Thermochemical Conversion of Cellulose and Hemicellulose

  • Chapter
  • First Online:
Biomass Utilization: Conversion Strategies

Abstract

Thermochemical conversion process is an important and potential route to transform biomass feedstocks into powers, fuels, and a variety of chemical platforms. The chapter describes general characteristics of thermochemical processes of biomass including combustion, pyrolysis, liquefaction, and gasification, with the focus on the thermal decomposition of individual biomass components such as cellulose and hemicellulose. Thermochemical processes occur at a wide range of temperatures and pressures with or without catalysts, in which cellulose and hemicellulose undergo serial primary and secondary reactions to form a variety of product types and yields. Primary reactions of cellulose and hemicellulose are associated with the dehydration and depolymerization process to smaller fragments, monosaccharides units, and volatiles which further decompose to low molecular weight compounds at severe conditions of temperature, times, pressures, and catalysts. Thermochemical decomposition of cellulose and hemicellulose typically produces various fuel sources including bio-char, bio-oil, bio-crude, and syngas, along with diverse substances such as anhydrosugars (levoglucosan, mannosan, galactosan), furans (furfural, 5-hydroxymethylfurfural), organic acids (acetic acid, formic acid, levulinic acid), ketones, and aldehydes. Cellulose and hemicellulose are the most abundant constituents in lignocellulosic biomass. Understanding the mechanism of thermochemical conversion of cellulose and hemicellulose leads to the choice of suitable biomass feedstocks and the transformation process for targeted production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhijeet P, Swagathnath G, Rangabhashiyam S, Asok Rajkumar M, Balasubramanian P (2020) Prediction of pyrolytic product composition and yield for various grass biomass feedstocks. Biomass Convers Biorefinery 10(3):663–674

    Article  Google Scholar 

  • Agnieszka T, Zofia S, Patrycja B (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:24

    Google Scholar 

  • Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M (2014) Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 128:8

    Article  CAS  Google Scholar 

  • Amarasekara AS, Reyes CDG (2020) Pd/C catalyzed room-temperature, atmospheric pressure hydrogenation of furanic bio-oils from acidic ionic liquid catalyzed liquefaction of biomass in acetone. Fuel Process Technol 200:106320

    Google Scholar 

  • Amenaghawon AN, Anyalewechi CL, Okieimen CO, Kusuma HS (2021) Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environ Dev Sustain

    Google Scholar 

  • Amutio M, Lopez G, Alvarez J, Olazar M, Bilbao J (2015) Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor. Biores Technol 194:8

    Article  CAS  Google Scholar 

  • Amutio M, Lopez G, Artetxe M, Elordi G, Olazar M, Bilbao J (2012) Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour Conserv Recycl 59:9

    Article  Google Scholar 

  • Atienza-Martínez M, Rubio I, Fonts I, Ceamanos J, Gea G (2017) Effect of torrefaction on the catalytic post-treatment of sewage sludge pyrolysis vapors using γ-Al2O3. Chem Eng J 308:264–274

    Google Scholar 

  • Azeez A, Meier D, Odermatt J (2011) Temperature dependence of fast pyrolysis volatile products from European and African biomasses. J Anal Appl Pyrolysis 90:12

    Article  CAS  Google Scholar 

  • Balat M, Balat M, Kirtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energy Convers Manag 50:11

    Google Scholar 

  • Banyasz J, Li S, Lyons-Hart J, Shafer K (2001) Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution. J Anal Appl Pyrol 57:223–248

    Article  CAS  Google Scholar 

  • Barzegar R, Yozgatligil A, Olgun H, Atimtay AT (2020) TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. J Energy Inst 93(3):889–898

    Google Scholar 

  • Basu P (2013) Biomass gasification, pyrolysis and torrefaction: practical design and theory, 2nd edn. Elsevier

    Google Scholar 

  • Berthet M-A, Commandré J-M, Rouau X, Gontard N, Angellier-Coussy HJM (2016) Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocomposite. Mater Design 92:223–232

