Structural Basis of Targeted Imaging and Therapy in Cancer Explorations with the Epigenetic Drugs

  • Chapter
  • First Online:
Metabolism and Epigenetic Regulation: Implications in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 100))

Abstract

Origin of cancer is strongly related to the unusual epigenetic regulation of gene function as indicated by recent reports. The covalent modifications to DNA or histones without affecting genomes that finally lead to phenotypical changes in cells or organisms are referred as “Epigenetics.” The possibility to reprogram the epigenetics in the cancer epigenome is the most important target for cancer treatment and drug resistance. The development of epigenetic drugs holds a great potential for the current cancer therapeutic approaches. Nevertheless, targeting cancer epigenetic pathways is still exciting due to the lack of selective and effective small molecule compounds or drug molecules. Therefore, the current book chapter highlights epigenetic pathways for cancer and potential small molecule inhibitors and epidrugs targeting DNA methyltransferase, histone modification, and more new therapies with nanomaterials and imaging to improve the effectiveness of cancer treatment. The structural aspects on discovery of novel small molecules or drugs targeting epigenetic pathways in cancer exploration as promising strategies will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramczyk H, Surmacki J, Kopeć M, Olejnik AK, Kaufman-Szymczyk A, Fabianowska-Majewska K (2016) Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231. Analyst 141:5646–5658

    Article  CAS  PubMed  Google Scholar 

  • Billam M, Sobolewski MD, Davidson NE (2010) Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res Treat 120:581–592

    Article  CAS  PubMed  Google Scholar 

  • Bubna AK (2015) Vorinostat—an overview. Indian J Dermatol 60:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao W, Lee H, Wu W, Zaman A, Mccorkle S, Yan M, Chen J, **ng Q, Sinnott-Armstrong N, Xu H, Sailani MR, Tang W, Cui Y, Liu J, Guan H, Lv P, Sun X, Sun L, Han P, Lou Y, Chang J, Wang J, Gao Y, Guo J, Schenk G, Shain AH, Biddle FG, Collisson E, Snyder M, Bivona TG (2020) Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nat Commun 11:3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Shi Y, Zhang J, Liu Q (2020) Nanoparticle-based drug delivery Systems for Targeted Epigenetics Cancer Therapy. Curr Drug Targets 21:1084–1098

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 4:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Derissen EJ, Beijnen JH, Schellens JHM (2013) Concise drug review: azacitidine and decitabine. Oncologist 18:619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanak D, Jackson PJB, Communications BR (2014) Development and classes of epigenetic drugs for cancer. Biochem Biophys Res Commun 455:58–69

    Article  CAS  PubMed  Google Scholar 

  • Dong G, Chen W, Wang X, Yang X, Xu T, Wang P, Zhang W, Rao Y, Miao C, Sheng C (2017) Small molecule inhibitors simultaneously targeting cancer metabolism and epigenetics: discovery of novel nicotinamide Phosphoribosyltransferase (NAMPT) and histone deacetylase (HDAC) dual inhibitors. J Med Chem 60:7965–7983

    Article  CAS  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  • Esmaeili F, Bamdad T, Ghasemi S (2010) Stable suppression of gene expression by short interfering RNAs targeted to promoter in a mouse embryonal carcinoma stem cell line. In Vitro Cell Dev Biol Anim 46:834–840

    Article  CAS  PubMed  Google Scholar 

  • Fattahi S, Kosari-Monfared M, Golpour M, Emami Z, Ghasemiyan M, Nouri M, Akhavan-Niaki H (2020) LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: a novel approach to personalized medicine. J Cell Physiol 235:3189–3206

    Article  CAS  PubMed  Google Scholar 

  • Felsenfeld G (2014) A brief history of epigenetics. Cold Spring Harb Perspect Biol 6:a018200

    Article  PubMed  PubMed Central  Google Scholar 

  • Frye R, Myers M, Axelrod KC, Ness EA, Piekarz RL, Bates SE, Booher S (2012) Romidepsin: a new drug for the treatment of cutaneous T-cell lymphoma. Clin J Oncol Nurs 16:195–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghasemi S (2020) Cancer's epigenetic drugs: where are they in the cancer medicines? Pharmacogenomics J 20:367–379

