presents a novel approach to a computationally-efficient globalized parameter tuning of microwave components. Our framework employs the response feature technology, along with the inverse surrogate models. The latter permit low-cost exploration of the parameter space, and identification of the most advantageous regions that contain designs featuring performance parameters sufficiently close to the assumed target. The initial parameter vectors rendered in such a way undergo then local, gradient-based tuning. The incorporation of response features allows for constructing the inverse model using small training data sets due to simple (weakly-nonlinear) relationships between the operating parameters and dimensions of the circuit under design. Global optimization of the two microstrip components (a coupler and a power divider) is carried out for the sake of verification. The results demonstrate global search capability, excellent success rate, as well as remarkable efficiency with the average optimization cost of about a hundred of EM simulations of the circuit necessary to conclude the search process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 109.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ma, P., Wei, B., Hong, J., Xu, Z., Cao, B., Jiang, L.: A design method of multimode multiband bandpass filters. IEEE Trans. Microwave Theory Technol. 66(6), 2791–2799 (2018)

    Article  Google Scholar 

  2. Yang, Q., Jiao, Y., Zhang, Z.: Compact multiband bandpass filter using low-pass filter combined with open stub-loaded shorted stub. IEEE Trans. Microwave Theory Technol. 66(4), 1926–1938 (2018)

    Article  Google Scholar 

  3. Hagag, M.F., Zhang, R., Peroulis, D.: High-performance tunable narrowband SIW cavity-based quadrature hybrid coupler. IEEE Microwave Wirel. Comp. Lett. 29(1), 41–43 (2019)

    Article  Google Scholar 

  4. Gómez-García, R., Rosario-De Jesus, J., Psychogiou, D.: Multi-band bandpass and bandstop RF filtering couplers with dynamically-controlled bands. IEEE Access 6, 32321–32327 (2018)

    Article  Google Scholar 

  5. Zhang, R., Peroulis, D.: Mixed lumped and distributed circuits in wideband bandpass filter application for spurious-response suppression. IEEE Microwave Wirel. Comp. Lett. 28(11), 978–980 (2018)

    Article  Google Scholar 

  6. Sheikhi, A., Alipour, A., Mir, A.: Design and fabrication of an ultra-wide stopband compact bandpass filter. IEEE Trans. Circuits Syst. II 67(2), 265–269 (2020)

    Google Scholar 

  7. Firmansyah, T., Alaydrus, M., Wahyu, Y., Rahardjo, E.T., Wibisono, G.: A highly independent multiband bandpass filter using a multi-coupled line stub-SIR with folding structure. IEEE Access 8, 83009–83026 (2020)

    Article  Google Scholar 

  8. Chen, S., Guo, M., Xu, K., Zhao, P., Dong, L., Wang, G.: A frequency synthesizer based microwave permittivity sensor using CMRC structure. IEEE Access 6, 8556–8563 (2018)

    Article  Google Scholar 

  9. Chi, J.G., Kim, Y.J.: A compact wideband millimeter-wave quadrature hybrid coupler using artificial transmission lines on a glass substrate. IEEE Microwave Wirel. Comp. Lett. 30(11), 1037–1040 (2020)

    Article  Google Scholar 

  10. Koziel, S., Abdullah, M.: Machine-learning-powered EM-based framework for efficient and reliable design of low scattering metasurfaces. IEEE Trans. Microwave Theory Technol. 69(4), 2028–2041 (2021)

    Article  Google Scholar 

  11. Rayas-Sanchez, J.E., Koziel, S., Bandler, J.W.: Advanced RF and microwave design optimization: a journey and a vision of future trends. IEEE J. Microwaves 1(1), 481–493 (2021)

    Article  Google Scholar 

  12. **, H., Zhou, Y., Huang, Y.M., Ding, S., Wu, K.: Miniaturized broadband coupler made of slow-wave half-mode substrate integrated waveguide. IEEE Microwave Wirel. Comp. Lett. 27(2), 132–134 (2017)

    Article  Google Scholar 

  13. Li, X., Luk, K.M.: The grey wolf optimizer and its applications in electromagnetics. IEEE Trans. Ant. Prop. 68(3), 2186–2197 (2020)

    Article  Google Scholar 

  14. Luo, X., Yang, B., Qian, H.J.: Adaptive synthesis for resonator-coupled filters based on particle swarm optimization. IEEE Trans. Microwave Theory Technol. 67(2), 712–725 (2019)

    Article  Google Scholar 

  15. Majumder, A., Chatterjee, S., Chatterjee, S., Sinha Chaudhari, S., Poddar, D.R.: Optimization of small-signal model of GaN HEMT by using evolutionary algorithms. IEEE Microwave Wirel. Comp. Lett. 27(4), 362–364 (2017)

    Article  Google Scholar 

  16. Ding, D., Zhang, Q., **a, J., Zhou, A., Yang, L.: Wiggly parallel-coupled line design by using multiobjective evolutionay algorithm. IEEE Microwave Wirel. Comp. Lett. 28(8), 648–650 (2018)

    Article  Google Scholar 

  17. Zhu, D.Z., Werner, P.L., Werner, D.H.: Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm. IEEE Trans. Ant. Propag. 65(12), 7137–7149 (2017)