    Google Scholar 

  • Boateng AA (2020) Pyrolysis of biomass for fuels and chemicals. Elsevier

    Google Scholar 

  • Börjesson M, Westman G (2015) Crystalline nanocellulose—preparation, modification, and properties. In: Cellulose: fundamental aspects and current trends. InTechOpen, pp 35

    Google Scholar 

  • Boukaous N, Abdelouahed L, Chikhi M, Meniai A-H, Mohabeer C, Bechara TJE (2018) Combustion of flax shives, beech wood, pure woody pseudo-components and their chars: a thermal and kinetic study 11(8):2146

    Google Scholar 

  • Bu Q, Cao M, Wang M, Zhang X, Mao H (2021) The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating. Sci Total Environ 754:142174

    Google Scholar 

  • Buendia-Kandia F, Brosse N, Petitjean D, Mauviel G, Rondags E, Guedon E, Dufour A (2020) Hydrothermal conversion of wood, organosolv, and chlorite pulps. Biomass Convers Biorefinery 10(1):1–13

    Article  CAS  Google Scholar 

  • Cahyanti MN, Doddapaneni TRKC, Madissoo M, Pärn L, Virro I, Kikas T (2021) Torrefaction of agricultural and wood waste: comparative analysis of selected fuel characteristics. Energies 14(10):2774

    Google Scholar 

  • Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenerg 35(1):10

    Article  CAS  Google Scholar 

  • Chatterjee R, Sajjadi B, CheN W-Y, Mattern LD, Hammer N, Raman V, Dorris A (2020) Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Front Energy Res 8(85):18

    Google Scholar 

  • Chen C, Zhao L, Wang J, Lin S (2017) Reactive molecular dynamics simulations of biomass pyrolysis and combustion under various oxidative and humidity environments. Ind Eng Chem Res 56(43):12276–12288

    Article  CAS  Google Scholar 

  • Chen D, Zheng Z, Fu K, Zeng Z, Wang J, Lu M (2015) Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel 159:27–32

    Google Scholar 

  • Chen W-H, Wang C-W, Ong HC, Show PL, Hsieh T-H (2019a) Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258:116168

    Article  CAS  Google Scholar 

  • Chen Y, Fang Y, Yang H, **n S, Zhang X, Wang X, Chen H (2019b) Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures. Fuel 248:7

    Article  Google Scholar 

  • Cho J, Davis JM, Huber GW (2010) The Intrinsic Kinetics and Heats of Reactions for Cellulose Pyrolysis and Char Formation. Chemsuschem 3:4

    Article  CAS  Google Scholar 

  • Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:15

    Article  CAS  Google Scholar 

  • Craven M, Wang Y, Yang H, Wu C, Tu X (2020) Integrated gasification and non-thermal plasma-catalysis system for cleaner syngas production from cellulose. IOP SciNotes 1(2):024001

    Google Scholar 

  • Dada TK, Sheehan M, Murugavelh S, Antunes E (2021) A review on catalytic pyrolysis for high-quality bio-oil production from biomass. Biomass Convers Biorefinery

    Google Scholar 

  • Dai G, Wang G, Wang K, Zhou Z, Wang S (2021) Mechanism study of hemicellulose pyrolysis by combining in-situ DRIFT, TGA-PIMS and theoretical calculation. Proc Combust Inst 38(3):9

    Article  CAS  Google Scholar 

  • Danghyan V, Orlova T, Roslyakov S, Wolf E, Mukasyan A (2020) Cellulose assisted combustion synthesis of high surface area Ni-MgO catalysts: mechanistic studies. Combust Flame 221:462–475

    Google Scholar 

  • Dhar SA, Sakib TU, Hilary LN (2020) Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Convers Biorefinery

    Google Scholar 

  • Ebringerovμ A, Hromμdkovμ Z, Heinze T, Valantinavičius M (2005) Polysaccharides I, vol 186. Springer, Berlin, pp 67