    Article  CAS  PubMed  Google Scholar 

  • Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38. https://doi.org/10.1186/1476-4598-10-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glozak M, Seto EJO (2007) Histone deacetylases and cancer. Oncogene 26:5420–5432

    Article  CAS  PubMed  Google Scholar 

  • Gnyszka A, Jastrzebski Z, Flis S (2013) DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res 33:2989–2996

    CAS  PubMed  Google Scholar 

  • Goswami U, Kandimalla R, Kalita S, Chattopadhyay A, Ghosh SS (2018) Polyethylene glycol-encapsulated histone deacetylase inhibitor drug-composite nanoparticles for combination therapy with artesunate. ACS Omega 3:11504–11516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron P-F (2018) Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics 10:1–18

    Article  Google Scholar 

  • Issa J-PJ, Kantarjian HM, Kirkpatrick P (2005) Azacitidine. Nat Rev Drug Discov 4:275

    Article  CAS  PubMed  Google Scholar 

  • Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, Dipersio J, Klimek V, Slack J, De Castro C, Ravandi F, Helmer R 3rd, Shen L, Nimer SD, Leavitt R, Raza A, Saba H (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Pena CD, Auguste DT (2019) Targeted lipid Nanoemulsions encapsulating epigenetic drugs exhibit selective cytotoxicity on CDH1–/FOXM1+ triple negative breast cancer cells. Mol Pharm 16:1813–1826

    Article  CAS  PubMed  Google Scholar 

  • Ledezma DK, Balakrishnan PB, Cano-Mejia J, Sweeney EE, Hadley M, Bollard CM, Villagra A, Fernandes R (2020) Indocyanine green-nexturastat A-PLGA nanoparticles combine photothermal and epigenetic therapy for melanoma. Nanomaterials (Basel) 10:161

    Article  CAS  Google Scholar 

  • Li Y, Ding J, Xu X, Shi R, Saw PE, Wang J, Chung S, Li W, Aljaeid BM, Lee RJ, Tao W, Teng L, Farokhzad OC, Shi J (2020) Dual hypoxia-targeting RNAi nanomedicine for precision cancer therapy. Nano Lett 20:4857–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Gao Y, Li X (2019) Cancer epigenetics and the potential of epigenetic drugs for treating solid tumors. Expert Rev Anticancer Ther 19:139–149

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Chan Y-T, Tan H-Y, Li S, Wang N, Feng Y (2020) Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer 19:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Majchrzak-Celińska A, Warych A, Szoszkiewicz M (2021) Novel approaches to epigenetic therapies: from drug combinations to epigenetic editing. Genes (Basel) 12:208

    Article  Google Scholar 

  • Mcdermott J, Jimeno A (2014) Belinostat for the treatment of peripheral T-cell lymphomas. Drugs Today (Barcelona, Spain: 1998) 50:337–345

    Article  CAS  Google Scholar 

  • Meng Q, Liu Z, Li F, Ma J, Wang H, Huan Y, Li Z (2015) An HDAC-targeted imaging probe LBH589–Cy5. 5 for tumor detection and therapy evaluation. Mol Pharm 12:2469–2476

    Article  CAS  PubMed  Google Scholar 

  • Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD, Furtado GP, Moraes MO, Pessoa C (2019) Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics 14:1164–1176

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondal P, Natesh J, Penta D, Meeran SM (2020) Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: a clinical update. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2020.12.006

  • Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA (2020) Epidrug repurposing: discovering new faces of old acquaintances in cancer therapy. Front Oncol 10:605386

    Article  PubMed  PubMed Central  Google Scholar 

  • Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S (2020) Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol 17:91–107

    Article  CAS  PubMed  Google Scholar 

  • Morera L, Lübbert M, Jung M (2016) Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 8:1–16

    Article  Google Scholar 

  • Pan Y, Liu G, Zhou F, Su B, Li Y (2018) DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med 18:1–14

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Han J-W (2019) Targeting epigenetics for cancer therapy. Arch Pharm Res 42:159–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9:3–12

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Laubach JP, Lonial S, Moreau P, Yoon SS, Hungria VT, Dimopoulos MA, Beksac M, Alsina M, San-Miguel JF (2015) Panobinostat: a novel pan-deacetylase inhibitor for the treatment of relapsed or relapsed and refractory multiple myeloma. Expert Rev Anticancer Ther 15:737–748

    Article  CAS  PubMed  Google Scholar 

  • Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF (2019) Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics 11:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan H, Hu Q, Wen D, Chen Q, Chen G, Lu Y, Wang J, Cheng H, Lu W, Gu Z (2019) A dual-bioresponsive drug-delivery depot for combination of epigenetic modulation and immune checkpoint blockade. Adv Mater 31:1806957

    Article  Google Scholar 

  • Salarinia R, Sahebkar A, Peyvandi M, Mirzaei HR, Jaafari MR, Riahi MM, Ebrahimnejad H, Nahand JS, Hadjati J, Asrami MO, Fadaei S, Salehi R, Mirzaei H (2016) Epi-drugs and epi-miRs: moving beyond current cancer therapies. Curr Cancer Drug Targets 16:773–788

    Article  CAS  PubMed  Google Scholar 

  • Sankar R, Ravikumar V (2014) Biocompatibility and biodistribution of suberoylanilide hydroxamic acid loaded poly (DL-lactide-co-glycolide) nanoparticles for targeted drug delivery in cancer. Biomed Pharmacother 68:865–871

    Article  CAS  PubMed  Google Scholar 

  • Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, Stone RM, Nelson D, Powell BL, Decastro CM, Ellerton J, Larson RA, Schiffer CA, Holland JF (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20:2429–2440

    Article  CAS  PubMed  Google Scholar 

  • Su X, Wang Z, Li L, Zheng M, Zheng C, Gong P, Zhao P, Ma Y, Tao Q, Cai L (2013) Lipid–polymer nanoparticles encapsulating doxorubicin and 2′-deoxy-5-azacytidine enhance the sensitivity of cancer cells to chemical therapeutics. Mol Pharm 10:1901–1909

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Maruyama R, Yamamoto E, Kai M (2012) DNA methylation and microRNA dysregulation in cancer. Mol Oncol 6:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari PK (2020) Epigenetic biomarkers in gallbladder cancer. Trends Cancer 6:540–543

    Article  CAS  PubMed  Google Scholar 

  • Vaidya AM, Sun Z, Ayat N, Schilb A, Liu X, Jiang H, Sun D, Scheidt J, Qian V, He S, Gilmore H, Schiemann WP, Lu Z-R (2019) Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug Chem 30:907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayaraghavalu S, Dermawan JK, Cheriyath V, Labhasetwar V (2013) Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest. Mol Pharm 10:337–352

    Article  CAS  PubMed  Google Scholar 

  • Wood H (2018) FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat Rev Neurol 14:570

    PubMed  Google Scholar 

  • Xu S, Zhu X, Huang W, Zhou Y, Yan D (2017) Supramolecular cisplatin-vorinostat nanodrug for overcoming drug resistance in cancer synergistic therapy. J Control Release 266:36–46

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Zhao N, Ge D, Chen Y (2019) Next-generation of selective histone deacetylase inhibitors. RSC Adv 9:19571–19583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Liu J, Yu X, Liu X, Cheng Y, Zhou C, Li M, Shi L, Deng Y, Liu H et al (2021) Tumor-targeting pH/redox dual-responsive nanosystem epigenetically reverses cancer drug resistance by co-delivering doxorubicin and GCN5 siRNA. Acta Biomater 135:556–566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Jain University, Bangalore, India, for providing facilities. V. Brahmkhatri also acknowledges TARE-SERB File NO:TAR/2018/000547.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Brahmkhatri .

Editor information

Editors and Affiliations

Additional information

This book chapter is dedicated to Prof. Hanudatta S. Atreya, NMR Research Centre, IISc Bangalore, India. He passed away on July 30, 2020.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandit, P., Brahmkhatri, V. (2022). Structural Basis of Targeted Imaging and Therapy in Cancer Explorations with the Epigenetic Drugs. In: Kundu, T.K., Das, C. (eds) Metabolism and Epigenetic Regulation: Implications in Cancer. Subcellular Biochemistry, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-031-07634-3_15

Download citation

Publish with us

Policies and ethics

Navigation