Psychology and Neuroscience Achieve the Impossible: A New, Revolutionary Look Inside the Cerebellum- Driven Mind of Albert Einstein

  • Chapter
  • First Online:
The New Revolution in Psychology and the Neurosciences

Abstract

Can psychology explain the unique brilliance of Einstein’s new conceptions of reality? This chapter examines the cerebellum’s role in learning internal models (models of everything that is going internal to the cerebral cortex), optimizing them through repetitive thought, and then sending them back to the cerebral cortex for testing. When in the cerebral cortex, these internal models may be blended to bring together visual-spatial working memory and verbal working memory in new ways. This blending that may occur suddenly in the cerebral cortex is used to explain how not only Einstein’s sudden intuitions but yours as well.

A profile photo of Albert Einstein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 53.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 69.54
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 96.29
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Albert Einstein’s letter to Dr. H. L. Gordon, May 3, 1949. This is Item 58–217 in the Control Index to the Einstein Archive, which may be consulted at Mudd Library, Princeton University.

  2. 2.

    Albert Einstein letter to Dr. H. L. Gordon, May 3, 1949. This is Item 58–217 in the Control Index to the Einstein Archive which may be consulted at Mudd Library, Princeton University.

References

  • Akshoomoff, N., Courchesne, E., & Townsend, J. (1997). Attention coordination and anticipatory control. In J. Schmahmann (Ed.), The cerebellum and cognition (pp. 575–598). Academic.

    Google Scholar 

  • Baddeley, A. (1992). Working memory. Science, 255, 556–559.

    Google Scholar 

  • Baddeley, A. (2010). Working memory. Current Biology, 20, R136–R140. http://www.sciencedirect.com/science/article/pii/S0960982209021332

    Article  Google Scholar 

  • Bostan, A., Dum, R., & Strick, P. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Science, 17(5), 241–254. https://doi.org/10.1016/j.tics.2013.03.003

    Article  Google Scholar 

  • Cowan, N. (1999). Embedded-process model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge University Press.

    Chapter  Google Scholar 

  • Cowan, N. (2014). Working memory underpins cognitive development, learning, and education. Educational Psychology Review, 26(2), 197–223. https://doi.org/10.1007/s10648-013-9246-y

    Article  PubMed  Google Scholar 

  • Einstein, A. (1949). Autobiographical notes. In A. Schillp (Ed.), Albert Einstein: Philosopher-scientist (Vol. 1, pp. 1–95). Open Court.

    Google Scholar 

  • Einstein, A. (1954). Physics and reality. In A. Einstein (Ed.), Ideas and opinions. Wings Books.

    Google Scholar 

  • Ericsson, K. A., Krampe, R., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–401.

    Article  Google Scholar 

  • Ericsson, K. A., Roring, R., & Nandagopal, K. (2007). Giftedness and evidence for reproducibly superior performance: An account based on the expert performance framework. High Ability Studies, 18, 3–56.

    Article  Google Scholar 

  • Gilchrist, A. L., & Cowan, N. (2010). Conscious and unconscious aspects of working memory. In I. Winkler & I. Czigler (Eds.), Unconscious memory representations in perception: Processes and mechanisms in the brain. Advances in Consciousness research (Vol. 78, pp. 1–35). John Benjamins.

    Chapter  Google Scholar 

  • Goldman-Rakic, P. S. (1992). Working memory and the mind. Scientific American, 267, 110–117.

    Article  Google Scholar 

  • Haberlandt, K. (1997). Cognitive psychology (2nd ed.). Allyn & Bacon.

    Google Scholar 

  • Imamizu, H., & Kawato, M. (2012). Cerebellar internal models: Implications for dexterous use of tools. Cerebellum, 11, 325–335.

    Article  Google Scholar 

  • Imamizu, H., Higuchi, S., Toda, A., & Kawato, M. (2007). Reorganization of brain activity for multiple internal models after short but intensive training. Cortex, 43, 338–349.

    Article  Google Scholar 

  • Imamizu, H., Kawato, M. (2009). Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res, 73(4), 527–44.

    Google Scholar 

  • Ito, M. (1997). Cerebellar microcomplexes. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 475–487). Academic Press.

    Google Scholar 

  • Ito, M. (2005). Chap. 9: Bases and implications of learning in the cerebellum – Adaptive control and internal model mechanism. In C. I. DeZeeuw & F. Cicirata (Eds.), Creating coordination in the cerebellum (Progress in Brain Research) (Vol. 148, pp. 95–109). Elsevier Science.

    Chapter  Google Scholar 

  • Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9, 304–313. https://doi.org/10.1038/nrn2332.

  • Ito M. (2011). The cerebellum: brain for an implicit self. Upper Saddle River: FT Press.

    Google Scholar 

  • Kaplan, H., & Sadock, B. (1983). Comprehensive textbook of psychiatry/IV. Williams & Wilkins.

    Google Scholar 

  • Leggio, M., & Molinari, M. (2015). Cerebellar sequencing: a trick for predicting the future. Cerebellum, 14, 35–38.

    Article  Google Scholar 

  • Leiner, H. C., & Leiner, A. (1997). How fibers subserve computing capabilities: Similarities between brains and computers. In J. Schmahmann (Ed.), The cerebellum and cognition (pp. 535–553). Academic Press.

    Google Scholar 

  • Leiner, H., Leiner, A., & Dow, R. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443–454.

    Article  Google Scholar 

  • Leiner, H., Leiner, A., & Dow, R. (1989). Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behavioral Neuroscience, 103, 998–1008.

    Article  Google Scholar 

  • Lent, R., Azevedo, F. A. C., Andrade-Moraes, C. H., & Pinto, A. V. O. (2012). How many neurons do you have? Some dogmas of quantitative neuroscience under revision. European Journal of Neuroscience, 35, 1–9. https://doi.org/10.1111/j.1460-9568.2011.07923.x

    Article  PubMed  Google Scholar 

  • Mandler, J. (2004). The foundations of mind: Origins of conceptual thought. Oxford University Press.

    Google Scholar 

  • Marvel, C. L., & Desmond, J. E. (2010a). Functional topography of the cerebellum in verbal working memory. Neuropsychology Review, 20, 271–279. https://doi.org/10.1007/s11065-010-9137-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Marvel, C. L., & Desmond, J. E. (2010b). The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex, 46(7), 880–895.

    Article  Google Scholar 

  • Marvel, C., & Desmond, J. (2012). From storage to manipulation: how the neural correlates of verbal working memory reflect varying demands on inner speech. Brain Language, 120, 42–51.

    Article  Google Scholar 

  • Men, W., Falk, D., Sun, T., Chen, W., Li, J., Yin, D., Zang, L., & Fan, M. (2013). The corpus callosum of Albert Einstein: Another clue to his high intelligence? Brain. https://doi.org/10.1093/brain/awt252

  • Stout, D., & Chaminade, T. (2009). Making tools and making sense: Complex intentional behaviour in human evolution. Cambridge Archaeological Journal, 19, 85–96.

    Article  Google Scholar 

  • Stout, D., & Chaminade, T. (2012). Stone tools, language and the brain in human evolution. Philosophical Transactions of the Royal Society B, 387, 75–87.

    Article  Google Scholar 

  • Stout, D., & Hecht, E. (2017). The evolutionary neuroscience of cumulative culture. PNAS, 114(30), 7861–7868.

    Article  Google Scholar 

  • Van Overwalle, F., Manto, M., Leggio, M., & Delgado-García, J. (2019). The sequencing process generated by the cerebellum crucially contributes to social interactions. Medical Hypotheses, 128. https://doi.org/10.1016/j.mehy.2019.05.014

  • Vandervert, L. R. (1996). Operational definitions made simple, lasting and useful. In M. E. Ware & D. E. Johnson (Eds.), Handbook of demonstrations and activities in the teaching of psychology (pp. 183–185). Lawrence Erlbaum Associates. (Original work published 1980).

    Google Scholar 

  • Vandervert, L. (2003a). How working memory and cognitive modeling functions of the cerebellum contribute to discoveries in mathematics. New Ideas in Psychology, 21, 159–175.

    Article  Google Scholar 

  • Vandervert, L. (2003b). The neurophysiological basis of innovation. In L. V. Shavinina (Ed.), The international handbook on innovation (pp. 17–30). Elsevier Science.

    Chapter  Google Scholar 

  • Vandervert, L. (2007). Cognitive functions of the cerebellum explain how Ericsson’s deliberate practice produces giftedness. High Ability Studies, 18, 89–92.

    Article  Google Scholar 

  • Vandervert, L. (2009a). Working memory, the cognitive functions of the cerebellum and the child prodigy. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 295–316). Springer.

    Chapter  Google Scholar 

  • Vandervert, L. (2009b). The emergence of the child prodigy 10,000 years ago: An evolutionary and developmental explanation. The Journal of Mind and Behavior, 30, 15–32.