    Google Scholar 

  • Feng S, Wei R, Leitch M, Xu CC (2018) Comparative study on lignocellulose liquefaction in water, ethanol, and water/ethanol mixture: roles of ethanol and water. Energy 155:234–241

    Google Scholar 

  • Ferraro G, Pecori G, Rosi L, Bettucci L, Fratini E, Casini D, Rizzo AM, Chiaramonti D (2021). Biochar from lab-scale pyrolysis: influence of feedstock and operational temperature. Biomass Convers Biorefinery

    Google Scholar 

  • Fukutome A, Kawamoto H, Saka S (2015) Processes forming gas, tar, and coke in cellulose gasification from gas-phase reactions of levoglucosan as intermediate. ChemSusChem 8(13):2240–2249

    Google Scholar 

  • Fukutome A, Kawamoto H, Saka S (2017) Kinetics and molecular mechanisms for the gas-phase degradation of levoglucosan as a cellulose gasification intermediate.J Anal Appl Pyrolysis 124:666–676

    Google Scholar 

  • Gabhane JW, Bhange VP, Patil PD, Bankar ST, Kumar S (2020) Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Appl Sci 2(7):1307

    Article  CAS  Google Scholar 

  • Gagic T, Perva-Uzunalic A, Knez Z, Skerget M (2018) Hydrothermal degradation of cellulose at temperature from 200 to 300 °C. Ind Eng Chem Res 57:9

    Article  CAS  Google Scholar 

  • García-Jarana MB, Portela JR, Sánchez-Oneto J, Martinez de la Ossa EJ, Al-Duri B (2020) Analysis of the supercritical water gasification of cellulose in a continuous system using short residence times. Appl Sci 10(15):5185

    Google Scholar 

  • Ge X, Chang C, Zhang L, Cui S, Luo X, Hu S, Qin Y, Li Y (2018) Conversion of lignocellulosic biomass into platform chemicals for biobased polyurethane application. In: Advances in bioenergy, vol 3. Elsevier, pp 161–213

    Google Scholar 

  • Ghimire N, Bakke R, Bergland WH (2021) Liquefaction of lignocellulosic biomass for methane production: a review. Bioresour Technol 125068

    Google Scholar 

  • Gökkaya DS, Sert M, Sağlam M, Yüksel M, Ballice L (2020) Hydrothermal gasification of the isolated hemicellulose and sawdust of the white poplar (Populus alba L.). J Supercrit Fluids 162:104846

    Google Scholar 

  • Hao H, Chow CL, Lau D (2020) Carbon monoxide release mechanism in cellulose combustion using reactive forcefield. Fuel 269:117422

    Article  CAS  Google Scholar 

  • Hassan N, Jalil A, Vo D, Nabgan W (2020) An overview on the efficiency of biohydrogen production from cellulose. Boimass Convers Biorefinery 1–23

    Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellu- losic biomass. Bioresour Technol 100(1):9

    Article  CAS  Google Scholar 

  • Hirano Y, Miyata Y, Taniguchi M, Funakoshi N, Yamazaki Y, Ogino C, Kita Y (2020) Fe-assisted hydrothermal liquefaction of cellulose: effects of hydrogenation catalyst addition on properties of water-soluble fraction. J Anal Appl Pyrolysis 145:104719

    Google Scholar 

  • Jasiukaitytė-Grojzdek E, Vicente FA, Grilc M, Likozar B (2021) Ambient-pressured acid-catalysed ethylene glycol organosolv process: liquefaction structure-activity relationships from model cellulose-lignin mixtures to lignocellulosic wood biomass. Polymers 13(12):1988

    Google Scholar 

  • Jiang X, Chen D, Ma Z, Yan J (2017) Models for the combustion of single solid fuel particles in fluidized beds: a review. Renew Sustain Engery Rev 68:410–431

