Arsenic Control for Hazard Risk Reduction

  • Chapter
  • First Online:
Disaster Risk Reduction for Resilience

Abstract

Arsenic (As) is natural element, which can spread in the environment to a great extent due to human activities. Exposure to As in drinking water and soils has become a global and regional concern. Mining, metal smelting and processing, cultivation of plants, and disposing of wastes from different sources are the main anthropogenic sources of As in the environment. Consumption of arsenic-contaminated water and food are significant exposure pathways for As. Poisoning by As has proven both carcinogenic and noncarcinogenic impacts on human health. New technologies are being developed for As treatment in contaminated water and soil. At this chapter, we discuss geochemical behavior of As in the environment, human health risks of As, and As hazard controls and reduction methods. Several case studies including those performed by authors of this chapter are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, A., Cornelissen, E., van de Wetering, S., van Dijk, T., van Genuchten, C., Bundschuh, J., van der Wal, A., & Bhattacharya, P. (2018). Arsenite removal in groundwater treatment plants by sequential permanganate – Ferric treatment. Journal of Water Process Engineering, 26, 221–229.

    Article  Google Scholar 

  • Ahmad, A., Heijnen, L., de Waal, L., Battaglia-Brunet, F., Oorthuizen, W., Pieterse, B., Bhattacharya, P., & van der Wal, A. (2020a). Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production. Water Research, 178, 115826.

    Google Scholar 

  • Ahmad, A., Rutten, S., de Waal, L., Vollaard, P., van Genuchten, C., Bruning, H., Cornelissen, E., van der Wal, A. (2020b). Mechanisms of arsenate removal and membrane fouling in ferric based coprecipitation–low pressure membrane filtration systems. Separation and Purification Technology, 241, 116644.

    Google Scholar 

  • Ahmad, A., Rutten, S., de Waal, L., Vollaard, P., van Genuchten, C., Bruning, H., Cornelissen, E., & van der Wal, A. (2020c). Mechanisms of arsenate removal and membrane fouling in ferric based coprecipitation – Low pressure membrane filtration systems. Separation and Purification Technology, 241, 116644. https://doi.org/10.1016/j.seppur.2020.116644

    Article  Google Scholar 

  • Ahmad, A., Rutten, S., Eikelboom, M., de Waal, L., Bruning, H., Bhattacharya, P., & van der Wal, A. (2020d). Impact of phosphate, silicate and natural organic matter on the size of Fe (III) precipitates and arsenate co-precipitation efficiency in calcium containing water. Separation and Purification Technology, 235, 116117.

    Article  Google Scholar 

  • Ahmad, A., van der Wens, P., Baken, K., de Waal, L., Bhattacharya, P., & Stuyfzand, P. (2020e). Arsenic reduction to <1 μg/L in Dutch drinking water. Environment International. https://doi.org/10.1016/j.envint.2019.105253

  • Alam, M. G. M., Allinson, G., Stagnitti, F., Tanaka, A., & Westbrooke, M. (2002). Arsenic contamination in Bangladesh groundwater: A major environmental and social disaster. International Journal of Environmental Health Research, 12, 235–253. https://doi.org/10.1080/0960312021000000998

    Article  Google Scholar 

  • Alka, S., Shahir, S., Ibrahim, N., Chai, T. T., Mohd Bahari, Z., & Abd Manan, F. (2020a). The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environmental Technology and Innovation. https://doi.org/10.1016/j.eti.2020.100602

  • Alka, S., Shahir, S., Ibrahim, N., Ndejiko, M. J., Vo, D.-V. N., & Abd Manan, F. (2020b). Arsenic removal technologies and future trends: A mini review. Journal of Cleaner Production, 123805.

    Google Scholar 

  • Amend, J. P., Saltikov, C., Lu, G.-S., & Hernandez, J. (2014). Microbial arsenic metabolism and reaction energetics. Reviews in Mineralogy and Geochemistry, 79, 391–433. https://doi.org/10.2138/rmg.2014.79.7

    Article  Google Scholar 

  • Asad, S. A., Farooq, M., Afzal, A., & West, H. (2019). Integrated phytobial heavy metal remediation strategies for a sustainable clean environment – A review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.11.021

  • Balasubramanian, N., Kojima, T., & Srinivasakannan, C. (2009). Arsenic removal through electrocoagulation: Kinetic and statistical modeling. Chemical Engineering Journal, 155, 76–82. https://doi.org/10.1016/j.cej.2009.06.038

