SrSnO3 Applied in the Reduction of NO by CO: Influence of Transition Metal Do** on the Catalytic Activity

  • Chapter
  • First Online:
Research Topics in Bioactivity, Environment and Energy

Abstract

Strontium stannate (SrSnO3) is a perovskite, which has been extensively studied due to its potential technological applications. In this work, SrSnO3 was doped with transition metals (Cu, Fe, Ni) by the modified Pechini method and evaluated in the catalytic reduction of NO with CO. The perovskite structure was obtained as the major phase for all samples. The catalytic activity of SrSnO3 was highly improved by all the dopants, as only 10% of conversion was obtained for SrSnO3, whereas samples with 5% of Cu presented the highest conversions, reaching 100% of NO into N2 and 100% of CO into CO2 at 550 °C. Conversions of 85% of NO into N2 and 90% of CO into CO2 were obtained for Ni doped samples at 600 °C, while 62% of conversion was obtained for Fe-doped samples, for both reactions. These results indicate that Cu is the best dopant, which leads to the greatest NO conversion with a smaller amount of dopant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Song, J., Wang, Z., Cheng, X., Wang, X.: State-of-art review of NO reduction technologies by CO, CH4 and H2. Process 9, 563(1–28) (2021). https://doi.org/10.3390/pr9030563

  2. Han, L., Cai, S., Gao, M., Hasegawa, J., Wang, P., Zhang, J., Shi, L., Zhang, D.: Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem. Rev. 119(19), 10916–10976 (2019). https://doi.org/10.1021/acs.chemrev.9b00202

    Article  CAS  Google Scholar 

  3. Erickson, L.M., Newwark, G., Higgins, M.J., Wang, Z.: Nitrogen oxides and ozone in urban air: a review of 50 plusyears of progress. Environ. Progr. Sustain. Energy 39(e13484), 1–9 (2020). https://doi.org/10.1002/ep.13484

    Article  CAS  Google Scholar 

  4. Lin, Y., Cao, Y., Yao, Q., Chai, O.J.H., **e, J.: Engineering noble metal nanomaterials for pollutant decomposition. Ind. Eng. Chem. Res. 59, 20561–20581 (2020). https://doi.org/10.1021/acs.iecr.0c04258

    Article  CAS  Google Scholar 

  5. Liu, C., Kubota, H., Amanda, T., Toyao, T., Maeno, Z., Ogura, M., Nakazawa, N., Inagaki, S., Kubota, Y., Shimizu, K.: Selective catalytic reduction of NO over Cu-AFX zeolites: mechanistic insights from in situ/operando spectroscopic and DFT studies. Catal. Sci. Technol. 11, 4459–4470 (2021). https://doi.org/10.1039/D1CY00282A

    Article  CAS  Google Scholar 

  6. Shen, Q., Dong, S., Li, S., Yang, G., Pan, X.: A review on the catalytic decomposition of NO by perovskite-type oxides. Catalyts 11, 622(1–12) (2021). https://doi.org/10.3390/catal11050622

  7. Zhang, R., Villanueva, A., Alamdari, H., Kaliaguine, S.: Cu and Pd-substituted nanoscale Fe-based perovskites for selective catalytic reduction of NO by propene. J. Catal. 237(2), 368–380 (2006). https://doi.org/10.1016/j.jcat.2005.11.019

    Article  CAS  Google Scholar 

  8. Hodjati, S., Vaezzadeh, K., Petit, C., Pitchon, V., Kiennemann, A.: Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas. Appl. Catal. B 26(1), 5–16 (2000). https://doi.org/10.1016/S0926-3373(99)00143-5

    Article  CAS  Google Scholar 

  9. Smith, J.M., Ness, H.C.V., Abbott, M.M.: Introdução à Termodinâmica da Engenharia Química. ed. 7, Rio de Janeiro: LTC (2007)

    Google Scholar 

  10. Deng, C., Huang, Q., Zhu, X., Hu, Q., Su, W., Qian, J., Dong, L., Li, B., Fan, M., Liang, C.: The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO + CO model reaction. Appl. Surf. Sci. 389, 1033–1049 (2016). https://doi.org/10.1016/j.apsusc.2016.08.035