    Google Scholar 

  • Junior II, Do Nascimento MA, de Souza ROMA, Dufourd A, Wojcieszaka R (2020) Levoglucosan: a promising platform molecule? Green Chem 22:22

    Google Scholar 

  • Khatiwada JR, Shrestha S, Sharma HK, Qin W (2021) Bioconversion of hemicelluloses into hydrogen. In: Sustainable bioconversion of waste to value added products. Springer, pp 267–280

    Google Scholar 

  • Kosmela P, Hejna A, Formela K, Haponiuk J, Piszczyk Ł (2018) The study on application of biopolyols obtained by cellulose biomass liquefaction performed with crude glycerol for the synthesis of rigid polyurethane foams. J Polym Environ 26(6):2546–2554

    Google Scholar 

  • Kostetskyy P, Broadbelt LJ (2020) Progress in modeling of biomass fast pyrolysis: a review. Energy Fuels 34(12):22

    Article  CAS  Google Scholar 

  • Kumar A (2019) Current trends in cellulose assisted combustion synthesis of catalytically active nanoparticles. Ind Eng Chem Res 58(19):7681–7689

    Google Scholar 

  • Kuo L-J, Herbert BE, Louchouarn P (2008) Can levoglucosan be used to characterize and quantify char/charcoal black carbon in environmental media? Organic Geochem 39(10):1466–1478

    Google Scholar 

  • Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 124(1–3):19

    Google Scholar 

  • Lennon E, Tanzy M, Volpert V, Mukasyan A, Bayliss AJ (2011) Combustion of reactive solutions impregnated into a cellulose carrier: modeling of two combustion fronts. Chem Eng 174(1):333–340

    Google Scholar 

  • Li J, Qin G, Tang X, **ang C (2021) Fe/HZSM-5 catalyzed liquefaction of cellulose assisted by glycerol. Catal Commun 151:106268

    Google Scholar 

  • Li Q, Hu X, Liu D, Song L, Yan Z, Li M, Liu Q (2020) Comprehensive evaluation of hydro-liquefaction characteristics of lignocellulosic subcomponents. J Energy Inst 93(4):1705–1712

    Google Scholar 

  • Li Q, Wang N, Barbante C, Kang S, Callegaro A, Battistel D, Argiriadis E, Wan X, Yao P, Pu T (2019) Biomass burning source identification through molecular markers in cryoconites over the Tibetan Plateau. Environ Pollut 244:209–217

    Google Scholar 

  • Liu J, Qin D, Chen K, Wang B, Bian H, Shao Z (2021) The preparation of intrinsic dopo-cinnamic flame-retardant cellulose and its application for lithium-ion battery separator. Mater Res Express 8(7):076404

    Google Scholar 

  • Liu Y, Wu S, Zhang H, **ao R (2020) Preparation of carbonyl precursors for long-chain oxygenated fuels from cellulose ethanolysis catalyzed by metal oxides. Fuel Process Technol 206:106468

    Google Scholar 

  • Lu Q, Yang X, Dong C (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J Anal Appl Pyrolysis 92:9

    Article  Google Scholar 

  • Luo J, Li Q, Meng A, Long Y, Zhang Y (2018) Combustion characteristics of typical model components in solid waste on a macro-TGA. J Therm Anal Calorim132(1):553–562

    Google Scholar 

  • Madhua P, Dhanalakshmia CS, Mathew M (2020) Multi-criteria decision-making in the selection of a suitable biomass material for maximum bio-oil yield during pyrolysis. Fuel 277:12

    Google Scholar 

  • Mbeugang CFM, Li B, Lin D, **e X, Wang S, Wang S, Zhang S, Huang Y, Liu D, Wang Q (2021) Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide. Energy 228:120659

    Google Scholar 

  • McGrath T, Chan W, Hajaligol M (2003) Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J Anal Appl Pyrolysis 66:20

    Article  Google Scholar 

  • Minami E, Fujimoto S, Saka SJ (2018) Complete gasification of cellulose in glow-discharge plasma. J Wood Sci 64(6):854–860