    Article  Google Scholar 

  • Bandara, U. G. C., Diyabalanage, S., Hanke, C., van Geldern, R., Barth, J. A. C., & Chandrajith, R. (2018). Arsenic-rich shallow groundwater in sandy aquifer systems buffered by rising carbonate waters: A geochemical case study from Mannar Island, Sri Lanka. Science of the Total Environment, 633, 1352–1359. https://doi.org/10.1016/j.scitotenv.2018.03.226

    Article  Google Scholar 

  • Banerjee, A., Hazra, A., Das, S., & Sengupta, C. (2020). Groundwater inhabited bacillus and Paenibacillus strains alleviate arsenic-induced phytotoxicity of rice plant. International Journal of Phytoremediation, 22, 1048–1058.

    Article  Google Scholar 

  • Bretzler A., & Johnson C. A. (2015). The Geogenic Contamination Handbook: Addressing arsenic and fluoride in drinking water. Applied Geochemistry, 63, 642–646. S0883292715300330. https://doi.org/10.1016/j.apgeochem.2015.08.016

  • Bhattacharya, S., Gupta, K., Debnath, S., Ghosh, U. C., Chattopadhyay, D., & Mukhopadhyay, A. (2012). Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: A review of the perspectives for environmental health. Toxicological and Environmental Chemistry, 94, 429–441.

    Article  Google Scholar 

  • Bhowmick, S., Nath, B., Halder, D., Biswas, A., Majumder, S., Mondal, P., Chakraborty, S., Nriagu, J., Bhattacharya, P., Iglesias, M., Roman-Ross, G., Guha Mazumder, D., Bundschuh, J., Bhattacharya, P., Sracek, O., Mellano, M. F., Ramírez, A. E., Storniolo A. del R, Martín, R. A., … Jean, J.-S. (2011). Arsenic removal from groundwater of the Chaco-Pampean plain (Argentina) using natural geological materials as adsorbents. Journal of Environmental Science and Health, Part A Environmental Science, 46(11), 1297–1310.

    Article  Google Scholar 

  • Boussouga, Y. A., Frey, H., & Schäfer, A. I. (2021). Removal of arsenic(V) by nanofiltration: Impact of water salinity, pH and organic matter. Journal of Membrane Science, 618, 118631. https://doi.org/10.1016/j.memsci.2020.118631

    Article  Google Scholar 

  • Bowell, R. J., Alpers, C. N., Jamieson, H. E., Nordstrom, D. K., & Majzlan, J. (2014). The environmental geochemistry of arsenic – An overview. Reviews in Mineralogy and Geochemistry, 79, 1–16. https://doi.org/10.2138/rmg.2014.79.1

    Article  Google Scholar 

  • Bowell, R. J., & Craw, D. (2014). The Management of Arsenic in the mining industry. Reviews in Mineralogy and Geochemistry, 79, 507–532. https://doi.org/10.2138/rmg.2014.79.11

    Article  Google Scholar 

  • Bundschuh, J., & Chatterjee, D. (2013). Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: Understanding geogenic and anthropogenic influences. Journal of Hazardous Materials, 262, 915–923. https://doi.org/10.1016/j.jhazmat.2012.07.014

    Article  Google Scholar 

  • Campbell, K. M., & Nordstrom, D. K. (2014). Arsenic speciation and sorption in natural environments. Reviews in Mineralogy and Geochemistry, 79, 185–216.

    Article  Google Scholar 

  • Can, B. Z., Boncukcuoglu, R., Yilmaz, A. E., & Fil, B. A. (2014). Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes. Journal of Environmental Health Science and Engineering, 12, 1–10.

    Article  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Das, B., Murrill, M., Dey, S., Mukherjee, S. C., Dhar, R. K., Biswas, B. K., Chowdhury, U. K., & Roy, S. (2010). Status of groundwater arsenic contamination in Bangladesh: A 14-year study report. Water Research, 44, 5789–5802.

    Article  Google Scholar 

  • Charlet, L., & Polya, D. A. (2006). Arsenic in shallow, reducing Groundwaters in southern Asia: An environmental health disaster. Elements, 2, 91–96. https://doi.org/10.2113/gselements.2.2.91

    Article  Google Scholar 

  • Chen, G., Shi, H., Tao, J., Chen, L., Liu, Y., Lei, G., Liu, X., & Smol, J. P. (2015). Industrial arsenic contamination causes catastrophic changes in freshwater ecosystems. Scientific Reports, 5, 1–7.