    Google Scholar 

  • Vandervert, L. (2011). The evolution of language: The cerebro-cerebellar blending of visual-spatial working memory with vocalizations. The Journal of Mind and Behavior, 32, 317–331.

    Google Scholar 

  • Vandervert, L. (2013b). How the cerebrocerebellar blending of visual-spatial working memory with vocalizations supports Leiner, Leiner and Dow’s explanation of the evolution of thought and language. The Cerebellum, 13, 151–171 (This article appears on pp. 13–14). Online: http://springer.longhoe.net/article/10.1007/s12311-013-0511-x

  • Vandervert, L. (2015). How music training enhances working memory: A cerebrocerebellar blending mechanism that can lead equally to scientific discovery and therapeutic efficacy in neurological disorders. Cerebellum & Ataxias, 2(11). https://doi.org/10.1186/s40673-015-0030-2

  • Vandervert, L. (2016a). The prominent role of the cerebellum in the learning, origin and advancement of culture. Cerebellum & Ataxias, 3, 10. https://doi.org/10.1186/s40673-016-0049-z

    Article  Google Scholar 

  • Vandervert, L. (2016b). Chap. 8: Working memory in musical prodigies: A 10,000 year old story, one million years in the making. In G. E. McPherson (Ed.), Musical prodigies: Interpretations from psychology, education, musicology, and ethnomusicology (pp. 223–244). Oxford University Press.

    Chapter  Google Scholar 

  • Vandervert, L. (2016c). Chap. 9: The brain’s encoding of rule-governed domains of knowledge: A case analysis of a musical prodigy. In G. E. McPherson (Ed.), Musical prodigies: Interpretations from psychology, education, musicology, and ethnomusicology (pp. 245–258). Oxford University Press.

    Chapter  Google Scholar 

  • Vandervert, L. (2017). The origin of mathematics and number sense in the cerebellum: With implications for finger counting and Dyscalculia. Cerebellum Ataxias, 4(12). https://doi.org/10.1186/s40673-017-0070-xeCollection

  • Vandervert, L. (2018). How prediction based on sequence detection in the cerebellum led to the origins of stone tools, language, and culture and, thereby, to the rise of Homo sapiens. Frontiers in Cellular Neuroscience, 12, 408. https://doi.org/10.3389/fncel.2018.00408

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandervert, L. (2020a). The cerebellum-driven social learning of inner speech in the evolution of stone-tool making and language: Innate hand-tool connections in the cerebro-cerebellar system. In Van Overwalle, F., Manto, M., Cattaneo, Z. et al. Consensus paper: Cerebellum and social cognition. Cerebellum. https://doi.org/10.1007/s12311-020-01155-1.

  • Vandervert, L. (2020b). The prominent role of the cerebellum in the social learning of the phonological loop in working memory: How language was adaptively built from cerebellar inner speech required during stone-tool making. AIMS Neuroscience, 7(3), 333–343. https://doi.org/10.3934/Neuroscience.2020020

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandervert, L., & Moe, K. (2021 May). The cerebellum-driven social basis of mathematics: implications for one-on-one tutoring of children with mathematics learning disabilities. Cerebellum & Ataxias, 8(1), 13. https://doi.org/10.1186/s40673-021-00136-2

    Article  Google Scholar 

  • Vandervert, L., & Vandervert-Weathers, K. (2013). New brain-imaging studies indicate how prototy** is related to entrepreneurial giftedness and innovation education in children. In L. V. Shavinina (Ed.), The Routledge international handbook of innovation education (pp. 79–91). Routledge.

    Google Scholar 

  • Vandervert, L., Schimpf, P., & Liu, H. (2007). How Working Memory and the Cognitive Functions of the Cerebellum Collaborate to Produce Creativity and Innovation. Creativity Research Journal, 19, 1–18.

    Article  Google Scholar 

  • Yomogida, Y., Sugiura, M., Watanabe, J., Akitsuki, Y., Sassa, Y., Sato, T., Matsue, Y., & Kawashima, R. (2004). Mental visual synthesis is originated in the fronto-temporal network of the left hemisphere. Cerebral Cortex, 14, 1376–1383.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vandervert, L. (2022). Psychology and Neuroscience Achieve the Impossible: A New, Revolutionary Look Inside the Cerebellum- Driven Mind of Albert Einstein. In: The New Revolution in Psychology and the Neurosciences. Springer, Cham. https://doi.org/10.1007/978-3-031-06093-9_1

Download citation

Publish with us

Policies and ethics

Navigation