    Article  CAS  Google Scholar 

  11. Tanabe, E.Y., Assaf, E.E.: Óxidos do tipo perovskita para reação de NO com CO. Quim. Nova 32(5), 1129–1133 (2009). https://doi.org/10.1590/S0100-40422009000500009

    Article  CAS  Google Scholar 

  12. Castillo, S., Pineda, M.M., Gómez, R.: Reduction of NO by CO under oxidizing conditions over Pt and Rh supported on Al2O3-ZrO2 binary oxides. Catal. Commun. 2(10), 295–300 (2001). https://doi.org/10.1016/s1566-7367(01)00049-8

    Article  CAS  Google Scholar 

  13. Leontiou, A.A., Ladavos, A.K., Pomonis, P.J.: Catalytic NO reduction with CO on La1−xSrx(Fe3+/Fe4+)O3± δ perovskite-type mixed oxides (x = 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, and 0.90). Appl. Catal. A 241(1–2), 133–141 (2003). https://doi.org/10.1016/S0926-860X(02)00457-X

    Article  CAS  Google Scholar 

  14. Zhang, R., Villanueva, A., Alamdari, H., Kaliaguine, S.: Reduction of NO by CO over nanoscale LaCo1−xCuxO3 and LaMn1−xCuxO3 perovskites. J. Mol. Catal. A: Chem. 258(1–2), 22–34 (2006). https://doi.org/10.1016/j.molcata.2006.05.008

    Article  CAS  Google Scholar 

  15. Teraoka, Y., Nii, H., Kagawa, S., Jansson, K., Nygren, M.: Influence of the simultaneous substitution of Cu and Ru in the perovskite-type (La, Sr)MO3 (M=Al, Mn, Fe, Co) on the catalytic activity for CO oxidation and CO–NO reactions. Appl. Catal. A 194–195, 35–41 (2000). https://doi.org/10.1016/S0926-860X(99)00351-8

    Article  Google Scholar 

  16. Hadjarab, B., Bouguelia, A., Trati, M.: Synthesis, physical and photo electrochemical characterization of La-doped SrSnO3. J. Phys. Chem. Solids 68(8), 1491–1499 (2007). https://doi.org/10.1016/j.jpcs.2007.03.013

    Article  CAS  Google Scholar 

  17. Azad, A.M., Hon, N.C.: Characterization of BaSnO3-based ceramics: Part 1. Synthesis, processing and microstructural development. J. Alloy. Compd. 270(1–2), 95–106 (1998). https://doi.org/10.1016/S0925-8388(98)00370-3

    Article  CAS  Google Scholar 

  18. Honório, L.M.C., Santos, M.V.B., Filho, E.C.S., Osajima, J.A., Maia, A.S., Santos, I.M.G.: Alkaline earth stannates applied in photocatalysis: prospection and review of literature. Cerâmica 64, 559–569 (2018). https://doi.org/10.1590/0366-69132018643722480

    Article  CAS  Google Scholar 

  19. Zidi, N., Omeiri, S., Hadjarab, B., Bouguelia, A., Akroun, A., Trari, M.: Transport properties and photoelectrochemical characterization of oxygen-deficient ASnO3 (A= Ca, Sr and Ba). Physica B 405(16), 3355–3359 (2010). https://doi.org/10.1016/j.physb.2010.05.004

    Article  CAS  Google Scholar 

  20. Mizoguchi, H., Eng, H.W., Woodward, P.M.: Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4++ or Sb5+. Inorg. Chem. 43(5), 1667–1680 (2004). https://doi.org/10.1021/ic034551c

    Article  CAS  Google Scholar 

  21. Alves, M.C.F., Souza, S.C., Silva, M.R.S., Paris, E.C., Lima, S.J.G., Gomes, R.M., Longo, E., Souza, A.G., Santos, I.M.G.: Thermal analysis applied in the crystallization study of SrSnO3. J. Therm. Anal. Calorim. 97, 179–183 (2009). https://doi.org/10.1007/s10973-009-0242-x

    Article  CAS  Google Scholar 

  22. Bohnemann, J., Libanori, R., Moreira, M.L., Longo, E.: High-efficient microwave synthesis and characterisation of SrSnO3. Chem. Eng. J. 155(3), 905–909 (2009). https://doi.org/10.1016/j.cej.2009.09.004