    Google Scholar 

  • Moradi-Choghamarani F, Moosavi AA, Baghernejad M (2019) Determining organo-chemical composition of sugarcane bagasse-derived biochar as a function of pyrolysis temperature using proximate and Fourier transform infrared analyses. J Therm Anal Calorim 138

    Google Scholar 

  • Negi S, Jaswal G, Dass K, Mazumder K, Elumalai S, Roy JK (2020) Torrefaction: a sustainable method for transforming of agri-wastes to high energy density solids (biocoal). Rev Environ Sci Biotechnol 19(2)

    Google Scholar 

  • Neves D, Thunman H, Matos A (2011) Characterization and prediction of biomass pyrolysis products. Progr Energy Combust Sci 37:20

    Article  CAS  Google Scholar 

  • Niu Y, Lv Y, Lei Y, Liu S, Liang Y, Wang D (2019) Biomass torrefaction: properties, applications, challenges, and economy. Renew Sustain Energy Rev 115:109395

    Google Scholar 

  • Okolie JA, Nanda S, Dalai AK, Kozinski JA. J. I. J. o. H. E. (2020). Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. Int J Hydrog Energy 45(36):18275–18288

    Google Scholar 

  • Ong HC, Chen W-H, Farooq A, Gan YY, Lee KT, Ashokkumar V (2019) Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renew Sustain Energy Rev 113:109266

    Google Scholar 

  • Orcid ER, Debiagi PEA, Frassoldati A (2017) Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note II: secondary gas-phase reactions and bio-oil formation. ACS Sustain Chem Eng 5(4):15

    Google Scholar 

  • Paajanen A, Rinta-Paavola A, Vaari J (2021) High-temperature decomposition of amorphous and crystalline cellulose: reactive molecular simulations. Cellulose 1–19

    Google Scholar 

  • Paajanen A, Vaari J (2017) High-temperature decomposition of the cellulose molecule: a stochastic molecular dynamics study. Cellulse 24(7):2713–2725

    Google Scholar 

  • Pandey A, Stöcker M, Bhaskar T, Sukumaran RK (2015) Recent advances in thermochemical conversion of biomass. Elsevier

    Google Scholar 

  • Papari S, Hawboldt K (2015) A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models. Renew Sustain Energy Rev 52:16

    Article  CAS  Google Scholar 

  • Park JY, Kima J-K, Oh C-H, Park J-W, Kwon EE (2019) Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization. J Environ Manag 234:7

    Article  CAS  Google Scholar 

  • Patel A, Agrawal B, Rawal BR (2020) Pyrolysis of biomass for efficient extraction of biofuel. Energy Sources Part A Recover Util Environ Effects 42:13

    Google Scholar 

  • Patwardhan PR, Dalluge DL, Shanks BH, Brown RC (2011) Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresour Technol 102(8):5

    Article  CAS  Google Scholar 

  • Pawar A, Panwar NL, Salvi BL (2020) Comprehensive review on pyrolytic oil production, upgrading and its utilization. J Mater Cycles Waste Manag 22:11

    Article  CAS  Google Scholar 

  • Peng J, Liu X, Bao Z (2018) Experimental study on the liquefaction of cellulose in supercritical ethanol. Paper presented at the IOP conference series: materials science and engineering

    Google Scholar 

  • Peng Y, Wu S (2010) The structural and thermal characteristics of wheat straw hemicellulose. J Anal Appl Pyrolysis 88(2):6

    Article  CAS  Google Scholar 

  • Phaiboonsilpa N, Champreda V, Laosiripojana N (2020) Comparative study on liquefaction behaviors of xylan hemicellulose as treated by different hydrothermal methods. Energy Rep 6:714–718

    Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:17

    Article  CAS  Google Scholar 

  • Robert CB, Kaige W (2017) Fast pyrolysis of biomass advances in science and technology

    Google Scholar 

  • Ruan Y, Mohtadi M, Dupont LM, Hebbeln D, van der Kaars S, Hopmans E, Schouten S, Hyer EJ, Schefuß E (2020) Interaction of fire, vegetation, and climate in tropical ecosystems: a multiproxy study over the past 22,000 years. Global Biogeochem Cycles 34(11):e2020GB006677

    Google Scholar 

  • Salam A, Bashir S, Khan I, Hu H (2020) Biochar production and characterization as a measure for effective rapeseed residue and rice straw management: an integrated spectroscopic examination. Biomass Convers Biorefinery

    Google Scholar 

  • Sefain MZ, El‐Kalyoubi SF, Shukry N (1985) Thermal behavior of holo‐and hemicellulose obtained from rice straw and bagasse 23(5):1569–1577

    Google Scholar 

  • Segato D, Villoslada Hidalgo MDC, Edwards R, Barbaro E, Vallelonga P, Kjær HA, Simonsen M, Vinther B, Maffezzoli N, Zangrando R, Turetta C (2021) Five thousand years of fire history in the high North Atlantic region: natural variability and ancient human forcing. Clim Past 17(4):1533–1545

    Google Scholar 

  • Shen D, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Biores Technol 100:6496–6504

    Article  CAS  Google Scholar 

  • Song C, Zhang C, Zhang S, Lin H, Kim Y, Ramakrishnan M, Du Y, Zhang Y, Zheng H, Barcelo D (2020). Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives. Sci Total Environ 141972

    Google Scholar 

  • Soomro A, Chen S, Ma S, Xu C, Sun Z, **ang W (2018) Elucidation of syngas composition from catalytic steam gasification of lignin, cellulose, actual and simulated biomasses. Biomass Bioenergy 115:210–222

    Google Scholar 

  • Sun J, **e X-A, Fan D, Wang X, Liao W (2020a) Effect of TEMPO and characterization of bio-oil from cellulose liquefaction in supercritical ethanol. Renew Energy 145:1949–1956

    Google Scholar 

  • Sun J, Xu L, Dong G-H, Nanda S, Li H, Fang Z, Kozinski JA, Dalai AK (2020b) Subcritical water gasification of lignocellulosic wastes for hydrogen production with Co modified Ni/Al2O3 catalysts. J Supercrit Fluids 162:104863

    Google Scholar 

  • Sun L, Li L, An X, Qian X (2021) Mechanically strong, liquid-resistant photothermal bioplastic constructed from cellulose and metal-organic framework for light-driven mechanical motion. Molecules 26(15):4449

    Google Scholar 

  • Tag A-T, Duman G, Ucar S, Yanik J (2016a) Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J Anal Appl Pyrolysis 120:7

    Article  CAS  Google Scholar 

  • Tancredi N, Gabús M, Yoshida MI, Suárez AC (2017) Thermal studies of wood impregnated with ZnCl 2. Eur J Wood Wood Prod 75(4):633–638

    Google Scholar 

  • Tang G, Gu J, Huang Z, Yuan H, Chen Y (2021) Cellulose gasification with Ca-Fe oxygen carrier in chemical-loo** process. Energy

    Google Scholar 

  • Taylor MJ, Michopoulos AK, Zabaniotou AA, Skoulou V (2020) Probing synergies between lignin-rich and cellulose compounds for gasification. Energies 13(10):2590

    Google Scholar 

  • Treedet W, Suntivarakorn R (2018) Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Process Technol 179:25

    Article  CAS  Google Scholar 

  • Usino D, Supriyanto Ylitervo P, Pettersson A, Richards T (2020) Influence of temperature and time on initial pyrolysis of cellulose and xylan. J Anal Appl Pyrol 147:104782

    Google Scholar 

  • Van de Velden M, Baeyens J, Brems A (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy 35:11