    Article  Google Scholar 

  • Chen, J., Qian, H., Gao, Y., & Li, X. (2018). Human health risk assessment of contaminants in drinking water based on triangular fuzzy numbers approach in Yinchuan City, Northwest China. Health Expo, 10, 155–166.

    Article  Google Scholar 

  • Chen, P. C., Su, H. J., & Ma, H. W. (2013). Trace anthropogenic arsenic in Taiwan-substance flow analysis as a tool for environmental risk management. Journal of Cleaner Production, 53, 13–21. https://doi.org/10.1016/j.jclepro.2011.10.041

    Article  Google Scholar 

  • Chen, X., Wang, J., Hayat, K., Zhang, D., & Zhou, P. (2021). Small structures with big impact: Multi-walled carbon nanotubes enhanced remediation efficiency in hyperaccumulator Solanum nigrum L. under cadmium and arsenic stress. Chemosphere, 276, 130130. https://doi.org/10.1016/j.chemosphere.2021.130130

    Article  Google Scholar 

  • Choong, T. S. Y., Chuah, T. G., Robiah, Y., Gregory Koay, F. L., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination, 217, 139–166. https://doi.org/10.1016/j.desal.2007.01.015

    Article  Google Scholar 

  • Clancy, T. M., Hayes, K. F., & Raskin, L. (2013). Arsenic waste management: A critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water. Environmental Science & Technology, 47, 10799–10812.

    Article  Google Scholar 

  • Cornejo, L., Lienqueo, H., Arenas, M., Acarapi, J., Contreras, D., Yáñez, J., & Mansilla, H. D. (2008). In field arsenic removal from natural water by zero-valent iron assisted by solar radiation. Environmental Pollution, 156, 827–831. https://doi.org/10.1016/j.envpol.2008.05.022

    Article  Google Scholar 

  • Coudert, L., Bondu, R., Rakotonimaro, T. V., Rosa, E., Guittonny, M., & Neculita, C. M. (2020). Treatment of As-rich mine effluents and produced residues stability: Current knowledge and research priorities for gold mining. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2019.121920

  • DalCorso, G., Fasani, E., Manara, A., Visioli, G., & Furini, A. (2019). Heavy metal pollutions: State of the art and innovation in phytoremediation. International Journal of Molecular Sciences, 20, 3412.

    Article  Google Scholar 

  • Das, A., & Banerjee, A. (2020). Co-relation of arsenic contamination with water table fluctuations and groundwater flow dynamics: A case study in a part of Bengal basin. International Journal of Environmental Analytical Chemistry, 100, 1–24.

    Google Scholar 

  • De Capitani, E. M. (2011). Arsenic toxicology – A review. In Arsenic: Natural and Anthropogenic (pp. 27–37). CRC Press.

    Chapter  Google Scholar 

  • Demirbas, E., Kobya, M., Oncel, M. S., Şık, E., & Goren, A. Y. (2019). Arsenite removal from groundwater in a batch electrocoagulation process: Optimization through response surface methodology. Separation Science and Technology, 54, 775–785.

    Article  Google Scholar 

  • EFSA Panel on Contaminants in the Food Chain (CONTAM). (2009). Scientific opinion on arsenic in food. EFSA Journal, 7, 1351.

    Article  Google Scholar 

  • Erickson, M. L., Swanner, E. D., Ziegler, B. A., & Havig, J. R. (2021). Months-long spike in aqueous arsenic following domestic well installation and disinfection: Short- and long-term drinking water quality implications. Journal of Hazardous Materials, 125409. https://doi.org/10.1016/j.jhazmat.2021.125409

  • Eslamian, S., & Eslamian, F. (2021). Disaster risk reduction for resilience: New frameworks for building resilience to disasters. Springer Nature Switzerland. 487 Pages.

    Google Scholar 

  • Favas, P. J. C., Pratas, J., Varun, M., D’Souza, R., & Paul, M. S. (2014). Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. Environmental Risk Assessment of Soil Contamination, 17, 485–517.