    Article  CAS  Google Scholar 

  23. Peña, M.A., Fierro, J.L.: Chemical structures and performance of perovskite oxides. Chem. Rev. 101(7), 1981–2017 (2001). https://doi.org/10.1021/cr980129f

    Article  CAS  Google Scholar 

  24. Song, S., Xu, L., He, Z., Ying, H., Chen, J., **ao, X., Yan, B.: Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst. J. Hazard. Mater. 152(3), 1301−1308 (2008). https://doi.org/10.1016/j.jhazmat.2007.08.004

  25. Ferri, D., Forni, L.: Methane combustion on some perovskite-like mixed oxides. Appl. Catal. B 16(2), 119–126 (1998). https://doi.org/10.1016/S0926-3373(97)00065-9

    Article  CAS  Google Scholar 

  26. Zhu, J., Thomas, A.: Perovskite-type mixed oxides as catalytic material for NO removal. Appl. Catal. B 92(3–4), 225–233 (2009). https://doi.org/10.1016/j.apcatb.2009.08.008

    Article  CAS  Google Scholar 

  27. Chen, L., Si, Z., Wu, X., Weng, D.: DRIFT study of CuO–CeO–TiO2 mixed oxides for NOx reduction with NH3 at low temperatures. ACS Appl. Mater. Interf. 6(6), 8134–8145 (2014). https://doi.org/10.1021/am5004969

    Article  CAS  Google Scholar 

  28. Tien-Thao, N., Alamdari, H., Kaliaguine, S.: Characterization and reactivity of nanoscale La(Co, Cu)O3 perovskite catalyst precursors for CO hydrogenation. J. Solid State Chem. 181(8), 2006–2019 (2008). https://doi.org/10.1016/j.jssc.2007.11.016

    Article  CAS  Google Scholar 

  29. Zhu, J., Zhao, Z., **ao, D., Li, J., Yang, X., Wu, Y.: Study of La2−xSrxCuO4 (x = 0.0, 0.5, 1.0) catalysts for NO+CO reaction from the measurements of O2-TPD, H2–TPR and cyclic voltammetry. J. Mol. Catal. A: Chem. 238(1–2), 35–40 (2005). https://doi.org/10.1016/j.molcata.2005.03.036

    Article  CAS  Google Scholar 

  30. Giannakas, A.E., Leontiou, A.A., Ladavos, A.K., Pomonis, P.J.: Characterization and catalytic investigation of NO + CO reaction on perovskites of the general formula LaxM1-xFeO3 (M = Sr and/or Ce) prepared via a reverse micelles microemulsion route. Appl. Catal. A 309(2), 254–262 (2006). https://doi.org/10.1016/j.apcata.2006.05.016

    Article  CAS  Google Scholar 

  31. Zhang, R., Alamdari, H., Kaliaguine, S.: Fe-based perovskites substituted by copper and palladium for NO+ CO reaction. J. Catal. 242(2), 241–253 (2006). https://doi.org/10.1016/j.jcat.2006.05.033

    Article  CAS  Google Scholar 

  32. He, H., Liu, M., Dai, H., Qiu, W., Zi, X.: An investigation of NO/CO reaction over perovskite-type oxide La0.8Ce0.2B0.4Mn0.6O3 (B = Cu or Ag) catalysts synthesized by reverse microemulsion. Catal. Today 126(3–4), 290–295 (2007). https://doi.org/10.1016/j.cattod.2007.06.004

    Article  CAS  Google Scholar 

  33. Dai, H., He, H., Li, P., Gao, L., Au, C.H.: The relationship of structural defect–redox property–catalytic performance of perovskites and their related compounds for CO and NOx removal. Catal. Today 90(3–4), 231–244 (2004). https://doi.org/10.1016/j.cattod.2004.04.031

    Article  CAS  Google Scholar 

  34. Wu, Y., Li, L., Chu, B., Yi, Y., Qin, Z., Fan, M., Qin, Q., He, H., Zhang, L., Dong, L., Li, B., Dong, L., Li, B., Dong, L.: Catalytic reduction of NO by CO over B-site partially substituted LaM0.25Co0.75O3 (M = Cu, Mn, Fe) perovskite oxide catalysts: the correlation between physicochemical properties and catalytic performance. Appl. Catal. A 568, 43–53 (2018). https://doi.org/10.1016/j.apcata.2018.09.022

    Article  CAS  Google Scholar 

  35. Wood, D.L., Tauc, J.: Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5(8), 3144–3151 (1972). https://doi.org/10.1103/PhysRevB

    Article  Google Scholar 

  36. Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, New York, Inc (1986)

    Google Scholar 

  37. Nyquist, R.A., Kagel, R.O.: Infrared Spectra Inorganic Compounds. Academic Press, New York, Inc (1971)

    Book  Google Scholar 

  38. Moreira, E., Henriques, J.M., Azevedo, D.L., Caetano, E.W.S., Freire, V.N., Albuquerque, E.L.: Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO3 from DFTcalculations. J. Solid State Chem. 184(4), 921–928 (2011). https://doi.org/10.1016/j.jssc.2011.02.009

    Article  CAS  Google Scholar 

  39. Last, J.T.: Infrared-absorption studies on barium titanate and related materials. Phys. Rev. 105(6), 1740–1750 (1956). https://doi.org/10.1103/PhysRev.105.1740

    Article  Google Scholar 

  40. Pfaff, G., Hildenbrand, V.D., Fuess, H.: Spectroscopic study of amorphous precursors for alkaline-earth titanates and stannates. J. Mater. Sci. Lett. 17(23), 1983–1985 (1998). https://doi.org/10.1023/A:1006652405086

    Article  CAS  Google Scholar 

  41. Azad, A.-M., Shyan, L.L.W., Yen, P.T.: Synthesis, processing and microstructural characterization of CaSnO3 and SrSnO3 ceramics. J. Alloy. Compd. 282(1–2), 109–124 (1999). https://doi.org/10.1016/S0925-8388(98)00808-1

    Article  CAS  Google Scholar 

  42. Chiang, Y.M., Bimie III, D.P., Kingery, W.D.: Physical Ceramics. John Wiley & Sons, New York (1997)

    Google Scholar 

  43. Tarrida, M., Larguem, H., Madon, M.: Structural investigations of (Ca, Sr)ZrO3 and Ca(Sn, Zr)O3 perovskite compounds. Phys. Chem. Miner. 36, 403–413 (2009). https://doi.org/10.1007/s00269-008-0286-7

    Article  CAS  Google Scholar 

  44. Doroftei, C., Popa, P.D., Iacomi, F.: Study of the influence of nickel ions substitutes in barium stannates used as humidity resistive sensors. Sens. Actuators, A 173(1), 24–29 (2012). https://doi.org/10.1016/j.sna.2011.10.007

    Article  CAS  Google Scholar 

  45. Kaabar, W., Botta, S., Devonshire, R.: Raman spectroscopic study of mixed carbonate materials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78(1), 136–141 (2011). https://doi.org/10.1016/j.saa.2010.09.011

    Article  CAS  Google Scholar 

  46. Liu, Z.C., Chen, H.R., Huang, W.M., Gu, J.L., Bu, W.B., Hua, Z.L., Shi, J.L.: Synthesis of a new SnO2/mesoporous silica composite with room-temperature photoluminescence. Microporous Mesoporous Mater. 89, 270–275 (2006). https://doi.org/10.1016/j.micromeso.2005.10.037

    Article  CAS  Google Scholar 

  47. Rao, L.S., Reddy, M.S., Rao, D.K., Veeraiah, N.: Influence of redox behavior of copper ions on dielectric and spectroscopic properties of Li2O–MoO3–B2O3:CuO glass system. Solid State Sci. 11, 578–587 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.06.022

    Article  CAS  Google Scholar 

  48. Sorlí, S.M.A., Tena, J.A., Badenes, J.C., Calbo, M., Llusar, G.M., Monrós, G.: Structure and color of NixA1–3xB2xO2 (A=Ti, Sn; B=Sb, Nb) solid solutions. J. Eur. Ceram. Soc. 24(8), 2425–2432 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.07.012

  49. Dondi, M., Cruciani, G., Guarini, G., Matteucci, F., Raimondo, M.: The role of counterions (Mo, Nb, Sb, W) in Cr-, Mn-, Ni- and V-doped rutile ceramic pigments: Part 2. Colour and technological properties. Ceram. Int. 32(4), 393–405 (2006). https://doi.org/10.1016/j.ceramint.2005.03.015

    Article  CAS  Google Scholar 

  50. Reddy, K.N., Reddy, G.S., Reddy, S.L., Rao, P.S.: Optical absorption and EPR spectral studies of vauquelinite. Cryst. Res. Technol. 41(8), 818–821 (2006). https://doi.org/10.1080/10420150008211834

    Article  CAS  Google Scholar 

  51. Lee, J.D.: Concise Inorganic Chemistry, 5th edn. Chapman & Hall, London, Inc (1996)

    Google Scholar 

  52. Rajyasree, Ch., Rao, D.K.: Spectroscopic investigations on alkali earth bismuth borate glasses doped with CuO. J. Non-Cryst. Solids 357(3), 836–841 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.11.008

    Article  CAS  Google Scholar 

  53. Liu, Q., Dai, J., Zhang, X., Zhu, G., Liu, Z., Ding, G.: Perovskite-type transparent and conductive oxide films: Sb- and Nd-doped SrSnO3. Thin Solid Films 519(18), 6059–6063 (2011). https://doi.org/10.1016/j.tsf.2011.03.038

    Article  CAS  Google Scholar 

  54. Fritz, A., Pitchon, V.: The current state of research on automotive lean NOx catalysis. Appl. Catal. B 113(1), 1–5 (1997). https://doi.org/10.1016/S0926-3373(96)00102-6

    Article  Google Scholar 

  55. Lin, C.-H., Liu, L.-G.: Post-aragonite phase transitions in strontianite and cerussite—A high-pressure raman spectroscopy study. J. Phys. Chem. Solids 58(6), 977–987 (1997). https://doi.org/10.1016/S0022-3697(96)00201-6

  56. House, J.E.: Inorganic Chemistry. Academic Press, Canada (2008)

    Google Scholar 

  57. Rao, J.L., Murali, A., Rao, E.D.: Electron paramagnetic resonance and optical absorption spectra of Fe(III) ions in alkali zinc boro sulphate glasses. J. Non-Cryst. Solids 202(3), 215–221 (1996). https://doi.org/10.1016/0022-3093(96)00199-8

    Article  Google Scholar 

  58. Taran, M.N., Langer, K.: Electronic absorption spectra of Fe3+ in andradite and epidote at different temperatures and pressures. Eur. J. Miner. 12(1), 7–15 (2000). https://doi.org/10.1127/0935-1221/2000/0012-0007

    Article  CAS  Google Scholar 

  59. Dazhi, W., Shulin, W., Jun, C., Suyuan, Z., Fangqing, L.: Microstructure of SnO2. Phys. Rev. B 49(20), 14282–14285 (1994). https://doi.org/10.1103/PhysRevB.49.14282

    Article  CAS  Google Scholar 

  60. Mesíková, Z., Sulcová, P., Trojan, M.: Synthesis and description of SrSn0.6In0.4O3 perovskite pigments. J. Therm. Anal. Calorim. 91(1), 163–166 (2008). https://doi.org/10.1007/s10973-007-8312-4

    Article  CAS  Google Scholar 

  61. Zidi, N., Omeiri, S., Hadjarab, B., Bouguelia, A., Akroun, A., Trari, M.: Transport properties and photoelectrochemical characterization of oxygen-deficient ASnO3-δ (A= Ca, Sr and Ba). Physica B 405(16), 3355–3359 (2010). https://doi.org/10.1016/j.physb.2010.05.004

    Article  CAS  Google Scholar 

  62. Lima, R.K.C., Batista, M.S., Wallau, M., Sanches, E.A., Mascarenhas, Y.P., Urquieta-González, E.A.: High specific surface area LaFeCo perovskites—Synthesis by nanocasting and catalytic behavior in the reduction of NO with CO. Appl. Catal. B 90(3–4), 441–450 (2009). https://doi.org/10.1016/j.apcatb.2009.04.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Petrobras (Process Number 2014/00327-2), for the financing of this project and CNPq Proc. 151055/2012-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ieda Maria Garcia dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lucena, G.L. et al. (2022). SrSnO3 Applied in the Reduction of NO by CO: Influence of Transition Metal Do** on the Catalytic Activity. In: Taft, C.A., de Lazaro, S.R. (eds) Research Topics in Bioactivity, Environment and Energy. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-07622-0_4

Download citation

Publish with us

Policies and ethics

Navigation