Stress Kinase Signaling in Cardiac Myocytes

  • Chapter
  • First Online:
Cardiovascular Signaling in Health and Disease

Abstract

Stress-response kinases, the mitogen-activated protein kinases (MAPKs), are activated in response to the challenge of a myriad of stressors. c-jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and MAPK p38 are the important members of the MAPK family in the heart. Extensive studies have revealed critical roles of activated MAPKs in the processes of cardiac injury, cardiac arrhythmias, heart failure, and other cardiovascular diseases. Advancing our understanding regarding the functional impacts of MAPKs in the development of heart diseases could shed new light on develo** novel therapeutic approaches to improve cardiac function and prevent arrhythmia development in patients. This chapter summarizes relevant current knowledge on the pivotal roles of MAPKs in physiopathological and molecular remodeling in cardiac myocytes during the disease development and for the therapeutic potentials of develo** MAPK inhibitors and/or activators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASK1-2 :

Apoptosis signal-regulating kinases-1/2

AF :

Atrial fibrillation

BAMBI:

BMP and activin membrane-bound inhibitor

Ca2+-ATPase:

Plasma membrane calcium/calmodulin-dependent ATPase or PMCA

CICR :

Ca2+ induced Ca2+ release

ICa :

Ca2+ influx

CaMKIIδ :

Calcium calmodulin kinase IIδ

Ca2+ :

Calcium

CVDs:

Cardiovascular diseases

CHOP:

C/EBP homologous protein

JNK :

c-jun N-terminal kinase

Cx43 :

Connexin43

CSBP :

Cytokinin-specific binding protein

DAD:

Delayed afterdepolarization

DNMT1 :

DNA methyltransferase-1

DOC-1 :

Downstream-of-CHOP gene1

DWORF :

Dwarf open reading frame

ECC:

Excitation-contraction coupling

ERK:

Extracellular signal-regulated kinase

GSK-3:

Glycogen synthase kinase-3

HF :

Heart failure

HMGB1 :

High mobility group box 1 protein

CRP:

C-reactive protein

[Ca2+]i :

Intracellular Ca2+

I/R :

Ischemia-reperfusion

LTCCs :

L-type Ca2+ channels

MK2 :

MAPKAP kinase-2

Vmax :

Maximal rate

MAPKs :

Mitogen-activated protein kinases

MNK :

Mitogen-activated protein kinase interacting protein kinase

MSK1/2 :

Mitogen and stress-activated protein kinase1/2

MEKK4:

Mitogen-kinase protein kinase kinase kinase-4

MI :

Myocardial infarction

MyBP-C :

Myosin-binding protein C

NCX :

Na+ /Ca2+ exchanger

Ik :

Outward potassium current

PKCε:

Protein kinase Cε

PP1:

Protein phosphatase 1

PLB:

Phospholamban

PAF :

Platelet-activating factor

p70RSK:

p70 ribosomal S6

p90RSK:

p90 ribosomal S6

INa :

Rapid sodium influx

RISK :

Reperfusion injury salvage kinase

RyR2 :

Ryanodine receptor channel-2

SR:

Sarcoplasmic reticulum

SERCA2a:

Sarcoplasmic reticulum Ca2+-ATPase 2a

SPEG :

Striated muscle enriched protein kinase

PTEN:

Tensin homolog on chromosome 10

TNFα-R1:

 Tumor necrosis factor alpha receptor1

TnT:

Troponin T

TGF-β:

Transforming growth factor beta

TAC :

Transverse aortic constriction

T-tubules :

Transverse tubules

TPY :

Threonine-proline-tyrosine phosphorylation motif

References

  1. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78:547–81.

    Article  CAS  PubMed  Google Scholar 

  2. Neuman RB, et al. Oxidative stress markers are associated with persistent atrial fibrillation. Clin Chem. 2007;53:1652–7. https://doi.org/10.1373/clinchem.2006.083923. clinchem.2006.083923 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Juhaszova M, Rabuel C, Zorov DB, Lakatta EG, Sollott SJ. Protection in the aged heart: preventing the heart-break of old age? Cardiovasc Res. 2005;66:233–44. https://doi.org/10.1016/j.cardiores.2004.12.020. S0008-6363(04)00592-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  4. He BJ, et al. Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med. 2011;17:1610–8. https://doi.org/10.1038/nm.2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Belmin J, et al. Increased production of tumor necrosis factor and interleukin-6 by arterial wall of aged rats. Am J Physiol. 1995;268:H2288–93.

    CAS  PubMed  Google Scholar 

  6. Ismahil MA, et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ Res. 2014;114:266–82. https://doi.org/10.1161/CIRCRESAHA.113.301720.

    Article  CAS  PubMed  Google Scholar 

  7. Judge S, Leeuwenburgh C. Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol. 2007;292:C1983–92. https://doi.org/10.1152/ajpcell.00285.2006. 00285.2006 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Yang Z, Shen W, Rottman JN, Wikswo JP, Murray KT. Rapid stimulation causes electrical remodeling in cultured atrial myocytes. J Mol Cell Cardiol. 2005;38:299–308. https://doi.org/10.1016/j.yjmcc.2004.11.015.

    Article  CAS  PubMed  Google Scholar 

  9. Li SY, et al. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification. Aging Cell. 2005;4:57–64. https://doi.org/10.1111/j.1474-9728.2005.00146.x. ACE146 [pii].

    Article  CAS  PubMed  Google Scholar 

  10. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010;90:1507–46. https://doi.org/10.1152/physrev.00054.2009. 90/4/1507 [pii].

    Article  CAS  PubMed  Google Scholar 

  11. Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal Kinase (JNK) signaling as a therapeutic target for Alzheimer's disease. Front Pharmacol. 2015;6:321. https://doi.org/10.3389/fphar.2015.00321.

    Article  CAS  PubMed  Google Scholar 

  12. **ao B, et al. Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/ MMP9 signaling. Oncotarget. 2016; https://doi.org/10.18632/oncotarget.10315. 10315 [pii].

  13. Brozzi F, Eizirik DL. ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes. Ups J Med Sci. 2016;121:133–9. https://doi.org/10.3109/03009734.2015.1135217.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Scharf M, et al. Mitogen-activated protein kinase-activated protein kinases 2 and 3 regulate SERCA2a expression and fiber type composition to modulate skeletal muscle and cardiomyocyte function. Mol Cell Biol. 2013;33:2586–602. https://doi.org/10.1128/MCB.01692-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ho PD, et al. Ras reduces L-type calcium channel current in cardiac myocytes. Corrective effects of L-channels and SERCA2 on [Ca(2+)](i) regulation and cell morphology. Circ Res. 2001;88:63–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ho PD, et al. The Raf-MEK-ERK cascade represents a common pathway for alteration of intracellular calcium by Ras and protein kinase C in cardiac myocytes. J Biol Chem. 1998;273:21730–5.

    Article  CAS  PubMed  Google Scholar 

  17. Huang H, Joseph LC, Gurin MI, Thorp EB, Morrow JP. Extracellular signal-regulated kinase activation during cardiac hypertrophy reduces sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) transcription. J Mol Cell Cardiol. 2014;75:58–63. https://doi.org/10.1016/j.yjmcc.2014.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hagiwara Y, et al. SHP2-mediated signaling cascade through gp130 is essential for LIF-dependent I CaL, [Ca2+]i transient, and APD increase in cardiomyocytes. J Mol Cell Cardiol. 2007;43:710–6. https://doi.org/10.1016/j.yjmcc.2007.09.004.

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi E, et al. Leukemia inhibitory factor activates cardiac L-Type Ca2+ channels via phosphorylation of serine 1829 in the rabbit Cav1.2 subunit. Circ Res. 2004;94:1242–8. https://doi.org/10.1161/01.RES.0000126405.38858.BC.

    Article  CAS  PubMed  Google Scholar 

  20. Yan J, et al. c-Jun N-terminal kinase activation contributes to reduced connexin43 and development of atrial arrhythmias. Cardiovasc Res. 2013;97:589–97. https://doi.org/10.1093/cvr/cvs366.

    Article  CAS  PubMed  Google Scholar 

  21. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239–52.

    Article  CAS  PubMed  Google Scholar 

  22. Karin M, Gallagher E. From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life. 2005;57:283–95. https://doi.org/10.1080/15216540500097111. H527470040088211 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 2008;40:2707–19. https://doi.org/10.1016/j.biocel.2008.04.009.

    Article  CAS  PubMed  Google Scholar 

  24. Yan J, et al. JNK2, a newly-identified SERCA2 enhancer, augments an arrhythmic [Ca(2+)]SR leak-load relationship. Circ Res. 2021;128:455–70. https://doi.org/10.1161/CIRCRESAHA.120.318409.

    Article  CAS  PubMed  Google Scholar 

  25. Yan J, et al. Role of stress Kinase JNK in binge alcohol-evoked atrial arrhythmia. J Am Coll Cardiol. 2018;71:1459–70. https://doi.org/10.1016/j.jacc.2018.01.060. S0735-1097(18)30435-2 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan J, et al. The stress kinase JNK regulates gap junction Cx43 gene expression and promotes atrial fibrillation in the aged heart. J Mol Cell Cardiol. 2017;114:105–15. https://doi.org/10.1016/j.yjmcc.2017.11.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ai L, et al. Inhibition of Abeta Proteotoxicity by Paeoniflorin in Caenorhabditis elegans through regulation of oxidative and heat shock stress responses. Rejuvenation Res. 2018;21:304–12. https://doi.org/10.1089/rej.2017.1966.

    Article  CAS  PubMed  Google Scholar 

  28. Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev. 2006;70:1061–95. https://doi.org/10.1128/MMBR.00025-06. 70/4/1061 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79:143–80.

    Article  CAS  PubMed  Google Scholar 

  30. Karin M. Inflammation-activated protein kinases as targets for drug development. Proc Am Thorac Soc. 2005;2:386–390; discussion 394-385. https://doi.org/10.1513/pats.200504-034SR. 2/4/386 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene. 2007;26:3100–12. https://doi.org/10.1038/sj.onc.1210392.

    Article  CAS  PubMed  Google Scholar 

  32. Shimizu S, et al. Involvement of JNK in the regulation of autophagic cell death. Oncogene. 2010;29:2070–82. https://doi.org/10.1038/onc.2009.487. onc2009487 [pii].

    Article  CAS  PubMed  Google Scholar 

  33. Kyriakis JM, Avruch J. pp54 microtubule-associated protein 2 kinase. A novel serine/threonine protein kinase regulated by phosphorylation and stimulated by poly-L-lysine. J Biol Chem. 1990;265:17355–63.

    Article  CAS  PubMed  Google Scholar 

  34. Kyriakis JM, Brautigan DL, Ingebritsen TS, Avruch J. pp54 microtubule-associated protein-2 kinase requires both tyrosine and serine/threonine phosphorylation for activity. J Biol Chem. 1991;266:10043–6.

    Article  CAS  PubMed  Google Scholar 

  35. Hu MC, Qiu WR, Wang YP. JNK1, JNK2 and JNK3 are p53 N-terminal serine 34 kinases. Oncogene. 1997;15:2277–87. https://doi.org/10.1038/sj.onc.1201401.

    Article  CAS  PubMed  Google Scholar 

  36. Mohit AA, Martin JH, Miller CA. p493F12 kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron. 1995;14:67–78. https://doi.org/10.1016/0896-6273(95)90241-4.

    Article  CAS  PubMed  Google Scholar 

  37. Nakano R, Nakayama T, Sugiya H. Biological properties of JNK3 and its function in neurons, astrocytes, pancreatic β-cells and cardiovascular cells. Cells. 2020;9 https://doi.org/10.3390/cells9081802.

  38. Kuan CY, et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron. 1999;22:667–76., S0896-6273(00)80727-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  39. Moriguchi T, et al. A novel SAPK/JNK kinase, MKK7, stimulated by TNFalpha and cellular stresses. EMBO J. 1997;16:7045–53. https://doi.org/10.1093/emboj/16.23.7045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao X, et al. Transcriptional regulation of stress kinase JNK2 in pro-arrhythmic CaMKIIdelta expression in the aged atrium. Cardiovasc Res. 2018;114:737–46. https://doi.org/10.1093/cvr/cvy011. 4817461 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Izumi Y, Kim S, Murakami T, Yamanaka S, Iwao H. Cardiac mitogen-activated protein kinase activities are chronically increased in stroke-prone hypertensive rats. Hypertension. 1998;31:50–6.

    Article  CAS  PubMed  Google Scholar 

  42. Peart JN, Gross ER, Headrick JP, Gross GJ. Impaired p38 MAPK/HSP27 signaling underlies aging-related failure in opioid-mediated cardioprotection. J Mol Cell Cardiol. 2007;42:972–80. https://doi.org/10.1016/j.yjmcc.2007.02.011. S0022-2828(07)00050-8 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rich MW. Epidemiology of atrial fibrillation. J Interv Card Electrophysiol. 2009;25:3–8. https://doi.org/10.1007/s10840-008-9337-8.

    Article  PubMed  Google Scholar 

  44. Wang MC, Bohmann D, Jasper H. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell. 2003;5:811–6., S153458070300323X [pii].

    Article  CAS  PubMed  Google Scholar 

  45. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12:1–13. https://doi.org/10.1016/s0898-6568(99)00071-6. S0898-6568(99)00071-6 [pii].

    Article  CAS  PubMed  Google Scholar 

  46. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994;265:808–11. https://doi.org/10.1126/science.7914033.

    Article  CAS  PubMed  Google Scholar 

  47. Han J, Lee JD, Tobias PS, Ulevitch RJ. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J Biol Chem. 1993;268:25009–14.

    Article  CAS  PubMed  Google Scholar 

  48. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773:1358–75. https://doi.org/10.1016/j.bbamcr.2007.03.010.

    Article  CAS  PubMed  Google Scholar 

  49. Remy G, et al. Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal. 2010;22:660–7. https://doi.org/10.1016/j.cellsig.2009.11.020.

    Article  CAS  PubMed  Google Scholar 

  50. Seta K, Sadoshima J. What is the unique function of SAPK3/p38gamma in cardiac myocytes? J Mol Cell Cardiol. 2002;34:597–600. https://doi.org/10.1006/jmcc.2002.2000.

    Article  CAS  PubMed  Google Scholar 

  51. Court NW, dos Remedios CG, Cordell J, Bogoyevitch MA. Cardiac expression and subcellular localization of the p38 mitogen-activated protein kinase member, stress-activated protein kinase-3 (SAPK3). J Mol Cell Cardiol. 2002;34:413–26. https://doi.org/10.1006/jmcc.2001.1523.

    Article  CAS  PubMed  Google Scholar 

  52. Dingar D, et al. Effect of pressure overload-induced hypertrophy on the expression and localization of p38 MAP kinase isoforms in the mouse heart. Cell Signal. 2010;22:1634–44. https://doi.org/10.1016/j.cellsig.2010.06.002. S0898-6568(10)00167-1 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Raingeaud J, et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995;270:7420–6. https://doi.org/10.1074/jbc.270.13.7420. S0021-9258(18)71780-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  54. Moriguchi T, et al. A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J Biol Chem. 1996;271:13675–9. https://doi.org/10.1074/jbc.271.23.13675.

    Article  CAS  PubMed  Google Scholar 

  55. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol. 1996;16:1247–55. https://doi.org/10.1128/MCB.16.3.1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37–40. https://doi.org/10.1038/35065000. 35065000 [pii].

    Article  CAS  PubMed  Google Scholar 

  57. Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403–17. https://doi.org/10.1042/BJ20100323. BJ20100323 [pii].

    Article  CAS  PubMed  Google Scholar 

  58. Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005;15:11–8. https://doi.org/10.1038/sj.cr.7290257.

    Article  CAS  PubMed  Google Scholar 

  59. Marinissen MJ, Chiariello M, Pallante M, Gutkind JS. A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol Cell Biol. 1999;19:4289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang S, et al. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem. 1995;270:23934–6.

    Article  CAS  PubMed  Google Scholar 

  61. Ge B, et al. MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science. 2002;295:1291–4. https://doi.org/10.1126/science.1067289.

    Article  CAS  PubMed  Google Scholar 

  62. Salvador JM, et al. Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat Immunol. 2005;6:390–5. https://doi.org/10.1038/ni1177.

    Article  CAS  PubMed  Google Scholar 

  63. Mocsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10:387–402. https://doi.org/10.1038/nri2765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boulton TG, Cobb MH. Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul. 1991;2:357–71. https://doi.org/10.1091/mbc.2.5.357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boulton TG, et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 1991;65:663–75. https://doi.org/10.1016/0092-8674(91)90098-j. 0092-8674(91)90098-J [pii].

    Article  CAS  PubMed  Google Scholar 

  66. Sturgill TW, Ray LB, Erikson E, Maller JL. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature. 1988;334:715–8. https://doi.org/10.1038/334715a0.

    Article  CAS  PubMed  Google Scholar 

  67. Kohno M, Pouyssegur J. Alpha-thrombin-induced tyrosine phosphorylation of 43,000- and 41,000-Mr proteins is independent of cytoplasmic alkalinization in quiescent fibroblasts. Biochem J. 1986;238:451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Prowse CN, Deal MS, Lew J. The complete pathway for catalytic activation of the mitogen-activated protein kinase, ERK2. J Biol Chem. 2001;276:40817–23. https://doi.org/10.1074/jbc.M105860200. S0021-9258(20)77927-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  69. Ahn NG, et al. Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J Biol Chem. 1991;266:4220–7., S0021-9258(20)64310-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  70. Lowes VL, Ip NY, Wong YH. Integration of signals from receptor tyrosine kinases and g protein-coupled receptors. Neurosignals. 2002;11:5–19., 57317 [pii] 57317.

    Article  CAS  PubMed  Google Scholar 

  71. Wang LP, et al. Erythropoietin decreases the occurrence of myocardial fibrosis by inhibiting the NADPH-ERK-NF-x03BA;B pathway. Cardiology. 2016;133:97–108. https://doi.org/10.1159/000440995. 000440995 [pii].

    Article  CAS  PubMed  Google Scholar 

  72. Chen LJ, et al. Angiotensin-converting enzyme 2 ameliorates renal fibrosis by blocking the activation of mTOR/ERK signaling in apolipoprotein E-deficient mice. Peptides. 2016;79:49–57. https://doi.org/10.1016/j.peptides.2016.03.008. S0196-9781(16)30043-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  73. Hao G, et al. Ets-1 upregulation mediates angiotensin II-related cardiac fibrosis. Int J Clin Exp Pathol. 2015;8:10216–27.

    PubMed  PubMed Central  Google Scholar 

  74. Peng K, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482–94. https://doi.org/10.1111/jcmm.12763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li Q, Liu X, Wei J. Ageing related periostin expression increase from cardiac fibroblasts promotes cardiomyocytes senescent. Biochem Biophys Res Commun. 2014;452:497–502. https://doi.org/10.1016/j.bbrc.2014.08.109. S0006-291X(14)01541-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  76. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5:875–85. https://doi.org/10.1038/nrm1498. nrm1498 [pii].

    Article  CAS  PubMed  Google Scholar 

  77. Muslin AJ. Role of raf proteins in cardiac hypertrophy and cardiomyocyte survival. Trends Cardiovasc Med. 2005;15:225–9. https://doi.org/10.1016/j.tcm.2005.06.008. S1050-1738(05)00089-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  78. Chen Z, et al. MAP kinases. Chem Rev. 2001;101:2449–76., cr000241p [pii].

    Article  CAS  PubMed  Google Scholar 

  79. Hatano N, et al. Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells. 2003;8:847–56., 680 [pii].

    Article  CAS  PubMed  Google Scholar 

  80. Saba-El-Leil MK, et al. An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep. 2003;4:964–8. https://doi.org/10.1038/sj.embor.embor939. embor939 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Blasco RB, et al. c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. Cancer Cell. 2011;19:652–63. https://doi.org/10.1016/j.ccr.2011.04.002. S1535-6108(11)00147-4 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yao Y, et al. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci U S A. 2003;100:12759–64. https://doi.org/10.1073/pnas.2134254100. 2134254100 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alvarez E, et al. Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem. 1991;266:15277–85., S0021-9258(18)98613-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  84. Bueno OF, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 2000;19:6341–50. https://doi.org/10.1093/emboj/19.23.6341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985;85:247–89.

    Article  CAS  PubMed  Google Scholar 

  86. Rougier O, Vassort G, Garnier D, Gargouil YM, Coraboeuf E. Existence and role of a slow inward current during the frog atrial action potential. Pflugers Arch. 1969;308:91–110.

    Article  CAS  PubMed  Google Scholar 

  87. Afzal N, Dhalla NS. Differential changes in left and right ventricular SR calcium transport in congestive heart failure. Am J Physiol. 1992;262:H868–74. https://doi.org/10.1152/ajpheart.1992.262.3.H868.

    Article  CAS  PubMed  Google Scholar 

  88. Makarewich CA, et al. The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. Elife. 2018;7 https://doi.org/10.7554/eLife.38319.

  89. Minamisawa S, Sato Y, Cho MC. Calcium cycling proteins in heart failure, cardiomyopathy and arrhythmias. Exp Mol Med. 2004;36:193–203. https://doi.org/10.1038/emm.2004.27.

    Article  CAS  PubMed  Google Scholar 

  90. Santulli G, **e W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112:11389–94. https://doi.org/10.1073/pnas.1513047112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Smith GL, Eisner DA. Calcium Buffering in the Heart in Health and Disease. Circulation. 2019;139:2358–71. https://doi.org/10.1161/circulationaha.118.039329.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fernández-Miranda G, Romero-Garcia T, Barrera-Lechuga TP, Mercado-Morales M, Rueda A. Impaired activity of Ryanodine receptors contributes to calcium mishandling in Cardiomyocytes of metabolic syndrome rats. Front Physiol. 2019;10:520. https://doi.org/10.3389/fphys.2019.00520.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gorski PA, Ceholski DK, Hajjar RJ. Altered myocardial calcium cycling and energetics in heart failure--a rational approach for disease treatment. Cell Metab. 2015;21:183–94. https://doi.org/10.1016/j.cmet.2015.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lindner M, Böhle T, Beuckelmann DJ. Ca2+-handling in heart failure--a review focusing on Ca2+ sparks. Basic Res Cardiol. 2002;97(Suppl 1):I79–82. https://doi.org/10.1007/s003950200034.

    Article  PubMed  Google Scholar 

  95. Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol. 2017;595:3041–51. https://doi.org/10.1113/jp272781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shiferaw Y, Watanabe MA, Garfinkel A, Weiss JN, Karma A. Model of intracellular calcium cycling in ventricular myocytes. Biophys J. 2003;85:3666–86. https://doi.org/10.1016/s0006-3495(03)74784-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tamayo M, et al. Intracellular calcium mishandling leads to cardiac dysfunction and ventricular arrhythmias in a mouse model of propionic acidemia. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165586. https://doi.org/10.1016/j.bbadis.2019.165586.

    Article  CAS  PubMed  Google Scholar 

  98. Bers DM. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res. 2000;87:275–81.

    Article  CAS  PubMed  Google Scholar 

  99. Ather S, Respress JL, Li N, Wehrens XH. Alterations in ryanodine receptors and related proteins in heart failure. Biochim Biophys Acta. 1832;2425-2431:2013. https://doi.org/10.1016/j.bbadis.2013.06.008.

    Article  CAS  Google Scholar 

  100. Lugenbiel P, et al. Atrial fibrillation complicated by heart failure induces distinct remodeling of calcium cycling proteins. Plos One. 2015;10:e0116395. https://doi.org/10.1371/journal.pone.0116395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hu ST, et al. Altered intracellular Ca2+ regulation in chronic rat heart failure. J Physiol Sci. 2010;60:85–94. https://doi.org/10.1007/s12576-009-0070-6.

    Article  CAS  PubMed  Google Scholar 

  102. Lehnart SE, et al. Sarcoplasmic reticulum proteins in heart failure. Ann N Y Acad Sci. 1998;853:220–30. https://doi.org/10.1111/j.1749-6632.1998.tb08270.x.

    Article  CAS  PubMed  Google Scholar 

  103. Wescott AP, Jafri MS, Lederer WJ, Williams GS. Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling. J Mol Cell Cardiol. 2016;92:82–92. https://doi.org/10.1016/j.yjmcc.2016.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gambardella J, Trimarco B, Iaccarino G, Santulli G. New insights in cardiac calcium handling and excitation-contraction coupling. Adv Exp Med Biol. 2018;1067:373–85. https://doi.org/10.1007/5584_2017_106.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Landstrom AP, Dobrev D, Wehrens XHT. Calcium signaling and cardiac arrhythmias. Circ Res. 2017;120:1969–93. https://doi.org/10.1161/circresaha.117.310083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Maier LS. CaMKIIdelta overexpression in hypertrophy and heart failure: cellular consequences for excitation-contraction coupling. Brazil J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al]. 2005;38:1293–302. https://doi.org/10.1590/s0100-879x2005000900002.

    Article  CAS  Google Scholar 

  107. Marks AR. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest. 2013;123:46–52. https://doi.org/10.1172/jci62834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Balke CW, Shorofsky SR. Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res. 1998;37:290–9. https://doi.org/10.1016/s0008-6363(97)00272-1.

    Article  CAS  PubMed  Google Scholar 

  109. Dobrev D, Wehrens XHT. Calcium-mediated cellular triggered activity in atrial fibrillation. J Physiol. 2017;595:4001–8. https://doi.org/10.1113/jp273048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ottolia M, Torres N, Bridge JH, Philipson KD, Goldhaber JI. Na/Ca exchange and contraction of the heart. J Mol Cell Cardiol. 2013;61:28–33. https://doi.org/10.1016/j.yjmcc.2013.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Eisner DA, Caldwell JL, Kistamás K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res. 2017;121:181–95. https://doi.org/10.1161/circresaha.117.310230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kistamás K, et al. Calcium handling defects and cardiac arrhythmia syndromes. Front Pharmacol. 2020;11:72. https://doi.org/10.3389/fphar.2020.00072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res. 2005;97:1314–22. https://doi.org/10.1161/01.RES.0000194329.41863.89.

    Article  CAS  PubMed  Google Scholar 

  114. Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49. https://doi.org/10.1146/annurev.physiol.70.113006.100455.

    Article  CAS  PubMed  Google Scholar 

  115. Bovo E, Mazurek SR, Zima AV. Oxidation of ryanodine receptor after ischemia-reperfusion increases propensity of Ca(2+) waves during beta-adrenergic receptor stimulation. Am J Physiol Heart Circ Physiol. 2018;315:H1032–40. https://doi.org/10.1152/ajpheart.00334.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Breckenridge R. Heart failure and mouse models. Dis Model Mech. 2010;3:138–43. https://doi.org/10.1242/dmm.005017.

    Article  PubMed  Google Scholar 

  117. Denham NC, et al. Calcium in the pathophysiology of atrial fibrillation and heart failure. Front Physiol. 2018;9:1380. https://doi.org/10.3389/fphys.2018.01380.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kashimura T, et al. In the RyR2(R4496C) mouse model of CPVT, beta-adrenergic stimulation induces Ca waves by increasing SR Ca content and not by decreasing the threshold for Ca waves. Circ Res. 2010;107:1483–9. https://doi.org/10.1161/CIRCRESAHA.110.227744.

    Article  CAS  PubMed  Google Scholar 

  119. Liu B, et al. Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovasc Res. 2015;108:299–311. https://doi.org/10.1093/cvr/cvv222. cvv222 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yan J, et al. Stress signaling JNK2 crosstalk with CaMKII underlies enhanced atrial Arrhythmogenesis. Circ Res. 2018; https://doi.org/10.1161/CIRCRESAHA.117.312536.

  121. Respress JL, et al. Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ Res. 2012;110:1474–83. https://doi.org/10.1161/circresaha.112.268094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yeh YH, et al. Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol. 2008;1:93–102. https://doi.org/10.1161/CIRCEP.107.754788.

    Article  CAS  PubMed  Google Scholar 

  123. Bers DM. Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol. 2014;76:107–27. https://doi.org/10.1146/annurev-physiol-020911-153308.

    Article  CAS  PubMed  Google Scholar 

  124. Houser SR, Piacentino V 3rd, Weisser J. Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol. 2000;32:1595–607. https://doi.org/10.1006/jmcc.2000.1206.

    Article  CAS  PubMed  Google Scholar 

  125. Louch WE, et al. Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc Res. 2004;62:63–73. https://doi.org/10.1016/j.cardiores.2003.12.031.

    Article  CAS  PubMed  Google Scholar 

  126. Sjaastad I, Wasserstrom JA, Sejersted OM. Heart failure -- a challenge to our current concepts of excitation-contraction coupling. J Physiol. 2003;546:33–47. https://doi.org/10.1113/jphysiol.2002.034728.

  127. **e LH, Sato D, Garfinkel A, Qu Z, Weiss JN. Intracellular Ca alternans: coordinated regulation by sarcoplasmic reticulum release, uptake, and leak. Biophys J. 2008;95:3100–10. https://doi.org/10.1529/biophysj.108.130955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bassani JW, Yuan W, Bers DM. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol. 1995;268:C1313–9.

    Article  CAS  PubMed  Google Scholar 

  129. Shannon TR, Ginsburg KS, Bers DM. Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration. Biophys J. 2000;78:334–43. https://doi.org/10.1016/S0006-3495(00)76596-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Desantiago J, et al. Arrhythmogenic effects of beta2-adrenergic stimulation in the failing heart are attributable to enhanced sarcoplasmic reticulum Ca load. Circ Res. 2008;102:1389–97. https://doi.org/10.1161/CIRCRESAHA.107.169011. CIRCRESAHA.107.169011 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–69.

    Article  CAS  PubMed  Google Scholar 

  132. Kyoi S, et al. Opposing effect of p38 MAP kinase and JNK inhibitors on the development of heart failure in the cardiomyopathic hamster. Cardiovasc Res. 2006;69:888–98. https://doi.org/10.1016/j.cardiores.2005.11.015. S0008-6363(05)00527-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  133. Bogoyevitch MA. The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bioessays. 2006;28:923–34. https://doi.org/10.1002/bies.20458.

    Article  CAS  PubMed  Google Scholar 

  134. Go AS, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285:2370–5., jcc10004 [pii].

    Article  CAS  PubMed  Google Scholar 

  135. Benjamin EJ, et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840–4.

    Article  CAS  PubMed  Google Scholar 

  136. Chen Z, Stokes DL, Rice WJ, Jones LR. Spatial and dynamic interactions between phospholamban and the canine cardiac Ca2+ pump revealed with use of heterobifunctional cross-linking agents. J Biol Chem. 2003;278:48348–56. https://doi.org/10.1074/jbc.M309545200.

    Article  CAS  PubMed  Google Scholar 

  137. Nelson BR, et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016;351:271–5. https://doi.org/10.1126/science.aad4076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bluhm WF, Kranias EG, Dillmann WH, Meyer M. Phospholamban: a major determinant of the cardiac force-frequency relationship. Am J Physiol Heart Circ Physiol. 2000;278:H249–55.

    Article  CAS  PubMed  Google Scholar 

  139. Quan C, et al. SPEG controls calcium reuptake into the sarcoplasmic reticulum through regulating SERCA2a by its second Kinase-Domain. Circ Res. 2019;124:712–26. https://doi.org/10.1161/CIRCRESAHA.118.313916.

    Article  CAS  PubMed  Google Scholar 

  140. Hume JR, Uehara A. Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes. J Physiol. 1985;368:525–44. https://doi.org/10.1113/jphysiol.1985.sp015874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Amos GJ, et al. Differences between outward currents of human atrial and subepicardial ventricular myocytes. J Physiol. 1996;491(Pt 1):31–50. https://doi.org/10.1113/jphysiol.1996.sp021194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Walden AP, Dibb KM, Trafford AW. Differences in intracellular calcium homeostasis between atrial and ventricular myocytes. J Mol Cell Cardiol. 2009;46:463–73. https://doi.org/10.1016/j.yjmcc.2008.11.003.

    Article  CAS  PubMed  Google Scholar 

  143. Freestone NS, et al. Differential lusitropic responsiveness to beta-adrenergic stimulation in rat atrial and ventricular cardiac myocytes. Pflugers Arch. 2000;441:78–87.

    Article  CAS  PubMed  Google Scholar 

  144. Venetucci LA, Trafford AW, O'Neill SC, Eisner DA. The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovasc Res. 2008;77:285–92. https://doi.org/10.1093/cvr/cvm009.

    Article  CAS  PubMed  Google Scholar 

  145. Chelu MG, et al. Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest. 2009;119:1940–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Neef S, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106:1134–44. https://doi.org/10.1161/CIRCRESAHA.109.203836. CIRCRESAHA.109.203836 [pii].

    Article  CAS  PubMed  Google Scholar 

  147. Franzini-Armstrong C, Protasi F, Tijskens P. The assembly of calcium release units in cardiac muscle. Ann N Y Acad Sci. 2005;1047:76–85. https://doi.org/10.1196/annals.1341.007.

    Article  CAS  PubMed  Google Scholar 

  148. Wang SQ, Song LS, Lakatta EG, Cheng H. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature. 2001;410:592–6. https://doi.org/10.1038/35069083.

    Article  CAS  PubMed  Google Scholar 

  149. Ibrahim M, et al. Prolonged mechanical unloading affects cardiomyocyte excitation-contraction coupling, transverse-tubule structure, and the cell surface. FASEB J. 2010;24:3321–9. https://doi.org/10.1096/fj.10-156638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Brette F, Orchard C. T-tubule function in mammalian cardiac myocytes. Circ Res. 2003;92:1182–92. https://doi.org/10.1161/01.RES.0000074908.17214.FD.

    Article  CAS  PubMed  Google Scholar 

  151. Berlin JR. Spatiotemporal changes of Ca2+ during electrically evoked contractions in atrial and ventricular cells. Am J Physiol. 1995;269:H1165–70.

    CAS  PubMed  Google Scholar 

  152. Forbes MS, Van Niel EE, Purdy-Ramos SI. The atrial myocardial cells of mouse heart: a structural and stereological study. J Struct Biol. 1990;103:266–79.

    Article  CAS  PubMed  Google Scholar 

  153. Richards MA, et al. Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Physiol Heart Circ Physiol. 2011;301:H1996–2005. https://doi.org/10.1152/ajpheart.00284.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lenaerts I, et al. Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Circ Res. 2009;105:876–85. https://doi.org/10.1161/CIRCRESAHA.109.206276.

    Article  CAS  PubMed  Google Scholar 

  155. Dibb KM, et al. Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure. Circ Heart Fail. 2009;2:482–9. https://doi.org/10.1161/CIRCHEARTFAILURE.109.852228.

    Article  PubMed  Google Scholar 

  156. Wakili R, et al. Multiple potential molecular contributors to atrial hypocontractility caused by atrial tachycardia remodeling in dogs. Circ Arrhythm Electrophysiol. 2010;3:530–41. https://doi.org/10.1161/CIRCEP.109.933036.

    Article  CAS  PubMed  Google Scholar 

  157. Frisk M, et al. Variable t-tubule organization and Ca2+ homeostasis across the atria. Am J Physiol Heart Circ Physiol. 2014;307:H609–20. https://doi.org/10.1152/ajpheart.00295.2014.

    Article  CAS  PubMed  Google Scholar 

  158. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006;24:21–44. https://doi.org/10.1080/02699050500284218.

    Article  CAS  PubMed  Google Scholar 

  159. Li D, et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation. 2001;104:2608–14.

    Article  CAS  PubMed  Google Scholar 

  160. Nishida K, et al. p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol Cell Biol. 2004;24:10611–20. https://doi.org/10.1128/MCB.24.24.10611-10620.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Purcell NH, et al. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci U S A. 2007;104:14074–9. https://doi.org/10.1073/pnas.0610906104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang Y, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 1998;273:2161–8.

    Article  CAS  PubMed  Google Scholar 

  163. Zechner D, Thuerauf DJ, Hanford DS, McDonough PM, Glembotski CC. A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J Cell Biol. 1997;139:115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li M, et al. p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation. 2005;111:2494–502. https://doi.org/10.1161/01.CIR.0000165117.71483.0C.

    Article  CAS  PubMed  Google Scholar 

  165. Cardin S, et al. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. Cardiovasc Res. 2003;60:315–25.

    Article  CAS  PubMed  Google Scholar 

  166. Avruch J, et al. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res. 2001;56:127–55.

    Article  CAS  PubMed  Google Scholar 

  167. Zheng M, et al. Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart. Am J Physiol Heart Circ Physiol. 2004;286:H424–33. https://doi.org/10.1152/ajpheart.00110.2003.

    Article  CAS  PubMed  Google Scholar 

  168. Zhu S, et al. Luteolin enhances sarcoplasmic reticulum Ca2+-ATPase activity through p38 MAPK signaling thus improving Rat cardiac function after ischemia/reperfusion. Cell Physiol Biochem. 2017;41:999–1010. https://doi.org/10.1159/000460837. 000460837 [pii].

    Article  CAS  PubMed  Google Scholar 

  169. Greiser M, et al. Distinct contractile and molecular differences between two goat models of atrial dysfunction: AV block-induced atrial dilatation and atrial fibrillation. J Mol Cell Cardiol. 2009;46:385–94. https://doi.org/10.1016/j.yjmcc.2008.11.012.

    Article  CAS  PubMed  Google Scholar 

  170. Chiang DY, et al. Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release. Circ Arrhythm Electrophysiol. 2014;7:1214–22. https://doi.org/10.1161/CIRCEP.114.001973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Voigt N, et al. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation. 2014;129:145–56. https://doi.org/10.1161/CIRCULATIONAHA.113.006641.

    Article  CAS  PubMed  Google Scholar 

  172. Mustroph J, Maier LS, Wagner S. CaMKII regulation of cardiac K channels. Front Pharmacol. 2014;5:20. https://doi.org/10.3389/fphar.2014.00020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nerbonne JM. Repolarizing cardiac potassium channels: multiple sites and mechanisms for CaMKII-mediated regulation. Heart Rhythm. 2011;8:938–41. https://doi.org/10.1016/j.hrthm.2011.01.018.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hegyi B, et al. Enhanced depolarization drive in failing Rabbit ventricular myocytes: calcium-dependent and β-adrenergic effects on late sodium, L-type calcium, and sodium-calcium exchange currents. Circ Arrhythm Electrophysiol. 2019;12:e007061. https://doi.org/10.1161/circep.118.007061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wagner S, et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest. 2006;116:3127–38. https://doi.org/10.1172/JCI26620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yoon JY, Ho WK, Kim ST, Cho H. Constitutive CaMKII activity regulates Na+ channel in rat ventricular myocytes. J Mol Cell Cardiol. 2009;47:475–84. https://doi.org/10.1016/j.yjmcc.2009.06.020.

    Article  CAS  PubMed  Google Scholar 

  177. Xu L, et al. Analysis of Na(+)/Ca (2+) exchanger (NCX) function and current in murine cardiac myocytes during heart failure. Mol Biol Rep. 2012;39:3847–52. https://doi.org/10.1007/s11033-011-1163-x.

    Article  CAS  PubMed  Google Scholar 

  178. Yang Y, et al. Xanthine oxidase inhibitor allopurinol improves atrial electrical remodeling in diabetic rats by inhibiting CaMKII/NCX signaling. Life Sci. 2020;259:118290. https://doi.org/10.1016/j.lfs.2020.118290.

    Article  CAS  PubMed  Google Scholar 

  179. Ronkainen JJ, et al. Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel alpha(1C)-subunit gene (Cacna1c) by DREAM translocation. J Physiol. 2011;589:2669–86. https://doi.org/10.1113/jphysiol.2010.201400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang Y, et al. Ca2+/calmodulin-dependent protein kinase II-dependent remodeling of Ca2+ current in pressure overload heart failure. J Biol Chem. 2008;283:25524–32. https://doi.org/10.1074/jbc.M803043200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Van Wagoner DR, et al. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res. 1999;85:428–36.

    Article  PubMed  Google Scholar 

  182. Christ T, et al. L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation. 2004;110:2651–7. https://doi.org/10.1161/01.CIR.0000145659.80212.6A. 01.CIR.0000145659.80212.6A [pii].

    Article  CAS  PubMed  Google Scholar 

  183. Zhang R, et al. A dynamic alpha-beta inter-subunit agonist signaling complex is a novel feedback mechanism for regulating L-type Ca2+ channel opening. FASEB J. 2005;19:1573–5. https://doi.org/10.1096/fj.04-3283fje.

    Article  CAS  PubMed  Google Scholar 

  184. Greer-Short A, et al. Calmodulin kinase II regulates atrial myocyte late sodium current, calcium handling, and atrial arrhythmia. Heart Rhythm. 2020;17:503–11. https://doi.org/10.1016/j.hrthm.2019.10.016.

    Article  PubMed  Google Scholar 

  185. McCauley MD, et al. Ion channel and structural remodeling in obesity-mediated atrial fibrillation. Circ Arrhythm Electrophysiol. 2020;13:e008296. https://doi.org/10.1161/CIRCEP.120.008296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yoo S, et al. Oxidative stress creates a unique, CaMKII-mediated substrate for atrial fibrillation in heart failure. JCI Insight. 2018;3 https://doi.org/10.1172/jci.insight.120728.

  187. Syeda F, et al. PITX2 modulates atrial membrane potential and the antiarrhythmic effects of sodium-channel blockers. J Am Coll Cardiol. 2016;68:1881–94. https://doi.org/10.1016/j.jacc.2016.07.766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Justo F, et al. Inhibition of the cardiac late sodium current with eleclazine protects against ischemia-induced vulnerability to atrial fibrillation and reduces atrial and ventricular repolarization abnormalities in the absence and presence of concurrent adrenergic stimulation. Heart Rhythm. 2016;13:1860–7. https://doi.org/10.1016/j.hrthm.2016.06.020.

    Article  PubMed  Google Scholar 

  189. Henry BL, et al. Relaxin suppresses atrial fibrillation in aged rats by reversing fibrosis and upregulating Na+ channels. Heart Rhythm. 2016;13:983–91. https://doi.org/10.1016/j.hrthm.2015.12.030.

    Article  PubMed  Google Scholar 

  190. Jaquet K, Fukunaga K, Miyamoto E, Meyer HE. A site phosphorylated in bovine cardiac troponin T by cardiac CaM kinase II. Biochim Biophys Acta. 1995;1248:193–5. https://doi.org/10.1016/0167-4838(95)00028-s.

    Article  PubMed  Google Scholar 

  191. Hartzell HC, Glass DB. Phosphorylation of purified cardiac muscle C-protein by purified cAMP-dependent and endogenous Ca2+-calmodulin-dependent protein kinases. J Biol Chem. 1984;259:15587–96.

    Article  CAS  PubMed  Google Scholar 

  192. Hidalgo CG, et al. The multifunctional Ca(2+)/calmodulin-dependent protein kinase II delta (CaMKIIdelta) phosphorylates cardiac titin's spring elements. J Mol Cell Cardiol. 2013;54:90–7. https://doi.org/10.1016/j.yjmcc.2012.11.012.

    Article  CAS  PubMed  Google Scholar 

  193. Rokita AG, Anderson ME. New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII). Circulation. 2012;126:2125–39. https://doi.org/10.1161/CIRCULATIONAHA.112.124990.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Dhanasekaran DN, Reddy EP. JNK-signaling: a multiplexing hub in programmed cell death. Genes Cancer. 2017;8:682–94. https://doi.org/10.18632/genesandcancer.155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Knight RJ, Buxton DB. Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart. Biochem Biophys Res Commun. 1996;218:83–8. https://doi.org/10.1006/bbrc.1996.0016.

    Article  CAS  PubMed  Google Scholar 

  196. Mohammad J, et al. JNK inhibition blocks piperlongumine-induced cell death and transcriptional activation of heme oxygenase-1 in pancreatic cancer cells. Apoptosis. 2019;24:730–44. https://doi.org/10.1007/s10495-019-01553-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Omura T, et al. Activation of mitogen-activated protein kinases in in vivo ischemia/reperfused myocardium in rats. J Mol Cell Cardiol. 1999;31:1269–79. https://doi.org/10.1006/jmcc.1999.0959.

    Article  CAS  PubMed  Google Scholar 

  198. Pombo CM, et al. The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J Biol Chem. 1994;269:26546–51.

    Article  CAS  PubMed  Google Scholar 

  199. Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol. 1999;19:2435–44. https://doi.org/10.1128/mcb.19.4.2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhang W, et al. USP49 inhibits ischemia-reperfusion-induced cell viability suppression and apoptosis in human AC16 cardiomyocytes through DUSP1-JNK1/2 signaling. J Cell Physiol. 2019;234:6529–38. https://doi.org/10.1002/jcp.27390.

    Article  CAS  PubMed  Google Scholar 

  201. Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 1999;11:211–8. https://doi.org/10.1016/s0955-0674(99)80028-3.

    Article  CAS  PubMed  Google Scholar 

  202. Kehat I, Molkentin JD. Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Ann N Y Acad Sci. 2010;1188:96–102. https://doi.org/10.1111/j.1749-6632.2009.05088.x. NYAS5088 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kaoud TS, et al. From in Silico discovery to intra-cellular activity: targeting JNK-protein interactions with small molecules. ACS Med Chem Lett. 2012;3:721–5. https://doi.org/10.1021/ml300129b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Morooka H, Bonventre JV, Pombo CM, Kyriakis JM, Force T. Ischemia and reperfusion enhance ATF-2 and c-Jun binding to cAMP response elements and to an AP-1 binding site from the c-jun promoter. J Biol Chem. 1995;270:30084–92. https://doi.org/10.1074/jbc.270.50.30084.

    Article  CAS  PubMed  Google Scholar 

  205. Sugden PH, Clerk A. “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998;83:345–52. https://doi.org/10.1161/01.res.83.4.345.

  206. Zeke A, Misheva M, Reményi A, Bogoyevitch MA. JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev. 2016;80:793–835. https://doi.org/10.1128/mmbr.00043-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Oh SW, et al. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A. 2005;102:4494–9. https://doi.org/10.1073/pnas.0500749102. 0500749102 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhao L, et al. The transcription factor DAF-16 is essential for increased longevity in C. elegans exposed to Bifidobacterium longum BB68. Sci Rep. 2017;7:7408. https://doi.org/10.1038/s41598-017-07974-3. 10.1038/s41598-017-07974-3 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Pan M, et al. JNK1 induces Notch1 expression to regulate genes governing photoreceptor production. Cell. 2019;8 https://doi.org/10.3390/cells8090970. E970 [pii]. cells8090970 [pii].

  210. Yang M, et al. Causal roles of stress kinase JNK2 in DNA methylation and binge alcohol withdrawal-evoked behavioral deficits. Pharmacol Res. 2021;164:105375. https://doi.org/10.1016/j.phrs.2020.105375.

    Article  CAS  PubMed  Google Scholar 

  211. Vlahopoulos SA, et al. The role of ATF-2 in oncogenesis. Bioessays. 2008;30:314–27. https://doi.org/10.1002/bies.20734.

    Article  CAS  PubMed  Google Scholar 

  212. Braz JC, et al. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J Clin Invest. 2003;111:1475–86. https://doi.org/10.1172/JCI17295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Chiu PY, Chen N, Leong PK, Leung HY, Ko KM. Schisandrin B elicits a glutathione antioxidant response and protects against apoptosis via the redox-sensitive ERK/Nrf2 pathway in H9c2 cells. Mol Cell Biochem. 2011;350:237–50. https://doi.org/10.1007/s11010-010-0703-3.

    Article  CAS  PubMed  Google Scholar 

  214. Wood CD, Thornton TM, Sabio G, Davis RA, Rincon M. Nuclear localization of p38 MAPK in response to DNA damage. Int J Biol Sci. 2009;5:428–37. https://doi.org/10.7150/ijbs.5.428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ. Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol. 1998;8:1049–57. https://doi.org/10.1016/s0960-9822(98)70442-7. S0960-9822(98)70442-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  216. White A, Pargellis CA, Studts JM, Werneburg BG, Farmer BT 2nd. Molecular basis of MAPK-activated protein kinase 2:p38 assembly. Proc Natl Acad Sci U S A. 2007;104:6353–8. https://doi.org/10.1073/pnas.07016791040701679104 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Drobic B, Perez-Cadahia B, Yu J, Kung SK, Davie JR. Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res. 2010;38:3196–208. https://doi.org/10.1093/nar/gkq030. gkq030 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegeman G. Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J. 2003;22:1313–24. https://doi.org/10.1093/emboj/cdg139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wierenga AT, Vogelzang I, Eggen BJ, Vellenga E. Erythropoietin-induced serine 727 phosphorylation of STAT3 in erythroid cells is mediated by a MEK-, ERK-, and MSK1-dependent pathway. Exp Hematol. 2003;31:398–405. https://doi.org/10.1016/s0301-472x(03)00045-6. S0301472X03000456 [pii].

    Article  CAS  PubMed  Google Scholar 

  220. Pierrat B, Correia JS, Mary JL, Tomas-Zuber M, Lesslauer W. RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK). J Biol Chem. 1998;273:29661–71. https://doi.org/10.1074/jbc.273.45.29661. S0021-9258(19)59366-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  221. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75:50–83. https://doi.org/10.1128/MMBR.00031-10. 75/1/50 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Qian J, et al. Regulation of phosphatase and tensin homolog on chromosome 10 in response to hypoxia. Am J Physiol Heart Circ Physiol. 2012;302:H1806–17. https://doi.org/10.1152/ajpheart.00929.2011. ajpheart.00929.2011 [pii].

    Article  CAS  PubMed  Google Scholar 

  223. Schroder D, Heger J, Piper HM, Euler G. Angiotensin II stimulates apoptosis via TGF-beta1 signaling in ventricular cardiomyocytes of rat. J Mol Med (Berl). 2006;84:975–83. https://doi.org/10.1007/s00109-006-0090-0.

    Article  CAS  Google Scholar 

  224. Lenormand P, et al. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol. 1993;122:1079–88. https://doi.org/10.1083/jcb.122.5.1079.

    Article  CAS  PubMed  Google Scholar 

  225. Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl). 1996;74:589–607. https://doi.org/10.1007/s001090050063.

    Article  CAS  Google Scholar 

  226. Winston LA, Hunter T. Intracellular signalling: putting JAKs on the kinase MAP. Curr Biol. 1996;6:668–71. https://doi.org/10.1016/s0960-9822(09)00445-x. S0960-9822(09)00445-X [pii].

    Article  CAS  PubMed  Google Scholar 

  227. Lawrence MC, et al. Chromatin-bound mitogen-activated protein kinases transmit dynamic signals in transcription complexes in beta-cells. Proc Natl Acad Sci U S A. 2008;105:13315–20. https://doi.org/10.1073/pnas.0806465105. 0806465105 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  228. McReynolds AC, et al. Phosphorylation or mutation of the ERK2 activation loop alters oligonucleotide binding. Biochemistry. 2016;55:1909–17. https://doi.org/10.1021/acs.biochem.6b00096.

    Article  CAS  PubMed  Google Scholar 

  229. Toda T, Shimanuki M, Yanagida M. Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev. 1991;5:60–73. https://doi.org/10.1101/gad.5.1.60.

    Article  CAS  PubMed  Google Scholar 

  230. Joshi S, Platanias LC. Mnk kinase pathway: cellular functions and biological outcomes. World J Biol Chem. 2014;5:321–33. https://doi.org/10.4331/wjbc.v5.i3.321.

    Article  PubMed  PubMed Central  Google Scholar 

  231. McCubrey JA, et al. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget. 2014;5:2881–911. https://doi.org/10.18632/oncotarget.2037. 2037 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  232. Casalvieri KA, Matheson CJ, Backos DS, Reigan P. Selective targeting of RSK isoforms in cancer. Trends Cancer. 2017;3:302–12. https://doi.org/10.1016/j.trecan.2017.03.004. S2405-8033(17)30059-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  233. Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 2008;9:747–58. https://doi.org/10.1038/nrm2509. nrm2509 [pii].

    Article  CAS  PubMed  Google Scholar 

  234. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90. https://doi.org/10.1038/sj.onc.1210421. 1210421 [pii].

    Article  CAS  PubMed  Google Scholar 

  235. Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem. 2011;80:437–71. https://doi.org/10.1146/annurev.biochem.79.081507.103945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Xu Z, et al. CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/Elk-1/HIF-1alpha/VEGF-A pathway in colorectal cancer. Cell Death Dis. 2018;9:974. https://doi.org/10.1038/s41419-018-1010-2. 10.1038/s41419-018-1010-2 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Yang R, et al. EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene. 2020;39:2975–86. https://doi.org/10.1038/s41388-020-1199-2. 10.1038/s41388-020-1199-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  238. Khoo S, et al. Regulation of insulin gene transcription by ERK1 and ERK2 in pancreatic beta cells. J Biol Chem. 2003;278:32969–77. https://doi.org/10.1074/jbc.M301198200. S0021-9258(20)83856-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  239. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24:7410–25. https://doi.org/10.1038/sj.onc.1209086. 1209086 [pii].

    Article  CAS  PubMed  Google Scholar 

  240. Farhan M, et al. FOXO signaling pathways as therapeutic targets in cancer. Int J Biol Sci. 2017;13:815–27. https://doi.org/10.7150/ijbs.20052. ijbsv13p0815 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Wang X, Chen WR, **ng D. A pathway from JNK through decreased ERK and Akt activities for FOXO3a nuclear translocation in response to UV irradiation. J Cell Physiol. 2012;227:1168–78. https://doi.org/10.1002/jcp.22839.

    Article  CAS  PubMed  Google Scholar 

  242. Bishopric NH, Andreka P, Slepak T, Webster KA. Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol. 2001;1:141–50. https://doi.org/10.1016/s1471-4892(01)00032-7S1471-4892(01)00032-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  243. Stefanelli C, et al. Polyamines directly induce release of cytochrome c from heart mitochondria. Biochem J. 2000;347(Pt 3):875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bialik S, et al. The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res. 1999;85:403–14. https://doi.org/10.1161/01.res.85.5.403.

    Article  CAS  PubMed  Google Scholar 

  245. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019;99:1765–817. https://doi.org/10.1152/physrev.00022.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Freude B, et al. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol. 2000;32:197–208. https://doi.org/10.1006/jmcc.1999.1066. S0022-2828(99)91066-0 [pii].

    Article  CAS  PubMed  Google Scholar 

  247. Guerra S, et al. Myocyte death in the failing human heart is gender dependent. Circ Res. 1999;85:856–66. https://doi.org/10.1161/01.res.85.9.856.

    Article  CAS  PubMed  Google Scholar 

  248. Sam F, et al. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol Heart Circ Physiol. 2000;279:H422–8. https://doi.org/10.1152/ajpheart.2000.279.1.H422.

    Article  CAS  PubMed  Google Scholar 

  249. Zhou YT, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97:1784–9. https://doi.org/10.1073/pnas.97.4.178497/4/1784 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Singh V, et al. Phosphorylation: implications in cancer. Protein J. 2017;36:1–6. https://doi.org/10.1007/s10930-017-9696-z. 10.1007/s10930-017-9696-z [pii].

    Article  CAS  PubMed  Google Scholar 

  251. Wang XX, Zhang B, **a R, Jia QY. Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur Rev Med Pharmacol Sci. 2020;24:9601–14. https://doi.org/10.26355/eurrev_202009_23048. 23048 [pii].

    Article  PubMed  Google Scholar 

  252. Mattson MP, Kroemer G. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med. 2003;9:196–205. https://doi.org/10.1016/s1471-4914(03)00046-7. S1471491403000467 [pii]

    Article  CAS  PubMed  Google Scholar 

  253. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–911. https://doi.org/10.1101/gad.13.15.1899.

    Article  CAS  PubMed  Google Scholar 

  254. Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene. 2003;22:8590–607. https://doi.org/10.1038/sj.onc.1207102. 1207102 [pii].

    Article  CAS  PubMed  Google Scholar 

  255. Chittenden T. BH3 domains: intracellular death-ligands critical for initiating apoptosis. Cancer Cell. 2002;2:165–6. https://doi.org/10.1016/s1535-6108(02)00128-9. S1535610802001289 [pii].

    Article  CAS  PubMed  Google Scholar 

  256. Fan M, et al. Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J Biol Chem. 2000;275:29980–5. https://doi.org/10.1074/jbc.M003776200. S0021-9258(18)44324-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  257. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol. 1999;19:8469–78. https://doi.org/10.1128/MCB.19.12.8469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Donovan N, Becker EB, Konishi Y, Bonni A. JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem. 2002;277:40944–9. https://doi.org/10.1074/jbc.M206113200. S0021-9258(19)72207-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  259. Deng Y, Ren X, Yang L, Lin Y, Wu X. A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell. 2003;115:61–70. https://doi.org/10.1016/s0092-8674(03)00757-8. S0092867403007578 [pii].

    Article  CAS  PubMed  Google Scholar 

  260. Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A. 2003;100:2432–7. https://doi.org/10.1073/pnas.0438011100. 0438011100 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Yano M, Kim S, Izumi Y, Yamanaka S, Iwao H. Differential activation of cardiac c-jun amino-terminal kinase and extracellular signal-regulated kinase in angiotensin II-mediated hypertension. Circ Res. 1998;83:752–60. https://doi.org/10.1161/01.res.83.7.752.

    Article  CAS  PubMed  Google Scholar 

  262. Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y. Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125(FAK)) in cultured rat cardiac myocytes. Biochem Biophys Res Commun. 1999;259:8–14. https://doi.org/10.1006/bbrc.1999.0720. S0006-291X(99)90720-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  263. Ramirez MT, et al. The MEKK-JNK pathway is stimulated by alpha1-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem. 1997;272:14057–61. https://doi.org/10.1074/jbc.272.22.14057. S0021-9258(19)62512-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  264. He H, Li HL, Lin A, Gottlieb RA. Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ. 1999;6:987–91. https://doi.org/10.1038/sj.cdd.4400572.

    Article  CAS  PubMed  Google Scholar 

  265. Choukroun G, et al. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH(2)-terminal kinases. J Clin Invest. 1999;104:391–8. https://doi.org/10.1172/JCI6350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN. c-Jun N-Terminal Kinases (JNKs) in Myocardial and Cerebral Ischemia/Reperfusion Injury. Front Pharmacol. 2018;9:715. https://doi.org/10.3389/fphar.2018.00715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Duplain H. Salvage of ischemic myocardium: a focus on JNK. Adv Exp Med Biol. 2006;588:157–64. https://doi.org/10.1007/978-0-387-34817-9_14.

    Article  PubMed  Google Scholar 

  268. Yue TL, et al. Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res. 2000;86:692–9. https://doi.org/10.1161/01.res.86.6.692.

    Article  CAS  PubMed  Google Scholar 

  269. Laderoute KR, Webster KA. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ Res. 1997;80:336–44. https://doi.org/10.1161/01.res.80.3.336.

    Article  CAS  PubMed  Google Scholar 

  270. Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS. H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol. 2003;35:615–21. https://doi.org/10.1016/s0022-2828(03)00084-1. S0022282803000841 [pii].

    Article  CAS  PubMed  Google Scholar 

  271. Remondino A, et al. Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res. 2003;92:136–8. https://doi.org/10.1161/01.res.0000054624.03539.b4.

    Article  CAS  PubMed  Google Scholar 

  272. Aoki H, et al. Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem. 2002;277:10244–50. https://doi.org/10.1074/jbc.M112355200. S0021-9258(19)36158-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  273. Andreka P, et al. Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res. 2001;88:305–12.

    Article  CAS  PubMed  Google Scholar 

  274. Dougherty CJ, et al. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J. 2002;362:561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Hreniuk D, et al. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol. 2001;59:867–74.

    Article  CAS  PubMed  Google Scholar 

  276. Tournier C, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000;288:870–4. https://doi.org/10.1126/science.288.5467.870. 8440 [pii].

    Article  CAS  PubMed  Google Scholar 

  277. Gabai VL, et al. Suppression of stress kinase JNK is involved in HSP72-mediated protection of myogenic cells from transient energy deprivation. HSP72 alleviates the stewss-induced inhibition of JNK dephosphorylation. J Biol Chem. 2000;275:38088–94. https://doi.org/10.1074/jbc.M006632200. S0021-9258(20)88528-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  278. Ma L, et al. Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-kappaB pathway: a mouse cardiomyocyte model. Plos One. 2014;9:e103628. https://doi.org/10.1371/journal.pone.0103628. PONE-D-14-00008 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Pan Y, et al. Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy. Diabetes. 2014;63:3497–511. https://doi.org/10.2337/db13-1577. db13-1577 [pii].

    Article  CAS  PubMed  Google Scholar 

  280. Li C, et al. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Gene. 2016;577:275–80. https://doi.org/10.1016/j.gene.2015.12.012. S0378-1119(15)01483-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  281. Ma XL, et al. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation. 1999;99:1685–91. https://doi.org/10.1161/01.cir.99.13.1685.

    Article  CAS  PubMed  Google Scholar 

  282. Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ. Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction. J Mol Cell Cardiol. 2005;38:617–23. https://doi.org/10.1016/j.yjmcc.2005.01.012. S0022-2828(05)00033-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  283. Kaiser RA, et al. Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. J Biol Chem. 2004;279:15524–30. https://doi.org/10.1074/jbc.M313717200. S0021-9258(19)63956-6 [pii].

    Article  CAS  PubMed  Google Scholar 

  284. Zhang L, Guo Z, Wang Y, Geng J, Han S. The protective effect of kaempferol on heart via the regulation of Nrf2, NF-kappabeta, and PI3K/Akt/GSK-3beta signaling pathways in isoproterenol-induced heart failure in diabetic rats. Drug Dev Res. 2019;80:294–309. https://doi.org/10.1002/ddr.21495.

    Article  CAS  PubMed  Google Scholar 

  285. Clark JE, Sarafraz N, Marber MS. Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Pharmacol Ther. 2007;116:192–206. https://doi.org/10.1016/j.pharmthera.2007.06.013. S0163-7258(07)00150-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  286. Kim SJ, Hwang SG, Shin DY, Kang SS, Chun JS. p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NFkappa B-dependent transcription and stabilization by serine 15 phosphorylation. J Biol Chem. 2002;277:33501–8. https://doi.org/10.1074/jbc.M202862200. S0021-9258(20)74511-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  287. Torcia M, et al. Nerve growth factor inhibits apoptosis in memory B lymphocytes via inactivation of p38 MAPK, prevention of Bcl-2 phosphorylation, and cytochrome c release. J Biol Chem. 2001;276:39027–36. https://doi.org/10.1074/jbc.M102970200. S0021-9258(20)74167-0 [pii].

    Article  CAS  PubMed  Google Scholar 

  288. Zhao D, et al. PAF exerts a direct apoptotic effect on the rat H9c2 cardiomyocytes in Ca2+-dependent manner. Int J Cardiol. 2010;143:86–93. https://doi.org/10.1016/j.ijcard.2009.01.068. S0167-5273(09)00128-4 [pii].

    Article  PubMed  Google Scholar 

  289. Kumphune S, Surinkaew S, Chattipakorn SC, Chattipakorn N. Inhibition of p38 MAPK activation protects cardiac mitochondria from ischemia/reperfusion injury. Pharm Biol. 2015;53:1831–41. https://doi.org/10.3109/13880209.2015.1014569.

    Article  CAS  PubMed  Google Scholar 

  290. D'Oria R, et al. The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxid Med Cell Longev. 2020;2020:5732956. https://doi.org/10.1155/2020/5732956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. George SA, et al. p38delta genetic ablation protects female mice from anthracycline cardiotoxicity. Am J Physiol Heart Circ Physiol. 2020;319:H775–86. https://doi.org/10.1152/ajpheart.00415.2020.

    Article  CAS  PubMed  Google Scholar 

  292. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11:381–9. https://doi.org/10.1038/sj.cdd.4401373. 4401373 [pii].

    Article  CAS  PubMed  Google Scholar 

  293. Eiras S, et al. Doxazosin induces activation of GADD153 and cleavage of focal adhesion kinase in cardiomyocytes en route to apoptosis. Cardiovasc Res. 2006;71:118–28. https://doi.org/10.1016/j.cardiores.2006.03.014. S0008-6363(06)00127-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  294. Hoover HE, Thuerauf DJ, Martindale JJ, Glembotski C. C. alpha B-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alpha B-crystallin as a target of the p38 branch of the cardiac stress response. J Biol Chem. 2000;275:23825–33. https://doi.org/10.1074/jbc.M003864200. S0021-9258(19)66047-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  295. Communal C, Colucci WS, Singh K. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against beta -adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem. 2000;275:19395–400. https://doi.org/10.1074/jbc.M910471199.

    Article  CAS  PubMed  Google Scholar 

  296. Communal C, Colucci WS. The control of cardiomyocyte apoptosis via the beta-adrenergic signaling pathways. Arch Mal Coeur Vaiss. 2005;98:236–41.

    CAS  PubMed  Google Scholar 

  297. Li L, Hao J, Jiang X, Li P, Sen H. Cardioprotective effects of ulinastatin against isoproterenol-induced chronic heart failure through the PI3KAkt, p38 MAPK and NF-kappaB pathways. Mol Med Rep. 2018;17:1354–60. https://doi.org/10.3892/mmr.2017.7934.

    Article  CAS  PubMed  Google Scholar 

  298. Hsu SC, Gavrilin MA, Tsai MH, Han J, Lai MZ. p38 mitogen-activated protein kinase is involved in Fas ligand expression. J Biol Chem. 1999;274:25769–76. https://doi.org/10.1074/jbc.274.36.25769. S0021-9258(19)55339-X [pii].

    Article  CAS  PubMed  Google Scholar 

  299. Kawahara A, Enari M, Talanian RV, Wong WW, Nagata S. Fas-induced DNA fragmentation and proteolysis of nuclear proteins. Genes Cells. 1998;3:297–306. https://doi.org/10.1046/j.1365-2443.1998.00189.x.

    Article  CAS  PubMed  Google Scholar 

  300. Stephanou A, et al. Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J Biol Chem. 2001;276:28340–7. https://doi.org/10.1074/jbc.M101177200. S0021-9258(19)31644-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  301. Sharov VG, et al. Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 MAPK, Fas-L and cyclin D1. Eur J Heart Fail. 2003;5:121–9. https://doi.org/10.1016/s1388-9842(02)00254-4. S1388984202002544 [pii]

    Article  CAS  PubMed  Google Scholar 

  302. Wang XZ, et al. Identification of novel stress-induced genes downstream of chop. EMBO J. 1998;17:3619–30. https://doi.org/10.1093/emboj/17.13.3619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Sok J, et al. CHOP-Dependent stress-inducible expression of a novel form of carbonic anhydrase VI. Mol Cell Biol. 1999;19:495–504. https://doi.org/10.1128/MCB.19.1.495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Guo RM, et al. Activation of the p38 MAPK/NF-kappaB pathway contributes to doxorubicin-induced inflammation and cytotoxicity in H9c2 cardiac cells. Mol Med Rep. 2013;8:603–8. https://doi.org/10.3892/mmr.2013.1554.

    Article  PubMed  Google Scholar 

  305. Sheng Z, et al. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem. 1997;272:5783–91. https://doi.org/10.1074/jbc.272.9.5783. S0021-9258(18)41273-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  306. Parrizas M, LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product. Endocrinology. 1997;138:1355–8. https://doi.org/10.1210/endo.138.3.5103.

    Article  CAS  PubMed  Google Scholar 

  307. Chen YL, Loh SH, Chen JJ, Tsai CS. Urotensin II prevents cardiomyocyte apoptosis induced by doxorubicin via Akt and ERK. Eur J Pharmacol. 2012;680:88–94. https://doi.org/10.1016/j.ejphar.2012.01.034. S0014-2999(12)00104-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  308. Su HF, et al. Oleylethanolamide activates Ras-Erk pathway and improves myocardial function in doxorubicin-induced heart failure. Endocrinology. 2006;147:827–34. https://doi.org/10.1210/en.2005-1098. en.2005-1098 [pii].

    Article  CAS  PubMed  Google Scholar 

  309. Montgomery MD, et al. An Alpha-1A Adrenergic receptor agonist prevents acute doxorubicin cardiomyopathy in male mice. Plos One. 2017;12:e0168409. https://doi.org/10.1371/journal.pone.0168409. PONE-D-16-31909 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Lips DJ, et al. MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation. 2004;109:1938–41. https://doi.org/10.1161/01.CIR.0000127126.73759.23. 01.CIR.0000127126.73759.23 [pii].

    Article  CAS  PubMed  Google Scholar 

  311. Zhu W, et al. MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation. 1999;100:2100–7. https://doi.org/10.1161/01.cir.100.20.2100.

    Article  CAS  PubMed  Google Scholar 

  312. Nebigil CG, Etienne N, Messaddeq N, Maroteaux L. Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a target of 5-HT2B receptor signaling. FASEB J. 2003;17:1373–5. https://doi.org/10.1096/fj.02-1122fje. 02-1122fje [pii].

    Article  CAS  PubMed  Google Scholar 

  313. Iwai-Kanai E, et al. Basic fibroblast growth factor protects cardiac myocytes from iNOS-mediated apoptosis. J Cell Physiol. 2002;190:54–62. https://doi.org/10.1002/jcp.10036. 10.1002/jcp.10036 [pii].

    Article  CAS  PubMed  Google Scholar 

  314. Shizukuda Y, Buttrick PM. Subtype specific roles of beta-adrenergic receptors in apoptosis of adult rat ventricular myocytes. J Mol Cell Cardiol. 2002;34:823–31. https://doi.org/10.1006/jmcc.2002.2020. S0022282802920201 [pii].

    Article  CAS  PubMed  Google Scholar 

  315. Erikson RL. Structure, expression, and regulation of protein kinases involved in the phosphorylation of ribosomal protein S6. J Biol Chem. 1991;266:6007–10., S0021-9258(18)38072-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  316. Baines CP, et al. Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res. 2002;90:390–7. https://doi.org/10.1161/01.res.0000012702.90501.8d.

    Article  CAS  PubMed  Google Scholar 

  317. Smith JA, Poteet-Smith CE, Malarkey K, Sturgill TW. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem. 1999;274:2893–8. https://doi.org/10.1074/jbc.274.5.2893. S0021-9258(19)88070-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  318. Valks DM, et al. Phenylephrine promotes phosphorylation of Bad in cardiac myocytes through the extracellular signal-regulated kinases 1/2 and protein kinase A. J Mol Cell Cardiol. 2002;34:749–63. https://doi.org/10.1006/jmcc.2002.2014. S0022282802920146 [pii].

    Article  CAS  PubMed  Google Scholar 

  319. Cho J, Rameshwar P, Sadoshima J. Distinct roles of glycogen synthase kinase (GSK)-3alpha and GSK-3beta in mediating cardiomyocyte differentiation in murine bone marrow-derived mesenchymal stem cells. J Biol Chem. 2009;284:36647–58. https://doi.org/10.1074/jbc.M109.019109. S0021-9258(20)37474-3 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Bopassa JC, Eghbali M, Toro L, Stefani E. A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2010;298:H16–23. https://doi.org/10.1152/ajpheart.00588.2009. 00588.2009 [pii].

    Article  CAS  PubMed  Google Scholar 

  321. Pabbidi MR, et al. Inhibition of cAMP-dependent PKA activates beta2-Adrenergic receptor stimulation of cytosolic phospholipase A2 via Raf-1/MEK/ERK and IP3-dependent Ca2+ signaling in atrial myocytes. PLoS One. 2016;11:e0168505. https://doi.org/10.1371/journal.pone.0168505. PONE-D-16-28898 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Micova P, et al. Chronic intermittent hypoxia affects the cytosolic phospholipase A2alpha/cyclooxygenase 2 pathway via beta2-adrenoceptor-mediated ERK/p38 stimulation. Mol Cell Biochem. 2016;423:151–63. https://doi.org/10.1007/s11010-016-2833-8. 10.1007/s11010-016-2833-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  323. Kitta K, et al. Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells. J Biol Chem. 2003;278:4705–12. https://doi.org/10.1074/jbc.M211616200. S0021-9258(19)32767-X [pii].

    Article  CAS  PubMed  Google Scholar 

  324. Adderley SR, Fitzgerald DJ. Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem. 1999;274:5038–46. https://doi.org/10.1074/jbc.274.8.5038. S0021-9258(19)87829-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  325. Wang WK, et al. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway. J Cell Mol Med. 2014;18:2311–20. https://doi.org/10.1111/jcmm.12399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Maruyama J, Naguro I, Takeda K, Ichijo H. Stress-activated MAP kinase cascades in cellular senescence. Curr Med Chem. 2009;16:1229–35.

    Article  CAS  PubMed  Google Scholar 

  327. Chien KR, Knowlton KU, Zhu H, Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991;5:3037–46. https://doi.org/10.1096/fasebj.5.15.1835945.

    Article  CAS  PubMed  Google Scholar 

  328. Rohini A, Agrawal N, Koyani CN, Singh R. Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res. 2010;61:269–80. https://doi.org/10.1016/j.phrs.2009.11.012. S1043-6618(09)00281-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  329. Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res. 2003;92:139–50. https://doi.org/10.1161/01.res.0000053618.86362.df.

    Article  CAS  PubMed  Google Scholar 

  330. Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128:191–227. https://doi.org/10.1016/j.pharmthera.2010.04.005. S0163-7258(10)00079-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  331. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha 1 adrenergic response. J Clin Invest. 1983;72:732–8. https://doi.org/10.1172/JCI111023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Knowlton KU, et al. The alpha 1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem. 1993;268:15374–80., S0021-9258(18)82267-0 [pii].

    Article  CAS  PubMed  Google Scholar 

  333. Ai F, et al. Schisandrin B attenuates pressure overload-induced cardiac remodeling in mice by inhibiting the MAPK signaling pathway. Exp Ther Med. 2019;18:4645–52. https://doi.org/10.3892/etm.2019.8154. ETM-0-0-8154 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Esposito G, et al. Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation. 2001;103:1453–8.

    Article  CAS  PubMed  Google Scholar 

  335. You J, et al. Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. Am J Physiol Heart Circ Physiol. 2018;314:H552–62. https://doi.org/10.1152/ajpheart.00212.2017ajpheart.00212.2017 [pii].

    Article  CAS  PubMed  Google Scholar 

  336. Liu Y, et al. Cardiac-specific PID1 overexpression enhances pressure overload-induced cardiac hypertrophy in mice. Cell Physiol Biochem. 2015;35:1975–85. https://doi.org/10.1159/000374005. 000374005 [pii].

    Article  CAS  PubMed  Google Scholar 

  337. Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 2020;21:607–32. https://doi.org/10.1038/s41580-020-0255-7. 10.1038/s41580-020-0255-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  338. Bodart JF, Chopra A, Liang X, Duesbery N. Anthrax, MEK and cancer. Cell Cycle. 2002;1:10–5., 11020115 [pii].

    Article  CAS  PubMed  Google Scholar 

  339. McCubrey JA, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773:1263–84. https://doi.org/10.1016/j.bbamcr.2006.10.001. S0167-4889(06)00315-6 [pii].

    Article  CAS  PubMed  Google Scholar 

  340. Clerk A, Bogoyevitch MA, Anderson MB, Sugden PH. Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem. 1994;269:32848–57., S0021-9258(20)30069-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  341. **ao L, et al. MEK1/2-ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol. 2001;33:779–87. https://doi.org/10.1006/jmcc.2001.1348. S0022-2828(01)91348-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  342. Yue TL, et al. Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J Biol Chem. 2000;275:37895–901. https://doi.org/10.1074/jbc.M007037200. S0021-9258(20)88503-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  343. Cipolletta E, et al. Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy. PLoS One. 2015;10:e0130477. https://doi.org/10.1371/journal.pone.0130477. PONE-D-14-54390 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  344. Heger J, et al. Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes. J Cell Physiol. 2010;224:120–6. https://doi.org/10.1002/jcp.22102.

    Article  CAS  PubMed  Google Scholar 

  345. House SL, et al. Fibroblast growth factor 2 mediates isoproterenol-induced cardiac hypertrophy through activation of the extracellular regulated Kinase. Mol Cell Pharmacol. 2010;2:143–54. https://doi.org/10.4255/mcpharmacol.10.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51:600–6. https://doi.org/10.1016/j.yjmcc.2010.10.033S0022-2828(10)00431-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  347. Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res. 2000;47:23–37. https://doi.org/10.1016/s0008-6363(00)00076-6. S0008-6363(00)00076-6 [pii].

    Article  CAS  PubMed  Google Scholar 

  348. Molkentin JD, Robbins J. With great power comes great responsibility: using mouse genetics to study cardiac hypertrophy and failure. J Mol Cell Cardiol. 2009;46:130–6. https://doi.org/10.1016/j.yjmcc.2008.09.002. S0022-2828(08)00584-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  349. Ruppert C, et al. Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc Natl Acad Sci U S A. 2013;110:7440–5. https://doi.org/10.1073/pnas.12219991101221999110 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  350. Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med. 2009;15:75–83. https://doi.org/10.1038/nm.1893. nm.1893 [pii].

    Article  CAS  PubMed  Google Scholar 

  351. Lorenz K, Schmitt JP, Vidal M, Lohse MJ. Cardiac hypertrophy: targeting Raf/MEK/ERK1/2-signaling. Int J Biochem Cell Biol. 2009;41:2351–5. https://doi.org/10.1016/j.biocel.2009.08.002. S1357-2725(09)00225-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  352. van Berlo JH, Elrod JW, Aronow BJ, Pu WT, Molkentin JD. Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2011;108:12331–6. https://doi.org/10.1073/pnas.1104499108. 1104499108 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  353. Harris IS, et al. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation. 2004;110:718–23. https://doi.org/10.1161/01.CIR.0000138190.50127.6A. 01.CIR.0000138190.50127.6A [pii].

    Article  CAS  PubMed  Google Scholar 

  354. Punn A, Mockridge JW, Farooqui S, Marber MS, Heads RJ. Sustained activation of p42/p44 mitogen-activated protein kinase during recovery from simulated ischaemia mediates adaptive cytoprotection in cardiomyocytes. Biochem J. 2000;350(Pt 3):891–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Esposito G, et al. Induction of mitogen-activated protein kinases is proportional to the amount of pressure overload. Hypertension. 2010;55:137–43. https://doi.org/10.1161/HYPERTENSIONAHA.109.135467. HYPERTENSIONAHA.109.135467 [pii].

    Article  CAS  PubMed  Google Scholar 

  356. Sopontammarak S, et al. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy. Cell Biochem Biophys. 2005;43:61–76. https://doi.org/10.1385/CBB:43:1:061. CBB:43:1:061 [pii].

    Article  CAS  PubMed  Google Scholar 

  357. Rentrop KP, Feit F. Reperfusion therapy for acute myocardial infarction: concepts and controversies from inception to acceptance. Am Heart J. 2015;170:971–80. https://doi.org/10.1016/j.ahj.2015.08.005. S0002-8703(15)00515-3 [pii].

    Article  PubMed  Google Scholar 

  358. Yeh CC, et al. Distinctive ERK and p38 signaling in remote and infarcted myocardium during post-MI remodeling in the mouse. J Cell Biochem. 2010;109:1185–91. https://doi.org/10.1002/jcb.22498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Bogoyevitch MA, et al. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res. 1996;79:162–73.

    Article  CAS  PubMed  Google Scholar 

  360. Liu T, et al. Coronary Microembolization induces Cardiomyocyte apoptosis in swine by activating the LOX-1-dependent mitochondrial pathway and Caspase-8-dependent pathway. J Cardiovasc Pharmacol Ther. 2016;21:209–18. https://doi.org/10.1177/1074248415599265. 1074248415599265 [pii].

    Article  CAS  PubMed  Google Scholar 

  361. Song CL, et al. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1. Oncotarget. 2016; https://doi.org/10.18632/oncotarget.9240. 9240 [pii].

  362. Milano G, et al. A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo. Am J Physiol Heart Circ Physiol. 2007;292:H1828–35. https://doi.org/10.1152/ajpheart.01117.2006. 01117.2006 [pii].

    Article  CAS  PubMed  Google Scholar 

  363. Jeong CW, et al. Curcumin protects against regional myocardial ischemia/reperfusion injury through activation of RISK/GSK-3beta and inhibition of p38 MAPK and JNK. J Cardiovasc Pharmacol Ther. 2012;17:387–94. https://doi.org/10.1177/1074248412438102. 1074248412438102 [pii].

    Article  CAS  PubMed  Google Scholar 

  364. Liu X, Gu J, Fan Y, Shi H, Jiang M. Baicalin attenuates acute myocardial infarction of rats via mediating the mitogen-activated protein kinase pathway. Biol Pharm Bull. 2013;36:988–94., DN/JST.JSTAGE/bpb/b13-00021 [pii].

    Article  CAS  PubMed  Google Scholar 

  365. Zhu Z, et al. All-trans retinoic acid ameliorates myocardial ischemia/reperfusion injury by reducing cardiomyocyte apoptosis. Plos One. 2015;10:e0133414. https://doi.org/10.1371/journal.pone.0133414PONE-D-15-03759 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Yang R, et al. Sodium tanshinone IIA sulfonate protects cardiomyocytes against oxidative stress-mediated apoptosis through inhibiting JNK activation. J Cardiovasc Pharmacol. 2008;51:396–401. https://doi.org/10.1097/FJC.0b013e3181671439. 00005344-200804000-00008 [pii].

    Article  CAS  PubMed  Google Scholar 

  367. Samuel SM, et al. Thioredoxin-1 gene therapy enhances angiogenic signaling and reduces ventricular remodeling in infarcted myocardium of diabetic rats. Circulation. 2010;121:1244–55. https://doi.org/10.1161/CIRCULATIONAHA.109.872481. CIRCULATIONAHA.109.872481 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Liu J, et al. Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem Biophys Res Commun. 2015;463:262–7. https://doi.org/10.1016/j.bbrc.2015.05.042. S0006-291X(15)00957-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  369. Suchal K, et al. Kaempferol attenuates myocardial ischemic injury via inhibition of MAPK signaling pathway in experimental model of myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 2016;2016:7580731. https://doi.org/10.1155/2016/7580731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Zhang N, et al. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Mol Cell Biochem. 2016;417:87–96. https://doi.org/10.1007/s11010-016-2716-z. 10.1007/s11010-016-2716-z [pii].

    Article  CAS  PubMed  Google Scholar 

  371. Rapacciuolo A, et al. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J Am Coll Cardiol. 2001;38:876–82. https://doi.org/10.1016/s0735-1097(01)01433-4. S0735-1097(01)01433-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  372. Zhang S, et al. The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. J Clin Invest. 2003;111:833–41. https://doi.org/10.1172/JCI16290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Villar AV, et al. BAMBI (BMP and activin membrane-bound inhibitor) protects the murine heart from pressure-overload biomechanical stress by restraining TGF-beta signaling. Biochim Biophys Acta. 2013;1832:323–35. https://doi.org/10.1016/j.bbadis.2012.11.007. S0925-4439(12)00258-X [pii].

    Article  CAS  PubMed  Google Scholar 

  374. Satomi-Kobayashi S, et al. Deficiency of nectin-2 leads to cardiac fibrosis and dysfunction under chronic pressure overload. Hypertension. 2009;54:825–31. https://doi.org/10.1161/HYPERTENSIONAHA.109.130443. HYPERTENSIONAHA.109.130443 [pii].

    Article  CAS  PubMed  Google Scholar 

  375. Zhang S, et al. Role of 14-3-3-mediated p38 mitogen-activated protein kinase inhibition in cardiac myocyte survival. Circ Res. 2003;93:1026–8. https://doi.org/10.1161/01.RES.0000104084.88317.91. 01.RES.0000104084.88317.91 [pii].

    Article  CAS  PubMed  Google Scholar 

  376. Zhang Y, et al. Dickkopf-3 attenuates pressure overload-induced cardiac remodelling. Cardiovasc Res. 2014;102:35–45. https://doi.org/10.1093/cvr/cvu004. cvu004 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Sari FR, et al. Attenuation of CHOP-mediated myocardial apoptosis in pressure-overloaded dominant negative p38alpha mitogen-activated protein kinase mice. Cell Physiol Biochem. 2011;27:487–96. https://doi.org/10.1159/000329970. 000329970 [pii].

    Article  CAS  PubMed  Google Scholar 

  378. van Eickels M, et al. 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation. 2001;104:1419–23. https://doi.org/10.1161/hc3601.095577.

    Article  PubMed  Google Scholar 

  379. Wu L, et al. Loss of TRADD attenuates pressure overload-induced cardiac hypertrophy through regulating TAK1/P38 MAPK signalling in mice. Biochem Biophys Res Commun. 2017;483:810–5. https://doi.org/10.1016/j.bbrc.2016.12.104. S0006-291X(16)32164-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  380. Liu J, et al. Pressure overload induces greater hypertrophy and mortality in female mice with p38alpha MAPK inhibition. J Mol Cell Cardiol. 2006;41:680–8. https://doi.org/10.1016/j.yjmcc.2006.07.007. S0022-2828(06)00720-6 [pii].

    Article  CAS  PubMed  Google Scholar 

  381. Gorog DA, et al. Inhibition of p38 MAPK activity fails to attenuate contractile dysfunction in a mouse model of low-flow ischemia. Cardiovasc Res. 2004;61:123–31. https://doi.org/10.1016/j.cardiores.2003.09.034. S0008636303006655 [pii].

    Article  CAS  PubMed  Google Scholar 

  382. Mocanu MM, Baxter GF, Yue Y, Critz SD, Yellon DM. The p38 MAPK inhibitor, SB203580, abrogates ischaemic preconditioning in rat heart but timing of administration is critical. Basic Res Cardiol. 2000;95:472–8. https://doi.org/10.1007/s003950070023.

    Article  CAS  PubMed  Google Scholar 

  383. Nakano A, Cohen MV, Critz S, Downey JM. SB 203580, an inhibitor of p38 MAPK, abolishes infarct-limiting effect of ischemic preconditioning in isolated rabbit hearts. Basic Res Cardiol. 2000;95:466–71. https://doi.org/10.1007/s003950070022.

    Article  CAS  PubMed  Google Scholar 

  384. Melloni C, et al. The study of LoSmapimod treatment on inflammation and InfarCtSizE (SOLSTICE): design and rationale. Am Heart J. 2012;164:646–653 e643. https://doi.org/10.1016/j.ahj.2012.07.030. S0002-8703(12)00581-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  385. O'Donoghue ML, et al. Rationale and design of the LosmApimod To Inhibit p38 MAP kinase as a TherapeUtic target and moDify outcomes after an acute coronary syndromE trial. Am Heart J. 2015;169:622–630 e626. https://doi.org/10.1016/j.ahj.2015.02.012. S0002-8703(15)00115-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  386. Sarov-Blat L, et al. Inhibition of p38 mitogen-activated protein kinase reduces inflammation after coronary vascular injury in humans. Arterioscler Thromb Vasc Biol. 2010;30:2256–63. https://doi.org/10.1161/ATVBAHA.110.209205. ATVBAHA.110.209205 [pii].

    Article  CAS  PubMed  Google Scholar 

  387. Newby LK, et al. Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet. 2014;384:1187–95. https://doi.org/10.1016/S0140-6736(14)60417-7. S0140-6736(14)60417-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  388. O'Donoghue ML, et al. Effect of Losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial. JAMA. 2016;315:1591–9. https://doi.org/10.1001/jama.2016.3609. 2511223 [pii].

    Article  CAS  PubMed  Google Scholar 

  389. Liu W, et al. Deprivation of MKK7 in cardiomyocytes provokes heart failure in mice when exposed to pressure overload. J Mol Cell Cardiol. 2011;50:702–11. https://doi.org/10.1016/j.yjmcc.2011.01.013. S0022-2828(11)00053-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  390. Liu W, et al. Cardiac-specific deletion of mkk4 reveals its role in pathological hypertrophic remodeling but not in physiological cardiac growth. Circ Res. 2009;104:905–14. https://doi.org/10.1161/CIRCRESAHA.108.188292. CIRCRESAHA.108.188292 [pii].

    Article  CAS  PubMed  Google Scholar 

  391. Calamaras TD, et al. Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload. Am J Physiol Heart Circ Physiol. 2019;316:H145–59. https://doi.org/10.1152/ajpheart.00029.2018.

    Article  CAS  PubMed  Google Scholar 

  392. Yan J, et al. Stress signaling JNK2 crosstalk with CaMKII underlies enhanced atrial Arrhythmogenesis. Circ Res. 2018;122:821–35. https://doi.org/10.1161/CIRCRESAHA.117.312536. CIRCRESAHA.117.312536 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Gao X, et al. Transcriptional regulation of stress Kinase JNK2 in pro-arrhythmic CaMKIIdelta expression in the aged atrium. Cardiovasc Res. 2018; https://doi.org/10.1093/cvr/cvy011.

  394. Zhang R, et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat Med. 2005;11:409–17.

    Article  CAS  PubMed  Google Scholar 

  395. Anderson ME. Calmodulin kinase and L-type calcium channels; a recipe for arrhythmias? Trends Cardiovasc Med. 2004;14:152–61. https://doi.org/10.1016/j.tcm.2004.02.005. S1050173804000283 [pii].

    Article  CAS  PubMed  Google Scholar 

  396. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res. 2004;61:448–60. https://doi.org/10.1016/j.cardiores.2003.09.024. S0008636303006540 [pii].

    Article  CAS  PubMed  Google Scholar 

  397. Das A, Salloum FN, ** L, Rao YJ, Kukreja RC. ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. Am J Physiol Heart Circ Physiol. 2009;296:H1236–43. https://doi.org/10.1152/ajpheart.00100.2009. 00100.2009 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Yang X, et al. Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity. Basic Res Cardiol. 2011;106:421–30. https://doi.org/10.1007/s00395-011-0165-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol. 2005;288:H971–6. https://doi.org/10.1152/ajpheart.00374.2004. 00374.2004 [pii].

    Article  CAS  PubMed  Google Scholar 

  400. Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 2002;283:H1481–8. https://doi.org/10.1152/ajpheart.01089.2001. 01089.2001 [pii].

    Article  CAS  PubMed  Google Scholar 

  401. Rossello X, Yellon DM. A critical review on the translational journey of cardioprotective therapies! Int J Cardiol. 2016;220:176–84. https://doi.org/10.1016/j.ijcard.2016.06.131. S0167-5273(16)31141-X [pii].

    Article  PubMed  Google Scholar 

  402. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005;15:69–75, S1050-1738(05)00025-3 [pii]. https://doi.org/10.1016/j.tcm.2005.03.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Declarations

This work was supported by National Institutes of Health [P01-HL06426, R01-AA024769, R01-HL113640, R01-HL146744 to XA].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Ai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ai, X., Yan, J., Bare, D. (2022). Stress Kinase Signaling in Cardiac Myocytes. In: Parinandi, N.L., Hund, T.J. (eds) Cardiovascular Signaling in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-08309-9_3

Download citation

Publish with us

Policies and ethics

Navigation