    Article  Google Scholar 

  18. Greda, L.A., Winterstein, A., Lemes, D.L., Heckler, M.V.T.: Beamsteering and beamsha** using a linear antenna array based on particle swarm optimization. IEEE Access 7, 141562–141573 (2019)

    Article  Google Scholar 

  19. Cui, C., Jiao, Y., Zhang, L.: Synthesis of some low sidelobe linear arrays using hybrid differential evolution algorithm integrated with convex programming. IEEE Ant. Wirel. Propag. Lett. 16, 2444–2448 (2017)

    Article  Google Scholar 

  20. Baumgartner, P., et al.: Multi-objective optimization of Yagi-Uda antenna applying enhanced firefly algorithm with adaptive cost function. IEEE Trans. Magn. 54(3), 8000504 (2018)

    Google Scholar 

  21. Yang, S.H., Kiang, J.F.: Optimization of sparse linear arrays using harmony search algorithms. IEEE Trans. Ant. Prop. 63(11), 4732–4738 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, Z., Cheng, Q.S., Chen, H., Jiang, F.: An efficient hybrid sampling method for neural network-based microwave component modeling and optimization. IEEE Microwave Wirel. Comp. Lett. 30(7), 625–662 (2020)

    Article  Google Scholar 

  23. Van Nechel, E., Ferranti, F., Rolain, Y., Lataire., J.: Model-driven design of microwave filters based on scalable circuit models. IEEE Trans. Microwave Theory Technol. 66(10), 4390–4396 (2018)

    Google Scholar 

  24. Li, Y., **ao, S., Rotaru, M., Sykulski, J.K.: A dual kriging approach with improved points selection algorithm for memory efficient surrogate optimization in electromagnetics. IEEE Trans. Magn. 52(3), 1–4, Article No. 7000504 (2016)

    Google Scholar 

  25. Jacobs, J.P.: Characterization by Gaussian processes of finite substrate size effects on gain patterns of microstrip antennas. IET Microwaves Ant. Prop. 10(11), 1189–1195 (2016)

    Article  Google Scholar 

  26. Ogut, M., Bosch-Lluis, X., Reising, S.C.: A deep learning approach for microwave and millimeter-wave radiometer calibration. IEEE Trans. Geosci. Remote Sens. 57(8), 5344–5355 (2019)

    Article  Google Scholar 

  27. Lim, D.K., Yi, K.P., Jung, S.Y., Jung, H.K., Ro, J.S.: Optimal design of an interior permanent magnet synchronous motor by using a new surrogate-assisted multi-objective optimization. IEEE Trans. Magn. 51(11), 1–4, Article No. 8207504 (2015)

    Google Scholar 

  28. Taran, N., Ionel, D.M., Dorrell, D.G.: Two-level surrogate-assisted differential evolution multi-objective optimization of electric machines using 3-D FEA. IEEE Trans. Magn. 54(11), 1–5, Article No. 8107605 (2018)

    Google Scholar 

  29. Koziel, S., Pietrenko-Dabrowska, A.: Performance-Driven Surrogate Modeling of High-Frequency Structures. Springer, New York (2020). https://doi.org/10.1007/978-3-030-38926-0

    Book  MATH  Google Scholar 

  30. Koziel, S.: Low-cost data-driven surrogate modeling of antenna structures by constrained sampling. IEEE Antennas Wirel. Prop. Lett. 16, 461–464 (2017)

    Article  Google Scholar 

  31. Pietrenko-Dabrowska, A., Koziel, S.: Antenna modeling using variable-fidelity EM simulations and constrained co-kriging. IEEE Access 8(1), 91048–91056 (2020)

    Article  Google Scholar 

  32. Koziel, S.: Fast simulation-driven antenna design using response-feature surrogates. Int. J. RF Microwave CAE 25(5), 394–402 (2015)

    Article  Google Scholar 

  33. Koziel, S., Pietrenko-Dabrowska, A.: Expedited feature-based quasi-global optimization of multi-band antennas with Jacobian variability tracking. IEEE Access 8, 83907–83915 (2020)

    Article  Google Scholar 

  34. Koziel, S., Bandler, J.W.: Reliable microwave modeling by means of variable-fidelity response features. IEEE Trans. Microwave Theory Technol. 63(12), 4247–4254 (2015)

    Article  Google Scholar 

  35. Pietrenko-Dabrowska, A., Koziel, S.: Fast design closure of compact microwave components by means of feature-based metamodels. Electronics 10, 10 (2021)

    Article  Google Scholar 

  36. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization, SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  37. Phani Kumar, K.V., Karthikeyan, S.S.: A novel design of ratrace coupler using defected microstrip structure and folding technique. In: IEEE Applied Electromagnetics Conf. (AEMC), Bhubaneswar, India, pp. 1–2 (2013)

    Google Scholar 

  38. Lin, Z., Chu, Q.-X.: A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines. Prog. Electromagn. Res. 103, 271–284 (2010)

    Article  Google Scholar 

  39. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dassault Systemes, France, for making CST Microwave Studio available. This work is partially supported by the Icelandic Centre for Research (RANNIS) Grant 206606 and by National Science Centre of Poland Grant 2020/37/B/ST7/01448.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Koziel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pietrenko-Dabrowska, A., Koziel, S., Leifsson, L. (2022). Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13352. Springer, Cham. https://doi.org/10.1007/978-3-031-08757-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08757-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08756-1

  • Online ISBN: 978-3-031-08757-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation