Modelling for Radiation Treatment Outcome

  • Chapter
  • First Online:
Image-Guided High-Precision Radiotherapy

Abstract

Modelling of tumour control probability (TCP) and normal tissue complication probability (NTCP) has been continuously used to estimate the therapeutic window of radiotherapy. In recent years, available data on tumour and normal tissue biology and from multimodal imaging have increased substantially, in particular, due to image-guided radiotherapy (see previous chapters of this book) and novel high-throughput sequencing technologies. Accordingly, more complex modelling algorithms are applied and issues of data quality, structured modelling procedures, and model validation need to be addressed. This chapter outlines general modelling principles in the era of big data, provides definitions of classical TCP and NTCP models, and presents two applications of outcome modelling in radiotherapy: the model-based approach for assigning patients to photon or proton-beam therapy and radiomics analyses based on clinical imaging data.

Almut Dutz and Alex Zwanenburg shared first authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holthusen H. Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlentherapie. 1936;57:254–69.

    Google Scholar 

  2. Karger CP. Klinische Strahlenbiologie. In: Schlegel W, Karger CP, Jäkel O, editors. Medizinische Physik: Grundlagen—Bildgebung—Therapie—Technik. Berlin, Heidelberg: Springer; 2018. p. 451–72.

    Google Scholar 

  3. Baumann M, Krause M, Overgaard J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16:234–49. https://doi.org/10.1038/nrc.2016.18.

  4. Ajdari A, Niyazi M, Nicolay NH, et al. Towards optimal stop** in radiation therapy. Radiother Oncol. 2019;134:96–100.

    PubMed  Google Scholar 

  5. Beaton L, Bandula S, Gaze MN, Sharma RA. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer. 2019;120:779–90.

    PubMed  PubMed Central  Google Scholar 

  6. Zwanenburg A, Löck S. Why validation of prognostic models matters? Radiother Oncol. 2018;127:370–3.

    PubMed  Google Scholar 

  7. van Smeden M, de Groot JA, Moons KG, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol. 2016;16:163.

    Google Scholar 

  8. Moons KGM, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1–73.

    PubMed  Google Scholar 

  9. García S, Luengo J, Herrera F. Data preprocessing in data mining. Berlin: Springer International Publishing; 2015.

    Book  Google Scholar 

  10. Box GEP, Cox DR. An analysis of transformations. J R Stat Soc Series B Stat Methodol. 1964;26:211–52.

    Google Scholar 

  11. Yeo I, Johnson RA. A new family of power transformations to improve normality or symmetry. Biometrika. 2000;87:954–9.

    Google Scholar 

  12. Orlhac F, Boughdad S, Philippe C, et al. A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;59:1321–8.

    CAS  PubMed  Google Scholar 

  13. Orlhac F, Frouin F, Nioche C, et al. Validation of a method to compensate multicenter effects affecting CT radiomics. Radiology. 2019;291:53–9.

    PubMed  Google Scholar 

  14. Chatterjee A, Vallières M, Dohan A, et al. Creating robust predictive radiomic models for data from independent institutions using normalization. IEEE Trans Radiat Plasma Med Sci. 2019;3:210–5.

    Google Scholar 

  15. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.

    PubMed  Google Scholar 

  16. Greenland S, Finkle WD. A critical look at methods for handling missing covariates in epidemiologic regression analyses. Am J Epidemiol. 1995;142:1255–64.

    CAS  PubMed  Google Scholar 

  17. Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. Review: a gentle introduction to imputation of missing values. J Clin Epidemiol. 2006;59:1087–91.

    PubMed  Google Scholar 

  18. Luengo J, García S, Herrera F. On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowl Inf Syst. 2012;32:77–108.

    Google Scholar 

  19. He H, Garcia EA. Learning from imbalanced data. In: IEEE Transactions on Knowledge and Data Engineering; 2008. pp 1263–1284.

    Google Scholar 

  20. Krawczyk B. Learning from imbalanced data: open challenges and future directions. Prog Artif Intell. 2016;5:221–32.

    Google Scholar 

  21. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.

    Google Scholar 

  22. He H, Bai Y, Garcia EA, Li S. ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence); 2008. pp 1322–1328.

    Google Scholar 

  23. Kubat M, Holte R, Matwin S. Learning when negative examples abound. In: Machine learning: ECML-97. Berlin, Heidelberg: Springer; 1997. p. 146–53.

    Google Scholar 

  24. O’Brien R, Ishwaran H. A random forests quantile classifier for class imbalanced data. Pattern Recogn. 2019;90:232–49.

    Google Scholar 

  25. Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging. 2019;46:2638–55.

    PubMed  Google Scholar 

  26. Zwanenburg A, Leger S, Agolli L, et al. Assessing robustness of radiomic features by image perturbation. Sci Rep. 2019a;9:614.

    PubMed  PubMed Central  Google Scholar 

  27. Cunningham JP, Ghahramani Z. Linear dimensionality reduction: survey, insights, and generalizations. J Mach Learn Res. 2015;16:2859–900.

    Google Scholar 

  28. Tolosi L, Lengauer T. Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics. 2011;27:1986–94.

    CAS  PubMed  Google Scholar 

  29. Leger S, Zwanenburg A, Pilz K, et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep. 2017;7:13206.

    PubMed  PubMed Central  Google Scholar 

  30. Park MY, Hastie T, Tibshirani R. Averaged gene expressions for regression. Biostatistics. 2007;8:212–27.

    PubMed  Google Scholar 

  31. Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis. Hoboken: John Wiley & Sons; 2009.

    Google Scholar 

  32. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82.

    Google Scholar 

  33. Li J, Cheng K, Wang S, et al. Feature selection: a data perspective. ACM Comput Surv (CSUR). 2018;50:94.

    Google Scholar 

  34. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507–17.

    CAS  PubMed  Google Scholar 

  35. Haury A-C, Gestraud P, Vert J-P. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One. 2011;6:e28210.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalousis A, Prados J, Hilario M. Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inf Syst. 2007;12:95–116.

    Google Scholar 

  37. Abeel T, Helleputte T, Van de Peer Y, et al. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics. 2010;26:392–8.

    CAS  PubMed  Google Scholar 

  38. Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc Series B Stat Methodol. 2010;72:417–73.

    Google Scholar 

  39. Saeys Y, Abeel T, Van de Peer Y. Robust feature selection using ensemble feature selection techniques. In: Daelemans W, Goethals B, Morik K, editors. Machine learning and knowledge discovery in databases. Berlin, Heidelberg: Springer; 2008. p. 313–25.

    Google Scholar 

  40. Wald R, Khoshgoftaar TM, Dittman D, et al. An extensive comparison of feature ranking aggregation techniques in bioinformatics. In: 2012 IEEE 13th International Conference on Information Reuse Integration (IRI); 2012. pp 377–384.

    Google Scholar 

  41. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat Methodol. 1996;58:267–88.

    Google Scholar 

  42. Bühlmann P, Hothorn T. Boosting algorithms: regularization, prediction and model fitting. Stat Sci. 2007;22:477–505.

    Google Scholar 

  43. Hofner B, Boccuto L, Göker M. Controlling false discoveries in high-dimensional situations: boosting with stability selection. BMC Bioinformat. 2015;16:144.

    Google Scholar 

  44. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res. 2014;15:3133–81.

    Google Scholar 

  45. Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn. 2001;45:171–86.

    Google Scholar 

  46. Pencina MJ, D’Agostino RB. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med. 2004;23:2109–23.

    PubMed  Google Scholar 

  47. Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition; 2010. pp 3121–3124.

    Google Scholar 

  48. Uno H, Cai T, Pencina MJ, et al. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011;30:1105–17.

    PubMed  PubMed Central  Google Scholar 

  49. Brier GW. Verification of forecasts expressed in terms of probability. Mon Weather Rev. 1950;78:1–3.

    Google Scholar 

  50. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405:442–51.

    CAS  PubMed  Google Scholar 

  51. Gneiting T, Raftery AE. Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc. 2007;102:359–78.

    CAS  Google Scholar 

  52. Nelder JA, Wedderburn RWM. Generalized linear models. J R Stat Soc Ser A. 1972;135:370–84.

    Google Scholar 

  53. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Google Scholar 

  54. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016. pp 785–794.

    Google Scholar 

  55. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012;13:281–305.

    Google Scholar 

  56. Feurer M, Klein A, Eggensperger K, et al. Efficient and robust automated machine learning. In: Cortes C, Lawrence ND, Lee DD, et al., editors. Advances in neural information processing systems 28. New York: Curran Associates, Inc.; 2015. p. 2962–70.

    Google Scholar 

  57. Hutter F, Hoos HH, Leyton-Brown K. Sequential model-based optimization for general algorithm configuration. In: Coello CAC, editor. Learning and intelligent optimization. Berlin, Heidelberg: Springer; 2011. p. 507–23.

    Google Scholar 

  58. Japkowicz N, Stephen S. The class imbalance problem: a systematic study. Intell Data Anal. 2002;6:429–49.

    Google Scholar 

  59. Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17:230.

    PubMed  PubMed Central  Google Scholar 

  60. Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak. 2008;8:53.

    PubMed  PubMed Central  Google Scholar 

  61. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26:565–74.

    Google Scholar 

  62. Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to interpreting decision curve analysis. Diagn Progn Res. 2019;3:18.

    PubMed  PubMed Central  Google Scholar 

  63. Royston P, Altman DG. External validation of a Cox prognostic model: principles and methods. BMC Med Res Methodol. 2013;13:33.

    PubMed  PubMed Central  Google Scholar 

  64. Mallett S, Royston P, Waters R, et al. Reporting performance of prognostic models in cancer: a review. BMC Med. 2010;8:21.

    PubMed  PubMed Central  Google Scholar 

  65. Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine learning; 2017. ar**v [stat.ML].

    Google Scholar 

  66. Fisher A, Rudin C, Dominici F. All models are wrong, but many are useful: learning a Variable’s importance by studying an entire class of prediction models simultaneously. J Mach Learn Res. 2019;20:1–81.

    CAS  Google Scholar 

  67. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.

    Google Scholar 

  68. Goldstein A, Kapelner A, Bleich J, Pitkin E. Peeking inside the black Box: visualizing statistical learning with plots of individual conditional expectation. J Comput Graph Stat. 2015;24:44–65.

    Google Scholar 

  69. Antoniou M, Kolamunnage-Dona R, Jorgensen AL. Biomarker-guided non-adaptive trial designs in phase II and phase III: a methodological review. J Pers Med. 2017;7:1.

    PubMed  PubMed Central  Google Scholar 

  70. Lin J-A, He P. Reinventing clinical trials: a review of innovative biomarker trial designs in cancer therapies. Br Med Bull. 2015;114:17–27.

    CAS  PubMed  Google Scholar 

  71. Joiner MC. Quantifying cell kill and cell survival. In: Joiner MC, van der Kogel A, editors. Basic clinical radiobiology. 4th ed. Boca Raton: CRC Press; 2009.

    Google Scholar 

  72. Bentzen SM. Dose–response relationships in radiotherapy. In: Joiner MC, van der Kogel A, editors. Basic clinical radiobiology. 4th ed. Boca Raton: CRC Press; 2009.

    Google Scholar 

  73. Warkentin B, Stavrev P, Stavreva N, et al. A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets. J Appl Clin Med Phys. 2004;5:50–63.

    PubMed  PubMed Central  Google Scholar 

  74. Okunieff P, Morgan D, Niemierko A, Suit HD. Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys. 1995;32:1227–37.

    CAS  PubMed  Google Scholar 

  75. Roberts SA, Hendry JH. A realistic closed-form radiobiological model of clinical tumor-control data incorporating intertumor heterogeneity. Int J Radiat Oncol Biol Phys. 1998;41:689–99.

    CAS  PubMed  Google Scholar 

  76. Sanchez-Nieto B, Nahum AE. The delta-TCP concept: a clinically useful measure of tumor control probability. Int J Radiat Oncol Biol Phys. 1999;44:369–80.

    CAS  PubMed  Google Scholar 

  77. Webb S, Nahum AE. A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys Med Biol. 1993;38:653–66.

    CAS  PubMed  Google Scholar 

  78. Gulliford S. Modelling of Normal tissue complication probabilities (NTCP): review of application of machine learning in predicting NTCP. In: El Naqa I, Li R, Murphy MJ, editors. Machine learning in radiation oncology: theory and applications. Cham: Springer International Publishing; 2015. p. 277–310.

    Google Scholar 

  79. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.

    CAS  PubMed  Google Scholar 

  80. Burman C, Kutcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21:123–35.

    CAS  PubMed  Google Scholar 

  81. Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method gerald. Int J Radiat Oncol Biol Phys. 1989;16:1623–30.

    CAS  PubMed  Google Scholar 

  82. Kutcher GJ, Burman C, Brewster L, et al. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys. 1991;21:137–46.

    CAS  PubMed  Google Scholar 

  83. Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985;8:S13–9.

    CAS  PubMed  Google Scholar 

  84. Gulliford SL, Partridge M, Sydes MR, et al. Parameters for the Lyman Kutcher Burman (LKB) model of Normal tissue complication probability (NTCP) for specific rectal complications observed in clinical practise. Radiother Oncol. 2012;102:347–51.

    PubMed  Google Scholar 

  85. Källman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol. 1992;62:249–62.

    PubMed  Google Scholar 

  86. Niemierko A, Goitein M. Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys. 1993;25:135–45.

    CAS  PubMed  Google Scholar 

  87. Niemierko A, Goitein M. Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture. Radiother Oncol. 1991;20:166–76.

    CAS  PubMed  Google Scholar 

  88. Christianen MEMC, Schilstra C, Beetz I, et al. Predictive modelling for swallowing dysfunction after primary (chemo)radiation: results of a prospective observational study. Radiother Oncol. 2012;105:107–14.

    PubMed  Google Scholar 

  89. Cella L, Palma G, Deasy JO, et al. Complication probability models for radiation-induced heart valvular dysfunction: do heart-lung interactions play a role? PLoS One. 2014;9:e111753.

    PubMed  PubMed Central  Google Scholar 

  90. Wijsman R, Dankers F, Troost EGC, et al. Multivariable normal-tissue complication modeling of acute esophageal toxicity in advanced stage non-small cell lung cancer patients treated with intensity-modulated (chemo-)radiotherapy. Radiother Oncol. 2015;117:49–54.

    PubMed  Google Scholar 

  91. Dutz A, Lühr A, Agolli L, et al. Development and validation of NTCP models for acute side-effects resulting from proton beam therapy of brain tumours. Radiother Oncol. 2019;130:164–71.

    PubMed  Google Scholar 

  92. Kierkels RGJ, Korevaar EW, Steenbakkers RJHM, et al. Direct use of multivariable normal tissue complication probability models in treatment plan optimisation for individualised head and neck cancer radiotherapy produces clinically acceptable treatment plans. Radiother Oncol. 2014;112:430–6.

    PubMed  Google Scholar 

  93. Li XA, Alber M, Deasy JO, et al. The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM. Med Phys. 2012;39:1386–409.

    Google Scholar 

  94. Fogliata A, Thompson S, Stravato A, Tomatis S, Scorsetti M, Cozzi L. On the gEUD biological optimization objective for organs at risk in photon optimizer of eclipse treatment planning system. J Appl Clin Med Phys. 2018;19(1):106–14. https://doi.org/10.1002/acm2.12224.

  95. Luxton G, Keall PJ, King CR. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD). Phys Med Biol. 2008;53:23–36.

    PubMed  Google Scholar 

  96. Niemierko A. Biological optimization. In: Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer DE, editors. Image-guided IMRT. Berlin, Heidelberg: Springer; 2006. p. 199–216.

    Google Scholar 

  97. Langendijk JA, Boersma LJ, Rasch CRN, et al. Clinical trial strategies to compare protons with photons. Semin Radiat Oncol. 2018;28:79–87.

    PubMed  Google Scholar 

  98. Widder J, van der Schaaf A, Lambin P, et al. The quest for evidence for proton therapy: model-based approach and precision medicine. Int J Radiat Oncol Biol Phys. 2016;95:30–6.

    PubMed  Google Scholar 

  99. Langendijk JA, Lambin P, De Ruysscher D, et al. Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach. Radiother Oncol. 2013;107:267–73.

    CAS  PubMed  Google Scholar 

  100. Beetz I, Schilstra C, van Luijk P, et al. External validation of three dimensional conformal radiotherapy based NTCP models for patient-rated xerostomia and sticky saliva among patients treated with intensity modulated radiotherapy. Radiother Oncol. 2012b;105:94–100.

    PubMed  Google Scholar 

  101. Troeller A, Yan D, Marina O, et al. Comparison and limitations of DVH-based NTCP models derived from 3D-CRT and IMRT data for prediction of gastrointestinal toxicities in prostate cancer patients by using propensity score matched pair analysis. Int J Radiat Oncol Biol Phys. 2015;91:435–43.

    PubMed  Google Scholar 

  102. Lambin P, Roelofs E, Reymen B, et al. “Rapid learning health care in oncology”—an approach towards decision support systems enabling customised radiotherapy. Radiother Oncol. 2013;109:159–64.

    PubMed  Google Scholar 

  103. Lambin P, Zindler J, Vanneste B, et al. Modern clinical research: how rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncol. 2015;54:1289–300.

    PubMed  Google Scholar 

  104. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21:128–38.

    PubMed  PubMed Central  Google Scholar 

  105. Arts T, Breedveld S, de Jong MA, et al. The impact of treatment accuracy on proton therapy patient selection for oropharyngeal cancer patients. Radiother Oncol. 2017;125:520–5.

    PubMed  Google Scholar 

  106. Wopken K, Bijl HP, van der Schaaf A, et al. Development of a multivariable normal tissue complication probability (NTCP) model for tube feeding dependence after curative radiotherapy/chemo-radiotherapy in head and neck cancer. Radiother Oncol. 2014;113:95–101.

    PubMed  Google Scholar 

  107. Dijkema T, Raaijmakers CPJ, Ten Haken RK, et al. Parotid gland function after radiotherapy: the combined Michigan and Utrecht experience. Int J Radiat Oncol Biol Phys. 2010;78:449–53.

    PubMed  PubMed Central  Google Scholar 

  108. Beetz I, Schilstra C, van der Schaaf A, et al. NTCP models for patient-rated xerostomia and sticky saliva after treatment with intensity modulated radiotherapy for head and neck cancer: the role of dosimetric and clinical factors. Radiother Oncol. 2012a;105:101–6.

    PubMed  Google Scholar 

  109. Morin O, Vallières M, Jochems A, et al. A deep look into the future of quantitative imaging in oncology: a statement of working principles and proposal for change. Int J Radiat Oncol Biol Phys. 2018;102:1074–82.

    PubMed  Google Scholar 

  110. Hatt M, Le Rest CC, Tixier F, et al. Radiomics: data are also images. J Nucl Med. 2019;60:38S–44S.

    PubMed  Google Scholar 

  111. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.

    PubMed  Google Scholar 

  112. van Dijk LV, Brouwer CL, van der Schaaf A, et al. CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva. Radiother Oncol. 2017;122:185–91.

    PubMed  Google Scholar 

  113. van Dijk LV, Langendijk JA, Zhai T-T, et al. Delta-radiomics features during radiotherapy improve the prediction of late xerostomia. Sci Rep. 2019;9:12483.

    PubMed  PubMed Central  Google Scholar 

  114. van Dijk LV, Noordzij W, Brouwer CL, et al. 18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia. Radiother Oncol. 2018a;126:89–95.

    PubMed  Google Scholar 

  115. van Dijk LV, Thor M, Steenbakkers RJHM, et al. Parotid gland fat related magnetic resonance image biomarkers improve prediction of late radiation-induced xerostomia. Radiother Oncol. 2018b;128:459–66.

    PubMed  PubMed Central  Google Scholar 

  116. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017;44:1050–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Depeursinge A, Al-Kadi OS, Ross Mitchell J. Biomedical texture analysis: fundamentals, tools and challenges. Cambridge: Academic Press; 2017.

    Google Scholar 

  118. Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenoty**. Radiology. 2020;295:328–38.

    PubMed  Google Scholar 

  119. Carvalho S, Leijenaar RTH, Troost EGC, et al. Early variation of FDG-PET radiomics features in NSCLC is related to overall survival-the “delta radiomics” concept. Radiother Oncol. 2016;118:S20–1.

    Google Scholar 

  120. Cunliffe A, Armato SG 3rd, Castillo R, et al. Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys. 2015;91:1048–56.

    PubMed  PubMed Central  Google Scholar 

  121. Leger S, Zwanenburg A, Pilz K, et al. CT imaging during treatment improves radiomic models for patients with locally advanced head and neck cancer. Radiother Oncol. 2019;130:10–7.

    PubMed  Google Scholar 

  122. Zwanenburg A, Leger S, Starke S, Löck S. Medical image radiomics processor. Version 1.0URL; 2019b. https://github.com/oncoray/mirp

  123. Jochems A, Deist TM, van Soest J, et al. Distributed learning: develo** a predictive model based on data from multiple hospitals without data leaving the hospital—a real life proof of concept. Radiother Oncol. 2016;121:459–67.

    PubMed  Google Scholar 

  124. Wilkinson MD, Dumontier M, Aalbersberg IJJ, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3:160018.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Löck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutz, A., Zwanenburg, A., Langendijk, J.A., Löck, S. (2022). Modelling for Radiation Treatment Outcome. In: Troost, E.G.C. (eds) Image-Guided High-Precision Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-031-08601-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08601-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08600-7

  • Online ISBN: 978-3-031-08601-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation