Calcium-Dependent Signaling in Cardiac Myocytes

  • Chapter
  • First Online:
Cardiovascular Signaling in Health and Disease

Abstract

Calcium (Ca) is a key regulator of cardiac function. Through interactions with various molecular binding partners, Ca controls both acute processes, such as ion channel gating and myofilament contraction, and long-term events such as transcriptional changes that regulate myocardial development, growth, and death. Cardiac myocyte Ca levels are modulated by complex networks of signaling mechanisms and precise subcellular structural organization that fine-tune the myocyte response to any given stimulus and allow for rhythmic contraction. On the other hand, disrupted Ca handling and Ca signaling abnormalities are well-established mediators of contractile dysfunction and transmembrane potential instabilities leading to arrhythmia. In this chapter, we discuss the most recent advances in understanding the complexities of Ca signaling in health and widespread cardiac disease, namely, heart failure and arrhythmia. We specifically focus on novel emerging aspects of Ca/calmodulin-dependent protein kinase II signaling and on ultrastructural changes that have been associated with these disease contexts. Unraveling these spatial and temporal aspects of Ca signaling is key to understanding the profound mechanistic consequences of Ca dysregulation for cardiac myocyte and organ function and imperative to inform future therapies that might improve disease outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

β-AR:

β-Adrenergic receptor

μm:

Micrometer

AA:

Amino acid

AC:

Adenylyl cyclase

AF:

Atrial fibrillation

AP:

Action potential

APD:

Action potential duration

ATP:

Adenosine triphosphate

Bin1:

Amphiphysin II or Bridging Integrator 1

Ca:

Calcium

Ca/CaM:

Calcium-calmodulin

CaM:

Calmodulin

CaMKII:

Calcium/calmodulin-dependent protein kinase II

cAMP:

Cyclic adenosine monophosphate

[Ca]i:

Intracellular calcium concentration

Cav1.2:

L-type calcium channel

Cav3.1-3:

T-type calcium channel

CICR:

Calcium-induced calcium release

CPVT:

Catecholaminergic polymorphic ventricular tachycardia

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cx43:

Connexin-43

DAD:

Delayed afterdepolarization

EAD:

Early afterdepolarization

ECC:

Excitation-contraction coupling

Epac:

Exchange factor directly activated by cAMP

FKBP12.6:

FK506 binding protein 12.6

GLUT:

Glucose transporter

GS:

Stimulatory G protein

HCM:

Hypertrophic cardiomyopathy

HDAC:

Histone deacetylase

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

I/R:

Ischemia/reperfusion

I Ca :

Calcium current

I Ca-L :

L-type calcium current

I Ca-T :

T-type calcium current

I K :

Potassium current

I K1 :

Inward rectifier potassium current

I Na :

Sodium current

I Na,L :

Late sodium current

I Na,T :

Transient sodium current

IP3:

Inositol trisphosphate

IP3R:

Inositol trisphosphate receptor

I ti :

Transient inward current

I to :

Transient outward potassium current

JPH2:

Junctophilin-2

jSR:

Junctional sarcoplasmic reticulum

K:

Potassium

KCa2.2:

Calcium-activated potassium channel

KD:

Dissociation constant

kDa:

Kilodalton

KI:

Knock-in

Kir2.1:

Inward rectifier potassium channel

Kir6.2:

Inward rectifier potassium channel

Kv1.4:

Voltage-gated potassium channel

Kv4.2:

Voltage-gated potassium channel

Kv4.3:

Voltage-gated potassium channel

Kv7.1:

Voltage-gated potassium channel

LTCC:

L-type calcium channel

MEF2:

Myocyte enhancer factor 2

MI:

Myocardial infarction

Na:

Sodium

[Na]i:

Intracellular sodium concentration

NaV:

Voltage-dependent sodium channel

NCX:

Sodium-calcium exchanger

NHE:

Sodium-hydrogen exchanger

NKA:

Sodium/potassium ATPase

nm:

Nanometer

nM:

Nanomolar

NOS:

Nitric oxide synthase

O-GlcNAc:

O-linked β-N-acetylglucosamine

PDE5 :

Phosphodiesterase 5

PKA:

Protein kinase A

PLB:

Phospholamban

PTM:

Posttranslational modification

ROS:

Reactive oxygen species

RyR:

Ryanodine receptor

SCN5A:

Sodium voltage-gated channel alpha subunit 5

SERCA:

Sarco/endoplasmic reticulum calcium ATPase

SGLT:

Sodium-glucose cotransporter

SK2:

Small-conductance Calcium-activated potassium channel

SR:

Sarcoplasmic reticulum

TA:

Triggered action potential

TT:

Transverse (t)-tubule

TTCC:

T-type calcium channel

WT:

Wild-type

References

  1. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

    Article  CAS  PubMed  Google Scholar 

  2. Soeller C, Cannell MB. Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image–processing techniques. Circ Res. 1999;84(3):266–75.

    Article  CAS  PubMed  Google Scholar 

  3. Scriven DRL, Dan P, Moore EDW. Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys J. 2000;79(5):2682–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scriven DRL, Asghari P, Moore EDW. Microarchitecture of the dyad. Cardiovasc Res. 2013;98(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  5. Shen X, van den Brink J, Hou Y, Colli D, Le C, Kolstad TR, MacQuaide N, Carlson CR, Kekenes-Huskey PM, Edwards AG, et al. 3D dSTORM imaging reveals novel detail of ryanodine receptor localization in rat cardiac myocytes. J Physiol. 2019;597(2):399–418.

    Article  CAS  PubMed  Google Scholar 

  6. Setterberg IE, Le C, Frisk M, Li J, Louch WE. The physiology and pathophysiology of T-tubules in the heart. Front Physiol. 2021;12:718404.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wu Y, Gao Z, Chen B, Koval OM, Singh MV, Guan X, Hund TJ, Kutschke W, Sarma S, Grumbach IM, et al. Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proc Natl Acad Sci U S A. 2009;106(14):5972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu Y, Luczak ED, Lee EJ, Hidalgo C, Yang J, Gao Z, Li J, Wehrens XH, Granzier H, Anderson ME. CaMKII effects on inotropic but not lusitropic force frequency responses require phospholamban. J Mol Cell Cardiol. 2012;53(3):429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson ME, Brown JH, Bers DM. CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51(4):468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erickson JR, Pereira L, Wang L, Han G, Ferguson A, Dao K, Copeland RJ, Despa F, Hart GW, Ripplinger CM, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature. 2013;502(7471):372–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Erickson JR, Nichols CB, Uchinoumi H, Stein ML, Bossuyt J, Bers DM. S-Nitrosylation induces both autonomous activation and inhibition of calcium/calmodulin-dependent protein kinase II delta. J Biol Chem. 2015;290(42):25646–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pereira L, Ruiz-Hurtado G, Morel E, Laurent AC, Metrich M, Dominguez-Rodriguez A, Lauton-Santos S, Lucas A, Benitah JP, Bers DM, et al. Epac enhances excitation-transcription coupling in cardiac myocytes. J Mol Cell Cardiol. 2012;52(1):283–91.

    Article  CAS  PubMed  Google Scholar 

  13. Inamdar AA, Inamdar AC. Heart failure: diagnosis, management and utilization. J Clin Med. 2016;5(7):62.

    Article  PubMed Central  CAS  Google Scholar 

  14. Del Buono MG, Buckley L, Abbate A. Primary and secondary diastolic dysfunction in heart failure with preserved ejection fraction. Am J Cardiol. 2018;122(9):1578–87.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jackson SL, Tong X, King RJ, Loustalot F, Hong Y, Ritchey MD. National burden of heart failure events in the United States, 2006 to 2014. Circ Heart Fail. 2018;11(12):e004873.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.

    Article  PubMed  Google Scholar 

  17. Nauta JF, Hummel YM, Tromp J, Ouwerkerk W, van der Meer P, ** X, Lam CSP, Bax JJ, Metra M, Samani NJ, et al. Concentric vs. eccentric remodelling in heart failure with reduced ejection fraction: clinical characteristics, pathophysiology and response to treatment. Eur J Heart Fail. 2020;22(7):1147–55.

    Article  CAS  PubMed  Google Scholar 

  18. Frisk M, Le C, Shen X, Røe ÅT, Hou Y, Manfra O, Silva GJJ, van Hout I, Norden ES, Aronsen JM, et al. Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2021;77(4):405–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baicu CF, Massie BM, Carson PE. Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation. 2011;124(23):2491–501.

    Article  PubMed  Google Scholar 

  20. Katz DH, Beussink L, Sauer AJ, Freed BH, Burke MA, Shah SJ. Prevalence, clinical characteristics, and outcomes associated with eccentric versus concentric left ventricular hypertrophy in heart failure with preserved ejection fraction. Am J Cardiol. 2013;112(8):1158–64.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res. 2019;124(11):1598–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maisel WH, Stevenson LW. Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy. Am J Cardiol. 2003;91(6a):2d–8d.

    Article  PubMed  Google Scholar 

  23. Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM. Calcium in the pathophysiology of atrial fibrillation and heart failure. Front Physiol. 2018;9:1380.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anter E, Jessup M, Callans DJ. Atrial fibrillation and heart failure. Circulation. 2009;119(18):2516–25.

    Article  PubMed  Google Scholar 

  25. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95(8):754–63.

    Article  CAS  PubMed  Google Scholar 

  26. Eisner DA, Caldwell JL, Trafford AW, Hutchings DC. The control of diastolic calcium in the heart. Circ Res. 2020;126(3):395–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kilfoil PJ, Lotteau S, Zhang R, Yue X, Aynaszyan S, Solymani RE, Cingolani E, Marbán E, Goldhaber JI. Distinct features of calcium handling and β-adrenergic sensitivity in heart failure with preserved versus reduced ejection fraction. J Physiol. 2020;598(22):5091–108.

    Article  CAS  PubMed  Google Scholar 

  28. Maltsev VA, Undrovinas A. Late sodium current in failing heart: friend or foe? Prog Biophys Mol Biol. 2008;96(1):421–51.

    Article  CAS  PubMed  Google Scholar 

  29. Grandi E, Herren A. CaMKII-dependent regulation of cardiac Na+ homeostasis. Front Pharmacol. 2014;5:41.

    PubMed  PubMed Central  Google Scholar 

  30. Sossalla S, Fluschnik N, Schotola H, Ort KR, Neef S, Schulte T, Wittkopper K, Renner A, Schmitto JD, Gummert J, et al. Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res. 2010;107(9):1150–61.

    Article  CAS  PubMed  Google Scholar 

  31. Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P. Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ Res. 1999;84(6):713–21.

    Article  CAS  PubMed  Google Scholar 

  32. Kirchhefer U, Schmitz W, Scholz H, Neumann J. Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc Res. 1999;42(1):254–61.

    Article  CAS  PubMed  Google Scholar 

  33. Bers DM. CaMKII inhibition in heart failure makes jump to human. Circ Res. 2010;107(9):1044–6.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH. The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res. 2003;92(8):912–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D, et al. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest. 2009;119(5):1230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res. 2005;97(12):1314–22.

    Article  CAS  PubMed  Google Scholar 

  37. Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, et al. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A. 2009;106(7):2342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lehman SJ, Tal-Grinspan L, Lynn ML, Strom J, Benitez GE, Anderson ME, Tardiff JC. Chronic calmodulin-kinase II activation drives disease progression in mutation-specific hypertrophic cardiomyopathy. Circulation. 2019;139(12):1517–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ljubojevic-Holzer S, Herren AW, Djalinac N, Voglhuber J, Morotti S, Holzer M, Wood BM, Abdellatif M, Matzer I, Sacherer M, et al. CaMKIIdeltaC drives early adaptive Ca(2+) change and late eccentric cardiac hypertrophy. Circ Res. 2020;127(9):1159–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Muller FU, Schmitz W, et al. Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest. 2009;119(7):1940–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 2012;125(17):2059–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL, Wang Q, De Almeida AC, Skapura DG, Anderson ME, et al. Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation. 2010;122(25):2669–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wagner S, Maier LS, Bers DM. Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. Circ Res. 2015;116(12):1956–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weinreuter M, Kreusser MM, Beckendorf J, Schreiter FC, Leuschner F, Lehmann LH, Hofmann KP, Rostosky JS, Diemert N, Xu C, et al. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury. EMBO Mol Med. 2014;6(10):1231–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ling H, Gray CB, Zambon AC, Grimm M, Gu Y, Dalton N, Purcell NH, Peterson K, Brown JH. Ca2+/calmodulin-dependent protein kinase II delta mediates myocardial ischemia/reperfusion injury through nuclear factor-kappaB. Circ Res. 2013;112(6):935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pellicena P, Schulman H. CaMKII inhibitors: from research tools to therapeutic agents. Front Pharmacol. 2014;5:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yuchi Z, Lau K, Van Petegem F. Disease mutations in the ryanodine receptor central region: crystal structures of a phosphorylation hot spot domain. Structure. 2012;20(7):1201–11.

    Article  CAS  PubMed  Google Scholar 

  48. Guo T, Zhang T, Mestril R, Bers DM. Ca2+/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res. 2006;99(4):398–406.

    Article  CAS  PubMed  Google Scholar 

  49. Purohit A, Rokita AG, Guan X, Chen B, Koval OM, Voigt N, Neef S, Sowa T, Gao Z, Luczak ED, et al. Oxidized Ca(2+)/calmodulin-dependent protein kinase II triggers atrial fibrillation. Circulation. 2013;128(16):1748–57.

    Article  CAS  PubMed  Google Scholar 

  50. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM. Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res. 2001;88(11):1159–67.

    Article  CAS  PubMed  Google Scholar 

  51. Uchinoumi H, Yang Y, Oda T, Li N, Alsina KM, Puglisi JL, Chen-Izu Y, Cornea RL, Wehrens XHT, Bers DM. CaMKII-dependent phosphorylation of RyR2 promotes targetable pathological RyR2 conformational shift. J Mol Cell Cardiol. 2016;98:62–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Respress JL, van Oort RJ, Li N, Rolim N, Dixit SS, deAlmeida A, Voigt N, Lawrence WS, Skapura DG, Skardal K, et al. Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ Res. 2012;110(11):1474–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA. Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem. 2005;280(16):15912–20.

    Article  CAS  PubMed  Google Scholar 

  54. Maxwell JT, Natesan S, Mignery GA. Modulation of inositol 1,4,5-trisphosphate receptor type 2 channel activity by Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation. J Biol Chem. 2012;287(47):39419–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bers DM. Ca(2)(+)-calmodulin-dependent protein kinase II regulation of cardiac excitation-transcription coupling. Heart Rhythm. 2011;8(7):1101–4.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Joiner ML, Koval OM, Li J, He BJ, Allamargot C, Gao Z, Luczak ED, Hall DD, Fink BD, Chen B, et al. CaMKII determines mitochondrial stress responses in heart. Nature. 2012;491(7423):269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fieni F, Johnson DE, Hudmon A, Kirichok Y. Mitochondrial Ca2+ uniporter and CaMKII in heart. Nature. 2014;513(7519):E1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wegener AD, Simmerman HK, Liepnieks J, Jones LR. Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles. Generation of a low resolution model of phospholamban structure. J Biol Chem. 1986;261(11):5154–9.

    Article  CAS  PubMed  Google Scholar 

  59. Mattiazzi A, Kranias EG. The role of CaMKII regulation of phospholamban activity in heart disease. Front Pharmacol. 2014;5:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Vila-Petroff M, Mundina-Weilenmann C, Lezcano N, Snabaitis AK, Huergo MA, Valverde CA, Avkiran M, Mattiazzi A. Ca(2+)/calmodulin-dependent protein kinase II contributes to intracellular pH recovery from acidosis via Na(+)/H(+) exchanger activation. J Mol Cell Cardiol. 2010;49(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  61. Tong CW, Wu X, Liu Y, Rosas PC, Sadayappan S, Hudmon A, Muthuchamy M, Powers PA, Valdivia HH, Moss RL. Phosphoregulation of cardiac inotropy via myosin binding protein-C during increased pacing frequency or beta1-adrenergic stimulation. Circ Heart Fail. 2015;8(3):595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cazorla O, Lucas A, Poirier F, Lacampagne A, Lezoualc’h F. The cAMP binding protein Epac regulates cardiac myofilament function. Proc Natl Acad Sci U S A. 2009;106(33):14144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eikemo H, Moltzau LR, Hussain RI, Nguyen CH, Qvigstad E, Levy FO, Skomedal T, Osnes JB. CaMKII in addition to MLCK contributes to phosphorylation of regulatory light chain in cardiomyocytes. Biochem Biophys Res Commun. 2016;471(1):219–25.

    Article  CAS  PubMed  Google Scholar 

  64. Hamdani N, Krysiak J, Kreusser MM, Neef S, Dos Remedios CG, Maier LS, Kruger M, Backs J, Linke WA. Crucial role for Ca2(+)/calmodulin-dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation. Circ Res. 2013;112(4):664–74.

    Article  CAS  PubMed  Google Scholar 

  65. Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol. 2019;127:246–59.

    Article  CAS  PubMed  Google Scholar 

  66. Anderson ME, Braun AP, Schulman H, Premack BA. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca(2+)-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ Res. 1994;75(5):854–61.

    Article  CAS  PubMed  Google Scholar 

  67. Yuan W, Bers DM. Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am J Phys. 1994;267(3 Pt 2):H982–93.

    CAS  Google Scholar 

  68. Guo J, Duff HJ. Calmodulin kinase II accelerates L-type Ca2+ current recovery from inactivation and compensates for the direct inhibitory effect of [Ca2+]i in rat ventricular myocytes. J Physiol. 2006;574(Pt 2):509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bers DM, Morotti S. Ca(2+) current facilitation is CaMKII-dependent and has arrhythmogenic consequences. Front Pharmacol. 2014;5:144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Hashambhoy YL, Winslow RL, Greenstein JL. CaMKII-induced shift in modal gating explains L-type Ca(2+) current facilitation: a modeling study. Biophys J. 2009;96(5):1770–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hashambhoy YL, Greenstein JL, Winslow RL. Role of CaMKII in RyR leak, EC coupling and action potential duration: a computational model. J Mol Cell Cardiol. 2010;49(4):617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Welsby PJ, Wang H, Wolfe JT, Colbran RJ, Johnson ML, Barrett PQ. A mechanism for the direct regulation of T-type calcium channels by Ca2+/calmodulin-dependent kinase II. J Neurosci. 2003;23(31):10116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wolfe JT, Wang H, Perez-Reyes E, Barrett PQ. Stimulation of recombinant Ca(v)3.2, T-type, Ca(2+) channel currents by CaMKIIgamma(C). J Physiol. 2002;538(Pt 2):343–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wagner S, Dybkova N, Rasenack EC, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss G, Brown JH, et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest. 2006;116(12):3127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Glynn P, Musa H, Wu X, Unudurthi SD, Little S, Qian L, Wright PJ, Radwanski PB, Gyorke S, Mohler PJ, et al. Voltage-gated sodium channel phosphorylation at Ser571 regulates late current, arrhythmia, and cardiac function in vivo. Circulation. 2015;132(7):567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moreno JD, Yang PC, Bankston JR, Grandi E, Bers DM, Kass RS, Clancy CE. Ranolazine for congenital and acquired late INa linked arrhythmias: in silico pharmacologic screening. Circ Res. 2013;113(7):e50–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wagner M, Rudakova E, Schutz V, Frank M, Ehmke H, Volk T. Larger transient outward K(+) current and shorter action potential duration in Galpha(11) mutant mice. Pflugers Arch. 2010;459(4):607–18.

    Article  CAS  PubMed  Google Scholar 

  78. Qu Z, Karagueuzian HS, Garfinkel A, Weiss JN. Effects of Na(+) channel and cell coupling abnormalities on vulnerability to reentry: a simulation study. Am J Physiol Heart Circ Physiol. 2004;286(4):H1310–21.

    Article  CAS  PubMed  Google Scholar 

  79. **e F, Qu Z, Garfinkel A, Weiss JN. Electrophysiological heterogeneity and stability of reentry in simulated cardiac tissue. Am J Physiol Heart Circ Physiol. 2001;280(2):H535–45.

    Article  CAS  PubMed  Google Scholar 

  80. King JH, Zhang Y, Lei M, Grace AA, Huang CL, Fraser JA. Atrial arrhythmia, triggering events and conduction abnormalities in isolated murine RyR2-P2328S hearts. Acta Physiol (Oxf). 2013;207(2):308–23.

    Article  CAS  Google Scholar 

  81. King JH, Wickramarachchi C, Kua K, Du Y, Jeevaratnam K, Matthews HR, Grace AA, Huang CL, Fraser JA. Loss of Nav1.5 expression and function in murine atria containing the RyR2-P2328S gain-of-function mutation. Cardiovasc Res. 2013;99(4):751–9.

    Article  CAS  PubMed  Google Scholar 

  82. Grandi E, Puglisi JL, Wagner S, Maier LS, Severi S, Bers DM. Simulation of Ca-calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials. Biophys J. 2007;93(11):3835–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. **e Y, Liao Z, Grandi E, Shiferaw Y, Bers DM. Slow [Na]i changes and positive feedback between membrane potential and [Ca]i underlie intermittent early afterdepolarizations and arrhythmias. Circ Arrhythm Electrophysiol. 2015;8(6):1472–80.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Krogh-Madsen T, Christini DJ. Slow [Na(+)]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model. Chaos. 2017;27(9):093907.

    Article  PubMed  CAS  Google Scholar 

  85. Christensen MD, Dun W, Boyden PA, Anderson ME, Mohler PJ, Hund TJ. Oxidized calmodulin kinase II regulates conduction following myocardial infarction: a computational analysis. PLoS Comput Biol. 2009;5(12):e1000583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. **e Y, Sato D, Garfinkel A, Qu Z, Weiss JN. So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophys J. 2010;99(5):1408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Glukhov AV, Fedorov VV, Kalish PW, Ravikumar VK, Lou Q, Janks D, Schuessler RB, Moazami N, Efimov IR. Conduction remodeling in human end-stage nonischemic left ventricular cardiomyopathy. Circulation. 2012;125(15):1835–47.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Huang RY, Laing JG, Kanter EM, Berthoud VM, Bao M, Rohrs HW, Townsend RR, Yamada KA. Identification of CaMKII phosphorylation sites in Connexin43 by high-resolution mass spectrometry. J Proteome Res. 2011;10(3):1098–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu MB, Priori SG, Qu Z, Weiss JN. Stabilizer cell gene therapy: a less-is-more strategy to prevent cardiac arrhythmias. Circ Arrhythm Electrophysiol. 2020;13(9):e008420.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res. 2006;98(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  91. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest. 2006;116(3):675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun. 2004;322(4):1178–91.

    Article  CAS  PubMed  Google Scholar 

  93. Morotti S, Edwards AG, McCulloch AD, Bers DM, Grandi E. A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII. J Physiol. 2014;592(6):1181–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hegyi B, Pölönen R-P, Hellgren KT, Ko CY, Ginsburg KS, Bossuyt J, Mercola M, Bers DM. Cardiomyocyte Na(+) and Ca(2+) mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol. 2021;116(1):58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pezhouman A, Singh N, Song Z, Nivala M, Eskandari A, Cao H, Bapat A, Ko CY, Nguyen T, Qu Z, et al. Molecular basis of hypokalemia-induced ventricular fibrillation. Circulation. 2015;132(16):1528–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bayer KU, Harbers K, Schulman H. alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J. 1998;17(19):5598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hudmon A, Schulman H, Kim J, Maltez JM, Tsien RW, Pitt GS. CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol. 2005;171(3):537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Singh P, Salih M, Tuana BS. Alpha-kinase anchoring protein alphaKAP interacts with SERCA2A to spatially position Ca2+/calmodulin-dependent protein kinase II and modulate phospholamban phosphorylation. J Biol Chem. 2009;284(41):28212–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Meyer T, Hanson PI, Stryer L, Schulman H. Calmodulin trap** by calcium-calmodulin-dependent protein kinase. Science. 1992;256(5060):1199–202.

    Article  CAS  PubMed  Google Scholar 

  100. Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK, Waxham MN. Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. J Biol Chem. 2004;279(13):12484–94.

    Article  CAS  PubMed  Google Scholar 

  101. Kreusser MM, Lehmann LH, Keranov S, Hoting MO, Kohlhaas M, Reil JC, Neumann K, Schneider MD, Hill JA, Dobrev D, et al. The cardiac CaMKII genes delta and gamma contribute redundantly to adverse remodeling but inhibit calcineurin-induced myocardial hypertrophy. Circulation. 2014;130(15):1262–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grimm M, Ling H, Willeford A, Pereira L, Gray CB, Erickson JR, Sarma S, Respress JL, Wehrens XH, Bers DM, et al. CaMKIIdelta mediates beta-adrenergic effects on RyR2 phosphorylation and SR Ca(2+) leak and the pathophysiological response to chronic beta-adrenergic stimulation. J Mol Cell Cardiol. 2015;85:282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Coultrap SJ, Zaegel V, Bayer KU. CaMKII isoforms differ in their specific requirements for regulation by nitric oxide. FEBS Lett. 2014;588(24):4672–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Erickson JR, Patel R, Ferguson A, Bossuyt J, Bers DM. Fluorescence resonance energy transfer-based sensor Camui provides new insight into mechanisms of calcium/calmodulin-dependent protein kinase II activation in intact cardiomyocytes. Circ Res. 2011;109(7):729–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Palomeque J, Rueda OV, Sapia L, Valverde CA, Salas M, Petroff MV, Mattiazzi A. Angiotensin II-induced oxidative stress resets the Ca2+ dependence of Ca2+-calmodulin protein kinase II and promotes a death pathway conserved across different species. Circ Res. 2009;105(12):1204–12.

    Article  CAS  PubMed  Google Scholar 

  106. Gray CB, Heller BJ. CaMKIIdelta subtypes: localization and function. Front Pharmacol. 2014;5:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Hudmon A, Schulman H. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem. 2002;71:473–510.

    Article  CAS  PubMed  Google Scholar 

  108. Lai Y, Nairn AC, Gorelick F, Greengard P. Ca2+/calmodulin-dependent protein kinase II: identification of autophosphorylation sites responsible for generation of Ca2+/calmodulin-independence. Proc Natl Acad Sci U S A. 1987;84(16):5710–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun J, Steenbergen C, Murphy E. S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal. 2006;8(9–10):1693–705.

    Article  CAS  PubMed  Google Scholar 

  110. Simon M, Ko CY, Rebbeck RT, Baidar S, Cornea RL, Bers DM. CaMKIIdelta post-translational modifications increase affinity for calmodulin inside cardiac ventricular myocytes. J Mol Cell Cardiol. 2021;161:53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lu S, Liao Z, Lu X, Katschinski DM, Mercola M, Chen J, Heller Brown J, Molkentin JD, Bossuyt J, Bers DM. Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes. Circ Res. 2020;126(10):e80–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hegyi B, Fasoli A, Ko CY, Van BW, Alim CC, Shen EY, Ciccozzi MM, Tapa S, Ripplinger CM, Erickson JR, et al. CaMKII serine 280 O-GlcNAcylation links diabetic hyperglycemia to proarrhythmia. Circ Res. 2021;129(1):98–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mesubi OO, Rokita AG, Abrol N, Wu Y, Chen B, Wang Q, Granger JM, Tucker-Bartley A, Luczak ED, Murphy KR, et al. Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. J Clin Invest. 2021;131(2):e95747.

    Article  CAS  PubMed Central  Google Scholar 

  114. Hegyi B, Ko CY, Bossuyt J, Bers DM. Two-hit mechanism of cardiac arrhythmias in diabetic hyperglycemia: reduced repolarization reserve, neurohormonal stimulation and heart failure exacerbate susceptibility. Cardiovasc Res. 2021;117(14):2781–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wood BM, Simon M, Galice S, Alim CC, Ferrero M, Pinna NN, Bers DM, Bossuyt J. Cardiac CaMKII activation promotes rapid translocation to its extra-dyadic targets. J Mol Cell Cardiol. 2018;125:18–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wescott AP, Jafri MS, Lederer WJ, Williams GS. Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling. J Mol Cell Cardiol. 2016;92:82–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Galice S, **e Y, Yang Y, Sato D, Bers DM. Size matters: ryanodine receptor cluster size affects arrhythmogenic sarcoplasmic reticulum calcium release. J Am Heart Assoc. 2018;7(13):e008724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. **e Y, Yang Y, Galice S, Bers DM, Sato D. Size matters: ryanodine receptor cluster size heterogeneity potentiates calcium waves. Biophys J. 2019;116(3):530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brette F, Salle L, Orchard CH. Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophys J. 2006;90(1):381–9.

    Article  CAS  PubMed  Google Scholar 

  120. Bhargava A, Lin X, Novak P, Mehta K, Korchev Y, Delmar M, Gorelik J. Super-resolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte. Circ Res. 2013;112(8):1112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Øyehaug L, Loose KØ, Jølle GF, Røe ÅT, Sjaastad I, Christensen G, Sejersted OM, Louch WE. Synchrony of cardiomyocyte Ca(2+) release is controlled by T-tubule organization, SR Ca(2+) content, and ryanodine receptor Ca(2+) sensitivity. Biophys J. 2013;104(8):1685–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Simpson FO, Oertelis SJ. The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system. J Cell Biol. 1962;12(1):91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cannell MB, Crossman DJ, Soeller C. Effect of changes in action potential spike configuration, junctional sarcoplasmic reticulum micro-architecture and altered t-tubule structure in human heart failure. J Muscle Res Cell Motil. 2006;27(5–7):297–306.

    Article  CAS  PubMed  Google Scholar 

  124. Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ, Korchev YE, Harding SE, Gorelik J. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A. 2009;106(16):6854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wei S, Guo A, Chen B, Kutschke W, **e YP, Zimmerman K, Weiss RM, Anderson ME, Cheng H, Song LS. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res. 2010;107(4):520–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Caldwell JL, Smith CE, Taylor RF, Kitmitto A, Eisner DA, Dibb KM, Trafford AW. Dependence of cardiac transverse tubules on the BAR domain protein amphiphysin II (BIN-1). Circ Res. 2014;115(12):986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Seidel T, Navankasattusas S, Ahmad A, Diakos NA, Xu WD, Tristani-Firouzi M, Bonios MJ, Taleb I, Li DY, Selzman CH, et al. Sheet-like remodeling of the transverse tubular system in human heart failure impairs excitation-contraction coupling and functional recovery by mechanical unloading. Circulation. 2017;135(17):1632–45.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Crossman DJ, Ruygrok PN, Soeller C, Cannell MB. Changes in the organization of excitation-contraction coupling structures in failing human heart. PLoS One. 2011;6(3):e17901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. He J, Conklin MW, Foell JD, Wolff MR, Haworth RA, Coronado R, Kamp TJ. Reduction in density of transverse tubules and L-type Ca(2+) channels in canine tachycardia-induced heart failure. Cardiovasc Res. 2001;49(2):298–307.

    Article  CAS  PubMed  Google Scholar 

  130. Briston SJ, Caldwell JL, Horn MA, Clarke JD, Richards MA, Greensmith DJ, Graham HK, Hall MC, Eisner DA, Dibb KM, et al. Impaired beta-adrenergic responsiveness accentuates dysfunctional excitation-contraction coupling in an ovine model of tachypacing-induced heart failure. J Physiol. 2011;589(Pt 6):1367–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Song L-S, Sobie EA, McCulle S, Lederer WJ, Balke CW, Cheng H. Orphaned ryanodine receptors in the failing heart. Proc Natl Acad Sci U S A. 2006;103(11):4305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li H, Lichter JG, Seidel T, Tomaselli GF, Bridge JHB, Sachse FB. Cardiac resynchronization therapy reduces subcellular heterogeneity of ryanodine receptors, T-tubules, and Ca2+ Sparks produced by dyssynchronous heart failure. Circ Heart Fail. 2015;8(6):1105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sachse FB, Torres NS, Savio-Galimberti E, Aiba T, Kass DA, Tomaselli GF, Bridge JH. Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy. Circ Res. 2012;110(4):588–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kolstad TR, van den Brink J, MacQuaide N, Lunde PK, Frisk M, Aronsen JM, Norden ES, Cataliotti A, Sjaastad I, Sejersted OM, et al. Ryanodine receptor dispersion disrupts Ca(2+) release in failing cardiac myocytes. elife. 2018;7:e39427.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hou Y, Bai J, Shen X, de Langen O, Li A, Lal S, Dos Remedios CG, Baddeley D, Ruygrok PN, Soeller C, et al. Nanoscale organisation of ryanodine receptors and Junctophilin-2 in the failing human heart. Front Physiol. 2021;12:724372.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000;101(4):365–76.

    Article  CAS  PubMed  Google Scholar 

  137. Chen-Izu Y, Ward CW, Stark W Jr, Banyasz T, Sumandea MP, Balke CW, Izu LT, Wehrens XH. Phosphorylation of RyR2 and shortening of RyR2 cluster spacing in spontaneously hypertensive rat with heart failure. Am J Physiol Heart Circ Physiol. 2007;293(4):H2409–17.

    Article  PubMed  CAS  Google Scholar 

  138. Dries E, Santiago DJ, Gilbert G, Lenaerts I, Vandenberk B, Nagaraju CK, Johnson DM, Holemans P, Roderick HL, Macquaide N, et al. Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons. Cardiovasc Res. 2018;114(11):1512–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Forbes MS, Hawkey LA, Sperelakis N. The transverse-axial tubular system (TATS) of mouse myocardium: its morphology in the develo** and adult animal. Am J Anat. 1984;170(2):143–62.

    Article  CAS  PubMed  Google Scholar 

  140. Ogata T, Yamasaki Y. High-resolution scanning electron microscopic studies on the three-dimensional structure of the transverse-axial tubular system, sarcoplasmic reticulum and intercalated disc of the rat myocardium. Anat Rec. 1990;228(3):277–87.

    Article  CAS  PubMed  Google Scholar 

  141. Pinali C, Bennett H, Davenport JB, Trafford AW, Kitmitto A. Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: this organization is perturbed in heart failure. Circ Res. 2013;113(11):1219–30.

    Article  CAS  PubMed  Google Scholar 

  142. Rog-Zielinska EA, Moss R, Kaltenbacher W, Greiner J, Verkade P, Seemann G, Kohl P, Cannell MB. Nano-scale morphology of cardiomyocyte t-tubule/sarcoplasmic reticulum junctions revealed by ultra-rapid high-pressure freezing and electron tomography. J Mol Cell Cardiol. 2021;153:86–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K. Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell. 2000;6(1):11–22.

    CAS  PubMed  Google Scholar 

  144. van Oort RJ, Garbino A, Wang W, Dixit SS, Landstrom AP, Gaur N, De Almeida AC, Skapura DG, Rudy Y, Burns AR, et al. Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation. 2011;123(9):979–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Gross P, Johnson J, Romero CM, Eaton DM, Poulet C, Sanchez-Alonso J, Lucarelli C, Ross J, Gibb AA, Garbincius JF, et al. Interaction of the joining region in Junctophilin-2 with the L-type Ca(2+) channel is pivotal for cardiac dyad assembly and intracellular Ca(2+) dynamics. Circ Res. 2021;128(1):92–114.

    Article  CAS  PubMed  Google Scholar 

  146. Hong T, Yang H, Zhang SS, Cho HC, Kalashnikova M, Sun B, Zhang H, Bhargava A, Grabe M, Olgin J, et al. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med. 2014;20(6):624–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Savio-Galimberti E, Frank J, Inoue M, Goldhaber JI, Cannell MB, Bridge JHB, Sachse FB. Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images. Biophys J. 2008;95(4):2053–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Brette F, Orchard C. T-tubule function in mammalian cardiac myocytes. Circ Res. 2003;92(11):1182–92.

    Article  CAS  PubMed  Google Scholar 

  149. Hong T, Shaw RM. Cardiac T-tubule microanatomy and function. Physiol Rev. 2017;97(1):227–52.

    Article  PubMed  Google Scholar 

  150. Rog-Zielinska EA, Scardigli M, Peyronnet R, Zgierski-Johnston CM, Greiner J, Madl J, O’Toole ET, Morphew M, Hoenger A, Sacconi L, et al. Beat-by-beat cardiomyocyte T-tubule deformation drives tubular content exchange. Circ Res. 2021;128(2):203–15.

    Article  CAS  PubMed  Google Scholar 

  151. Louch WE, Mork HK, Sexton J, Stromme TA, Laake P, Sjaastad I, Sejersted OM. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol. 2006;574(Pt 2):519–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ibrahim M, Navaratnarajah M, Siedlecka U, Rao C, Dias P, Moshkov AV, Gorelik J, Yacoub MH, Terracciano CM. Mechanical unloading reverses transverse tubule remodelling and normalizes local Ca(2+)-induced Ca(2+)release in a rodent model of heart failure. Eur J Heart Fail. 2012;14(6):571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wagner E, Lauterbach MA, Kohl T, Westphal V, Williams GS, Steinbrecher JH, Streich JH, Korff B, Tuan HT, Hagen B, et al. Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ Res. 2012;111(4):402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pinali C, Malik N, Davenport JB, Allan LJ, Murfitt L, Iqbal MM, Boyett MR, Wright EJ, Walker R, Zhang Y, et al. Post-myocardial infarction T-tubules form enlarged branched structures with dysregulation of Junctophilin-2 and bridging integrator 1 (BIN-1). J Am Heart Assoc. 2017;6(5):e004834.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lipsett DB, Frisk M, Aronsen JM, Nordén ES, Buonarati OR, Cataliotti A, Hell JW, Sjaastad I, Christensen G, Louch WE. Cardiomyocyte substructure reverts to an immature phenotype during heart failure. J Physiol. 2019;597(7):1833–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lawless M, Caldwell JL, Radcliffe EJ, Smith CER, Madders GWP, Hutchings DC, Woods LS, Church SJ, Unwin RD, Kirkwood GJ, et al. Phosphodiesterase 5 inhibition improves contractile function and restores transverse tubule loss and catecholamine responsiveness in heart failure. Sci Rep. 2019;9(1):6801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sacconi L, Ferrantini C, Lotti J, Coppini R, Yan P, Loew LM, Tesi C, Cerbai E, Poggesi C, Pavone FS. Action potential propagation in transverse-axial tubular system is impaired in heart failure. Proc Natl Acad Sci U S A. 2012;109(15):5815–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wu HD, Xu M, Li RC, Guo L, Lai YS, Xu SM, Li SF, Lü QL, Li LL, Zhang HB, et al. Ultrastructural remodelling of Ca(2+) signalling apparatus in failing heart cells. Cardiovasc Res. 2012;95(4):430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang HB, Li RC, Xu M, Xu SM, Lai YS, Wu HD, **e XJ, Gao W, Ye H, Zhang YY, et al. Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure. Cardiovasc Res. 2013;98(2):269–76.

    Article  CAS  PubMed  Google Scholar 

  160. Louch WE, Bito V, Heinzel FR, Macianskiene R, Vanhaecke J, Flameng W, Mubagwa K, Sipido KR. Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc Res. 2004;62(1):63–73.

    Article  CAS  PubMed  Google Scholar 

  161. Kemi OJ, Hoydal MA, Macquaide N, Haram PM, Koch LG, Britton SL, Ellingsen O, Smith GL, Wisloff U. The effect of exercise training on transverse tubules in normal, remodeled, and reverse remodeled hearts. J Cell Physiol. 2011;226(9):2235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.

    Article  PubMed  Google Scholar 

  163. Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med. 2020;12(10):e10865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Crossman DJ, Shen X, Jüllig M, Munro M, Hou Y, Middleditch M, Shrestha D, Li A, Lal S, Dos Remedios CG, et al. Increased collagen within the transverse tubules in human heart failure. Cardiovasc Res. 2017;113(8):879–91.

    Article  CAS  PubMed  Google Scholar 

  165. De La Mata A, Tajada S, O’Dwyer S, Matsumoto C, Dixon RE, Hariharan N, Moreno CM, Santana LF. BIN1 induces the formation of T-tubules and adult-like Ca(2+) release units in develo** cardiomyocytes. Stem Cells. 2019;37(1):54–64.

    Article  CAS  Google Scholar 

  166. Hong TT, Smyth JW, Gao D, Chu KY, Vogan JM, Fong TS, Jensen BC, Colecraft HM, Shaw RM. BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol. 2010;8(2):e1000312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Reynolds JO, Quick AP, Wang Q, Beavers DL, Philippen LE, Showell J, Barreto-Torres G, Thuerauf DJ, Doroudgar S, Glembotski CC, et al. Junctophilin-2 gene therapy rescues heart failure by normalizing RyR2-mediated Ca2 + release. Int J Cardiol. 2016;225:371–80.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Hong TT, Smyth JW, Chu KY, Vogan JM, Fong TS, Jensen BC, Fang K, Halushka MK, Russell SD, Colecraft H, et al. BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm. 2012;9(5):812–20.

    Article  PubMed  Google Scholar 

  169. Ibrahim M, Siedlecka U, Buyandelger B, Harada M, Rao C, Moshkov A, Bhargava A, Schneider M, Yacoub MH, Gorelik J, et al. A critical role for Telethonin in regulating t-tubule structure and function in the mammalian heart. Hum Mol Genet. 2013;22(2):372–83.

    Article  CAS  PubMed  Google Scholar 

  170. Lyon AR, Nikolaev VO, Miragoli M, Sikkel MB, Paur H, Benard L, Hulot JS, Kohlbrenner E, Hajjar RJ, Peters NS, et al. Plasticity of surface structures and beta(2)-adrenergic receptor localization in failing ventricular cardiomyocytes during recovery from heart failure. Circ Heart Fail. 2012;5(3):357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang C, Chen B, Wang Y, Guo A, Tang Y, Khataei T, Shi Y, Kutschke WJ, Zimmerman K, Weiss RM, et al. MG53 is dispensable for T-tubule maturation but critical for maintaining T-tubule integrity following cardiac stress. J Mol Cell Cardiol. 2017;112:123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Scriven DRL, Asghari P, Schulson MN, Moore EDW. Analysis of Ca(v)1.2 and ryanodine receptor clusters in rat ventricular myocytes. Biophys J. 2010;99(12):3923–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jayasinghe Isuru D, Baddeley D, Kong Cherrie H, Wehrens Xander H, Cannell Mark B, Soeller C. Nanoscale organization of junctophilin-2 and ryanodine receptors within peripheral couplings of rat ventricular cardiomyocytes. Biophys J. 2012;102(5):L19–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Asghari P, Scriven DR, Ng M, Panwar P, Chou KC, van Petegem F, Moore ED. Cardiac ryanodine receptor distribution is dynamic and changed by auxiliary proteins and post-translational modification. Elife. 2020;9:e51602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fu Y, Shaw SA, Naami R, Vuong CL, Basheer WA, Guo X, Hong T. Isoproterenol promotes rapid ryanodine receptor movement to bridging integrator 1 (BIN1)-organized dyads. Circulation. 2016;133(4):388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wehrens XH, Lehnart SE, Reiken S, Vest JA, Wronska A, Marks AR. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci U S A. 2006;103(3):511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sheard TMD, Hurley ME, Colyer J, White E, Norman R, Pervolaraki E, Narayanasamy KK, Hou Y, Kirton HM, Yang Z, et al. Three-dimensional and chemical map** of intracellular signaling nanodomains in health and disease with enhanced expansion microscopy. ACS Nano. 2019;13(2):2143–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Terentyev D, Györke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, Carcache de Blanco E, Khanna S, Sen CK, Cardounel AJ, et al. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res. 2008;103(12):1466–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Benitah J-P, Perrier R, Mercadier J-J, Pereira L, Gómez AM. RyR2 and calcium release in heart failure. Front Physiol. 2021;12:734210.

    Google Scholar 

  180. Zima AV, Bovo E, Bers DM, Blatter LA. Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. J Physiol. 2010;588(Pt 23):4743–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O’Rourke B, Kass DA, Marbán E, Shorofsky SR, Tomaselli GF, William BC. Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol. 2007;292(3):H1607–H18.

    Article  CAS  PubMed  Google Scholar 

  182. Wilson LD, Jeyaraj D, Wan X, Hoeker GS, Said TH, Gittinger M, Laurita KR, Rosenbaum DS. Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. Heart Rhythm. 2009;6(2):251–9.

    Article  PubMed  Google Scholar 

  183. Crocini C, Coppini R, Ferrantini C, Yan P, Loew LM, Tesi C, Cerbai E, Poggesi C, Pavone FS, Sacconi L. Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proc Natl Acad Sci U S A. 2014;111(42):15196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Louch WE, Hake J, Mørk HK, Hougen K, Skrbic B, Ursu D, Tønnessen T, Sjaastad I, Sejersted OM. Slow Ca2+ sparks de-synchronize Ca2+ release in failing cardiomyocytes: evidence for altered configuration of Ca2+ release units? J Mol Cell Cardiol. 2013;58:41–52.

    Article  CAS  PubMed  Google Scholar 

  185. Nivala M, Song Z, Weiss JN, Qu Z. T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling. J Mol Cell Cardiol. 2015;79:32–41.

    Article  CAS  PubMed  Google Scholar 

  186. Yang Z, Pascarel C, Steele DS, Komukai K, Brette F, Orchard CH. Na+-Ca2+ exchange activity is localized in the T-tubules of rat ventricular myocytes. Circ Res. 2002;91(4):315–22.

    Article  CAS  PubMed  Google Scholar 

  187. Nikolova AP, Hitzeman TC, Baum R, Caldaruse AM, Agvanian S, **e Y, Geft DR, Chang DH, Moriguchi JD, Hage A, et al. Association of a novel diagnostic biomarker, the plasma cardiac bridging integrator 1 score, with heart failure with preserved ejection fraction and cardiovascular hospitalization. JAMA Cardiol. 2018;3(12):1206–10.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Hitzeman TC, **e Y, Zadikany RH, Nikolova AP, Baum R, Caldaruse AM, Agvanian S, Melmed GY, McGovern DPB, Geft DR, et al. cBIN1 score (CS) identifies ambulatory HFrEF patients and predicts cardiovascular events. Front Physiol. 2020;11:503.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Liu Y, Zhou K, Li J, Agvanian S, Caldaruse A-M, Shaw S, Hitzeman TC, Shaw RM, Hong T. In mice subjected to chronic stress, exogenous cBIN1 preserves calcium-handling machinery and cardiac function. JACC Basic Transl Sci. 2020;5(6):561–78.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Li J, Agvanian S, Zhou K, Shaw RM, Hong T. Exogenous cardiac bridging integrator 1 benefits mouse hearts with pre-existing pressure overload-induced heart failure. Front Physiol. 2020;11:708.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Zha XM, Dailey ME, Green SH. Role of Ca2+/calmodulin-dependent protein kinase II in dendritic spine remodeling during epileptiform activity in vitro. J Neurosci Res. 2009;87(9):1969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cordeiro JM, Greene L, Heilmann C, Antzelevitch D, Antzelevitch C. Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle. Am J Physiol Heart Circ Physiol. 2004;286(4):H1471–9.

    Article  CAS  PubMed  Google Scholar 

  193. Lou Q, Fedorov VV, Glukhov AV, Moazami N, Fast VG, Efimov IR. Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure. Circulation. 2011;123(17):1881–90.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Glukhov AV, Fedorov VV, Lou Q, Ravikumar VK, Kalish PW, Schuessler RB, Moazami N, Efimov IR. Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circ Res. 2010;106(5):981–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gaeta SA, Bub G, Abbott GW, Christini DJ. Dynamical mechanism for subcellular alternans in cardiac myocytes. Circ Res. 2009;105(4):335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Song Z, Liu MB, Qu Z. Transverse tubular network structures in the genesis of intracellular calcium alternans and triggered activity in cardiac cells. J Mol Cell Cardiol. 2018;114:288–99.

    Article  CAS  PubMed  Google Scholar 

  197. Shiferaw Y, Aistrup GL, Louch WE, Wasserstrom JA. Remodeling promotes proarrhythmic disruption of calcium homeostasis in failing atrial myocytes. Biophys J. 2020;118(2):476–91.

    Article  CAS  PubMed  Google Scholar 

  198. Sutanto H, van Sloun B, Schönleitner P, van Zandvoort M, Antoons G, Heijman J. The subcellular distribution of ryanodine receptors and L-type Ca(2+) channels modulates Ca(2+)-transient properties and spontaneous Ca(2+)-release events in atrial cardiomyocytes. Front Physiol. 2018;9:1108.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Crossman DJ, Young AA, Ruygrok PN, Nason GP, Baddelely D, Soeller C, Cannell MB. T-tubule disease: relationship between t-tubule organization and regional contractile performance in human dilated cardiomyopathy. J Mol Cell Cardiol. 2015;84:170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lebek S, Plossl A, Baier M, Mustroph J, Tarnowski D, Lucht CM, Schopka S, Florchinger B, Schmid C, Zausig Y, et al. The novel CaMKII inhibitor GS-680 reduces diastolic SR Ca leak and prevents CaMKII-dependent pro-arrhythmic activity. J Mol Cell Cardiol. 2018;118:159–68.

    Article  CAS  PubMed  Google Scholar 

  201. Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG. CaMKIIdelta splice variants in the healthy and diseased heart. Front Cell Dev Biol. 2021;9:644630.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte E. R. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ko, C.Y., Smith, C.E.R., Grandi, E. (2022). Calcium-Dependent Signaling in Cardiac Myocytes. In: Parinandi, N.L., Hund, T.J. (eds) Cardiovascular Signaling in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-08309-9_1

Download citation

Publish with us

Policies and ethics

Navigation