    Google Scholar 

  • Figoli, A., Fuoco, I., Apollaro, C., Chabane, M., Mancuso, R., Gabriele, B., De Rosa, R., Vespasiano, G., Barca, D., & Criscuoli, A. (2020). Arsenic-contaminated groundwaters remediation by nanofiltration. Separation and Purification Technology, 238, 116461. https://doi.org/10.1016/j.seppur.2019.116461

    Article  Google Scholar 

  • Gomes, J. A. G., Daida, P., Kesmez, M., Weir, M., Moreno, H., Parga, J. R., Irwin, G., McWhinney, H., Grady, T., Peterson, E., & Cocke, D. L. (2007). Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products. Journal of Hazardous Materials, 139, 220–231. https://doi.org/10.1016/j.jhazmat.2005.11.108

    Article  Google Scholar 

  • Gonzalez, B., Heijman, S. G. J., Rietveld, L. C., & van Halem, D. (2019). Arsenic removal from geothermal influenced groundwater with low pressure NF pilot plant for drinking water production in Nicaraguan rural communities. Science of the Total Environment, 667, 297–305.

    Article  Google Scholar 

  • Goren, A. Y., & Kobya, M. (2021). Arsenic removal from groundwater using an aerated electrocoagulation reactor with 3D Al electrodes in the presence of anions. Chemosphere, 263, 128253. https://doi.org/10.1016/j.chemosphere.2020.128253

    Article  Google Scholar 

  • Guarino, F., Miranda, A., Castiglione, S., & Cicatelli, A. (2020). Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere, 251, 126310. https://doi.org/10.1016/j.chemosphere.2020.126310

    Article  Google Scholar 

  • Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews. Microbiology, 9, 177–192.

    Article  Google Scholar 

  • Hasan, M. A., Ahmed, K. M., Sracek, O., Bhattacharya, P., Von Broemssen, M., Broms, S., Fogelström, J., Mazumder, M. L., & Jacks, G. (2007). Arsenic in shallow groundwater of Bangladesh: Investigations from three different physiographic settings. Hydrogeology Journal, 15, 1507–1522.

    Article  Google Scholar 

  • Hsieh, L. H. C., Weng, Y. H., Huang, C. P., & Li, K. C. (2008). Removal of arsenic from groundwater by electro-ultrafiltration. Desalination, 234, 402–408. https://doi.org/10.1016/j.desal.2007.09.110

    Article  Google Scholar 

  • Hu, C. Y., Lo, S. L., & Kuan, W. H. (2014). High concentration of arsenate removal by electrocoagulation with calcium. Separation and Purification Technology, 126, 7–14. https://doi.org/10.1016/j.seppur.2014.02.015

    Article  Google Scholar 

  • Iqbal, J., Kim, H.-J., Yang, J.-S., Baek, K., & Yang, J.-W. (2007). Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere, 66, 970–976.

    Article  Google Scholar 

  • Irem, S., Islam, E., Maathuis, F. J. M., Niazi, N. K., & Li, T. (2019). Assessment of potential dietary toxicity and arsenic accumulation in two contrasting rice genotypes: Effect of soil amendments. Chemosphere, 225, 104–114.

    Article  Google Scholar 

  • Irshad, S., **e, Z., Mehmood, S., Nawaz, A., Ditta, A., & Mahmood, Q. (2021). Insights into conventional and recent technologies for arsenic bioremediation: A systematic review. Environmental Science and Pollution Research, 28, 18870–18892.

    Google Scholar 

  • Irshad, S., **e, Z., Wang, J., Nawaz, A., Luo, Y., Wang, Y., & Mehmood, S. (2020a). Indigenous strain bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata. Journal of Hazardous Materials, 381, 120903.

    Article  Google Scholar 

  • Irshad, S., **e, Z., Wang, J., Nawaz, A., Luo, Y., Wang, Y., Mehmood, S., & Faheem. (2020b). Indigenous strain bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata. Journal of Hazardous Materials, 381, 120903. https://doi.org/10.1016/j.jhazmat.2019.120903

    Article  Google Scholar 

  • Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., & Marathe, K. V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 162, 306–325.

    Article  Google Scholar 

  • Jarma, Y. A., Karaoğlu, A., Tekin, Ö., Baba, A., Ökten, H. E., Tomaszewska, B., Bostancı, K., Arda, M., & Kabay, N. (2021). Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water. Journal of Hazardous Materials, 405, 124129. https://doi.org/10.1016/j.jhazmat.2020.124129

    Article  Google Scholar 

  • Ji, D., Zhang, J., Meng, F., Wang, Y., & Zhang, D. (2020). Species and distribution of arsenic in soil after remediation by Electrokinetics coupled with permeable reactive barrier. Water, Air, & Soil Pollution, 231, 1–12.

    Article  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L., & Naidu, R. (2006). In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environmental Health Perspectives, 114, 1826–1831.

    Article  Google Scholar 

  • Kalita, J., Pradhan, A. K., Shandilya, Z. M., & Tanti, B. (2018). Arsenic stress responses and tolerance in rice: Physiological, cellular and molecular approaches. Rice Science. https://doi.org/10.1016/j.rsci.2018.06.007

  • Karakurt, S. (2019). Removal of carcinogenic arsenic from drinking water by the application of ion exchange resins. Oncogen, 2, 5.

    Article  Google Scholar 

  • Khosravi, R., Zarei, M., Vogel, H., & Bigalke, M. (2019). Early diagenetic behavior of arsenic in the sediment of the hypersaline Maharlu Lake, southern Iran. Chemosphere, 237. https://doi.org/10.1016/j.chemosphere.2019.124465

  • Kim, H.-A., Lee, K.-Y., Lee, B.-T., Kim, S.-O., & Kim, K.-W. (2012). Comparative study of simultaneous removal of As, Cu, and Pb using different combinations of electrokinetics with bioleaching by Acidithiobacillus ferrooxidans. Water Research, 46, 5591–5599.

    Article  Google Scholar 

  • Kumar, P. R., Chaudhari, S., Khilar, K. C., & Mahajan, S. P. (2004). Removal of arsenic from water by electrocoagulation. Chemosphere, 55, 1245–1252. https://doi.org/10.1016/j.chemosphere.2003.12.025

    Article  Google Scholar 

  • Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman, C. U., Jr., Trakal, L., & Mohan, D. (2019). Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Sci. Total Environ., 694, 133427.

    Article  Google Scholar 

  • Lee, C. G., Alvarez, P. J. J., Nam, A., Park, S. J., Do, T., Choi, U. S., & Lee, S. H. (2017). Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies. Journal of Hazardous Materials, 325, 223–229. https://doi.org/10.1016/j.jhazmat.2016.12.003

    Article  Google Scholar 

  • Lee, K.-Y., Yoon, I.-H., Lee, B.-T., Kim, S.-O., & Kim, K.-W. (2009). A novel combination of anaerobic bioleaching and electrokinetics for arsenic removal from mine tailing soil. Environmental Science & Technology, 43, 9354–9360.

    Article  Google Scholar 

  • Li, J., Ding, Y., Wang, K., Li, N., Qian, G., Xu, Y., & Zhang, J. (2020a). Comparison of humic and fulvic acid on remediation of arsenic contaminated soil by electrokinetic technology. Chemosphere, 241, 125038.

    Article  Google Scholar 

  • Li, Z., Yang, Q., Yang, Y., **e, C., & Ma, H. (2020b). Hydrogeochemical controls on arsenic contamination potential and health threat in an intensive agricultural area, northern China. Environmental Pollution, 256, 113455. https://doi.org/10.1016/j.envpol.2019.113455

    Article  Google Scholar 

  • Litter, M. I., Morgada, M. E., & Bundschuh, J. (2010). Possible treatments for arsenic removal in Latin American waters for human consumption. Environmental Pollution, 158, 1105–1118.

    Article  Google Scholar 

  • Mahimairaja, S., Bolan, N. S., Adriano, D. C., & Robinson, B. (2005). Arsenic contamination and its risk Management in complex environmental settings. Advances in Agronomy. https://doi.org/10.1016/S0065-2113(05)86001-8

  • Maitlo, H. A., Kim, J. H., Kim, K.-H., Park, J. Y., & Khan, A. (2019). Metal-air fuel cell electrocoagulation techniques for the treatment of arsenic in water. Journal of Cleaner Production, 207, 67–84.

    Article  Google Scholar 

  • Maity, J. P., Chen, C. Y., Bhattacharya, P., Sharma, R. K., Ahmad, A., Patnaik, S., & Bundschuh, J. (2020). Arsenic removal and mitigation options by advanced application of nano-technological and biological processes. Journal of Hazardous Materials, 405, 123885.

    Google Scholar 

  • Manoj, S. R., Karthik, C., Kadirvelu, K., Arulselvi, P. I., Shanmugasundaram, T., Bruno, B., & Rajkumar, M. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management, 254, 109779. https://doi.org/10.1016/j.jenvman.2019.109779

    Article  Google Scholar 

  • Missimer, T. M., Teaf, C. M., Beeson, W. T., Maliva, R. G., Woolschlager, J., & Covert, D. J. (2018). Natural background and anthropogenic arsenic enrichment in Florida soils, surface water, and groundwater: A review with a discussion on public health risk. International Journal of Environmental Research and Public Health, 15. https://doi.org/10.3390/ijerph15102278

  • Moameri, M., & Khalaki, M. A. (2019). Capability of Secale montanum trusted for phytoremediation of lead and cadmium in soils amended with nano-silica and municipal solid waste compost. Environmental Science and Pollution Research, 26, 24315–24322.

    Article  Google Scholar 

  • Mohora, E., Rončević, S., Agbaba, J., Zrnić, K., Tubić, A., & Dalmacija, B. (2018). Arsenic removal from groundwater by horizontal-flow continuous electrocoagulation (EC) as a standalone process. Journal of Environmental Chemical Engineering, 6, 512–519. https://doi.org/10.1016/j.jece.2017.12.042

    Article  Google Scholar 

  • Molinari, R., & Argurio, P. (2017). Arsenic removal from water by coupling photocatalysis and complexation-ultrafiltration processes: A preliminary study. Water Research, 109, 327–336. https://doi.org/10.1016/j.watres.2016.11.054

    Article  Google Scholar 

  • Nguyen, C. M., Bang, S., Cho, J., & Kim, K. W. (2009a). Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination, 245, 82–94. https://doi.org/10.1016/j.desal.2008.04.047

    Article  Google Scholar 

  • Nguyen, V. T., Vigneswaran, S., Ngo, H. H., Shon, H. K., & Kandasamy, J. (2009b). Arsenic removal by a membrane hybrid filtration system. Desalination, 236, 363–369. https://doi.org/10.1016/j.desal.2007.10.088

    Article  Google Scholar 

  • Nidheesh, P. V., & Singh, T. S. A. (2017). Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.04.082

  • Nordstrom, D. K., & Archer, D. G. (2003). Arsenic thermodynamic data and environmental geochemistry. In Arsenic in ground water (pp. 1–25). Springer, Boston, MA. https://doi.org/10.1007/0-306-47956-7_1

  • Nordstrom, D. K. (2000). An overview of arsenic mass poisoning in Bangladesh and West Bengal, India. Minor element, (pp: 21–30). USGS, Society for Mining, Metallurgy, and Exploration, 0873351991.

    Google Scholar 

  • Peryea, F. J., & Creger, T. L. (1994). Vertical distribution of lead and arsenic in soils contaminated with lead arsenate pesticide residues. Water, Air, and Soil Pollution, 78, 297–306.

    Article  Google Scholar 

  • Pramod, L., Gandhimathi, R., Lavanya, A., Ramesh, S. T., & Nidheesh, P. V. (2020). Heterogeneous Fenton process coupled with microfiltration for the treatment of water with higher arsenic content. Chemical Engineering Communications, 207, 1646–1657.

    Article  Google Scholar 

  • Quazi, S., Sarkar, D., & Datta, R. (2010). Effect of soil aging on arsenic fractionation and bioaccessibility in inorganic arsenical pesticide contaminated soils. Applied Geochemistry, 25, 1422–1430. https://doi.org/10.1016/j.apgeochem.2010.06.012

    Article  Google Scholar 

  • Rahman, M. S., Reichelt-Brushet, A. J., Clark, M. W., Farzana, T., & Yee, L. H. (2017). Arsenic bio-accessibility and bioaccumulation in aged pesticide contaminated soils: A multiline investigation to understand environmental risk. Science of the Total Environment, 581, 782–793.

    Article  Google Scholar 

  • Rasheed, H., Slack, R., & Kay, P. (2016). Human health risk assessment for arsenic: A critical review. Critical Reviews in Environmental Science and Technology, 46, 1529–1583. https://doi.org/10.1080/10643389.2016.1245551

    Article  Google Scholar 

  • Ravenscroft, P., Brammer, H., & Richards, K. (2011). Arsenic pollution: A global synthesis. John Wiley & Sons.

    Google Scholar 

  • Roy, M., Giri, A. K., Dutta, S., & Mukherjee, P. (2015). Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environment International. https://doi.org/10.1016/j.envint.2014.11.010

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S. W., Berti, W., & Carpenter, M. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology, 33, 3697–3705.

    Article  Google Scholar 

  • Rui**, L., Lihua, S., Jiuhui, Q., & Guibai, L. (2009). Arsenic removal through adsorption, sand filtration and ultrafiltration: In situ precipitated ferric and manganese binary oxides as adsorbents. Desalination, 249, 1233–1237. https://doi.org/10.1016/j.desal.2009.06.032

    Article  Google Scholar 

  • Russell, A., McDermott, F., McGrory, E., Cooper, M., Henry, T., & Morrison, L. (2021). As-Co-Ni sulfarsenides in Palaeogene basaltic cone sheets as sources of groundwater arsenic contamination in Co. Louth, Ireland. Applied Geochemistry, 104914. https://doi.org/10.1016/j.apgeochem.2021.104914

  • Sarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation – A critical review. Chemosphere, 158, 37–49.

    Article  Google Scholar 

  • Sarkar, S., Blaney, L. M., Gupta, A., Ghosh, D., & Sen Gupta, A. K. (2007). Use of Arsen Xnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. Reactive and Functional Polymers, 67, 1599–1611. https://doi.org/10.1016/j.reactfunctpolym.2007.07.047

    Article  Google Scholar 

  • Schmidt, S.-A., Gukelberger, E., Hermann, M., Fiedler, F., Großmann, B., Hoinkis, J., Ghosh, A., Chatterjee, D., & Bundschuh, J. (2016). Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system – Towards sustainable drinking water production. Journal of Hazardous Materials, 318, 671–678.

    Article  Google Scholar 

  • Shankar, S., Shanker, U., & Shikha. (2014). Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. Scientific World Journal, 2014, 304524. https://doi.org/10.1155/2014/304524

    Article  Google Scholar 

  • Silva, J. F. A., Graça, N. S., Ribeiro, A. M., & Rodrigues, A. E. (2018). Electrocoagulation process for the removal of co-existent fluoride, arsenic and iron from contaminated drinking water. Separation and Purification Technology, 197, 237–243. https://doi.org/10.1016/j.seppur.2017.12.055

    Article  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  Google Scholar 

  • Sodhi, K. K., Kumar, M., Agrawal, P. K., & Singh, D. K. (2019). Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environmental Technology and Innovation. https://doi.org/10.1016/j.eti.2019.100462

  • Sracek, O., Bhattacharya, P., Jacks, G., Gustafsson, J. P., & Von Brömssen, M. (2004). Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry, 19, 169–180. https://doi.org/10.1016/j.apgeochem.2003.09.005

    Article  Google Scholar 

  • Syam Babu, D., Nidheesh, P. V., & Suresh Kumar, M. (2021). Arsenite removal from aqueous solution by aerated iron electrocoagulation process. Separation Science and Technology 56(1), 184–193. https://doi.org/10.1080/01496395.2019.1708932

  • Tarvainen, T., Reichel, S., Müller, I., Jordan, I., Hube, D., Eurola, M., & Loukola-Ruskeeniemi, K. (2020). Arsenic in agro-ecosystems under anthropogenic pressure in Germany and France compared to a geogenic as region in Finland. Journal of Geochemical Exploration, 217, 106606. https://doi.org/10.1016/j.gexplo.2020.106606

    Article  Google Scholar 

  • Tavakoli, H., Azari, A., Ashrafi, K., Salimian, M., & Momeni, M. (2020). Human health risk assessment of arsenic downstream of a steel plant in Isfahan, Iran: A case study. International journal of Environmental Science and Technology, 17, 81–92. https://doi.org/10.1007/s13762-019-02429-w

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). (2001). Technical fact sheet: Final rule for arsenic in drinking water, USA.

    Google Scholar 

  • von Brömssen, M., Markussen, L., Bhattacharya, P., Ahmed, K. M., Hossain, M., Jacks, G., Sracek, O., Thunvik, R., Hasan, M. A., & Islam, M. M. (2014). Hydrogeological investigation for assessment of the sustainability of low-arsenic aquifers as a safe drinking water source in regions with high-arsenic groundwater in Matlab, southeastern Bangladesh. Journal of Hydrology, 518, 373–392.

    Article  Google Scholar 

  • Wan, W., Pep**, T. J., Banerji, T., Chaudhari, S., & Giammar, D. E. (2011). Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Research, 45, 384–392. https://doi.org/10.1016/j.watres.2010.08.016

    Article  Google Scholar 

  • Wang, J., **e, Z., Wei, X., Chen, M., Luo, Y., & Wang, Y. (2020). An indigenous bacterium bacillus XZM for phosphate enhanced transformation and migration of arsenate. Science of the Total Environment, 719. https://doi.org/10.1016/j.scitotenv.2020.137183

  • Wang, Y., Han, P., Lu, Y., **ao, L., Du, Y., Liu, X., & Ye, S. (2019). Removal of arsenic and heavy metals from arsenic-containing acid wastewater with iron salt and lime. Environmental Engineering and Management Journal, 18, 2655–2662.

    Article  Google Scholar 

  • Wang, Y., Liu, X., Yan, J., Han, P., Du, Y., & Ye, S. (2021). Effect of surface deposition coating with aluminum hydroxide on the stabilization of iron–arsenic precipitates. Mining Metallurgy & Exploration, 38(2), 1277–1285. https://doi.org/10.1007/s42461-020-00366-8

  • Xu, L., Zhao, Z., Wang, S., Pan, R., & Jia, Y. (2011). Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities. Water Research, 45, 6781–6788. https://doi.org/10.1016/j.watres.2011.10.041

    Article  Google Scholar 

  • Xu, Y., Li, J., **a, W., Sun, Y., Qian, G., Zhang, J. (2019). Enhanced remediation of arsenic and chromium co-contaminated soil by eletrokinetic-permeable reactive barriers with different reagents. Environmental Science and Pollution Research, 26(4), 3392–3403. https://doi.org/10.1007/s11356-018-3842-9

    Article  Google Scholar 

  • Xu, Y., Lu, Q., Li, J., Wan, L., Chen, S., & Lu, Y. (2021). Effect of humus on the remediation of arsenic-contaminated soil by electrokinetic technology. Environmental Technology and Innovation, 21, 101297.

    Article  Google Scholar 

  • Yang, C., Ho, Y.-N., Makita, R., Inoue, C., & Chien, M.-F. (2020). Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Ecotoxicology and Environmental Safety, 190, 110075.

    Article  Google Scholar 

  • Yang, S., Yang, Q., Ma, H., Liang, J., Niu, C., & Martin, J. D. (2018). Health risk assessment of phreatic water based on triangular fuzzy theory in Yinchuan plain. Ecotoxicology and Environmental Safety, 164, 732–738.

    Article  Google Scholar 

  • Yao, W., Cai, Z., Sun, S., Romantschuk, M., Sinkkonen, A., Sun, Y., & Wang, Q. (2020). Electrokinetic-enhanced remediation of actual arsenic-contaminated soils with approaching cathode and Fe 0 permeable reactive barrier. Journal of Soils and Sediments, 20, 1526–1533.

    Article  Google Scholar 

  • Yaqub, M., & Lee, S. H. (2020). Experimental and neural network modeling of micellar enhanced ultrafiltration for arsenic removal from aqueous solution. Environmental Engineering Research, 26, 190261.

    Article  Google Scholar 

  • Yokel, J., & Delistraty, D. A. (2003). Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA). Environmental Toxicology, 18, 104–114.

    Article  Google Scholar 

  • You, H. J., & Han, I. S. (2016). Effects of dissolved ions and natural organic matter on electrocoagulation of As(III) in groundwater. Journal of Environmental Chemical Engineering, 4, 1008–1016. https://doi.org/10.1016/j.jece.2015.12.034

    Article  Google Scholar 

  • Yuan, C., & Chiang, T. S. (2007). The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier. Chemosphere, 67, 1533–1542. https://doi.org/10.1016/j.chemosphere.2006.12.008

    Article  Google Scholar 

  • Yuan, C., & Chiang, T.-S. (2008). Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents. Journal of Hazardous Materials, 152, 309–315.

    Article  Google Scholar 

  • Zabala, M. E., Manzano, M., & Vives, L. (2016). Assessment of processes controlling the regional distribution of fluoride and arsenic in groundwater of the Pampeano Aquifer in the Del Azul Creek basin (Argentina). Journal of Hydrology, 54, 11067. https://doi.org/10.1016/j.jhydrol.2016.08.023

  • Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2016.06.059

  • Zhang, G., Li, X., Wu, S., & Gu, P. (2012). Effect of source water quality on arsenic (V) removal from drinking water by coagulation/microfiltration. Environment and Earth Science, 66, 1269–1277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khosravi, R., Sracek, O., Eslamian, S. (2022). Arsenic Control for Hazard Risk Reduction. In: Eslamian, S., Eslamian, F. (eds) Disaster Risk Reduction for Resilience. Springer, Cham. https://doi.org/10.1007/978-3-031-08325-9_12

Download citation

Publish with us

Policies and ethics

Navigation