    Google Scholar 

  • Wang C, Zhang H, Guo H, Shi S, **ong L, Chen X (2016a) Part A: Recovery, Utilization,, & Effects, E. (2016a). Real-time monitoring of hemicellulose liquefaction in ethylene glycol. Energy Sources, Part A Recover Util Environ Effects 38(7):2517–2523

    Google Scholar 

  • Wang S, Dai G, Ru B, Zhao Y, Wang X, Zhou J, Luo Z, Cen K (2016b). Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors. Bioresour Technol 218:1106–1114

    Google Scholar 

  • Wang C, Yang S, Xu DJ, Li Y, Li J, Zhang Y (2020a). Hydrothermal liquefaction and gasification of biomass and model compounds: a review. Green Chem 22, 24, 22, 24.

    Google Scholar 

  • Wang Q, Song H, Pan S, Dong N, Wang X, Sun S (2020b) Initial pyrolysis mechanism and product formation of cellulose: An Experimental and Density functional theory(DFT) study. Sci Rep 10:18

    CAS  Google Scholar 

  • Wang S, Ru B, Lin H, Sun W (2015) Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods. Fuel 150:9

    Article  Google Scholar 

  • Wang S, Guo X, Liang T, Zhou Y, Luo Z (2012) Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Bioresour Technol 104(2012):722–728, 104, 7

    Google Scholar 

  • Wang S, Zou C, Yang H, Lou C, Cheng S, Peng C, Wang C, Zou H (2021) Effects of cellulose, hemicellulose, and lignin on the combustion behaviours of biomass under various oxygen concentrations. Bioresour Technol 320:124375

    Google Scholar 

  • Wei L, Xu S, Zhang L (2006) Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Process Technol 9

    Google Scholar 

  • Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrolysis 110:8

    Article  CAS  Google Scholar 

  • Wooten JB, Seeman JI, Hajaligol MR (2003) Observation and Characterization of cellulose pyrolysis intermediates by 13C CPMAS NMr. A new mechanistic model. Energy Fuels 2003(18):15

    Google Scholar 

  • Xu Y-H, Li M-F (2021) Hydrothermal liquefaction of lignocellulose for value-added products: Mechanism, parameter and production application. Bioresour Technol 342:126035

    Article  CAS  PubMed  Google Scholar 

  • Xu Z-X, Cheng J-H, He Z-X, Wang Q, Shao Y-W, Hu X (2019) Hydrothermal liquefaction of cellulose in ammonia/water. Boiresour Technol 278:311–317

    Google Scholar 

  • Yang C, Wang S, Yang J, Xu D, Li Y, Li J, Zhang Y (2020a) Hydrothermal liquefaction and gasification of biomass and model compounds: a review. Green Chem 22:24

    Article  Google Scholar 

  • Yang X, Fu Z, Han D, Zhao Y, Li R, Wu Y (2020b) Unveiling the pyrolysis mechanisms of cellulose: Experimental and theoretical studies. Renew Energy 147:11

    Article  CAS  Google Scholar 

  • Yu C, Ren S, Wang G, Xu J, Teng H, Li T, Huang C, Wang C (2021) Kinetic analysis and modeling of maize straw hydrochar combustion using multi-Gaussian-distributed activation energy model. Int J Miner Metall Mater

    Google Scholar 

  • Yu H, Wu Z, Chen G (2018) Catalytic gasification characteristics of cellulose, hemicellulose and lignin. Renew Energy 121:559–567

    Google Scholar 

  • Zhang C, Li C, Zhang Z, Zhang L, Li Q, Fan H, Zhang S, Liu Q, Qiao Y, Tian Y, Wang Y, Hu X (2021) Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature. Renew Sustain Energy Rev 135(2021):110416, 135, 20

    Google Scholar 

  • Zhang X, Yang W, Blasiak W (2012) Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis. J Anal Appl Pyrolysis 96:10

    Article  CAS  Google Scholar 

  • Zhao L, Zhou H, **e Z, Li J, Yin Y (2020) Effects of potassium on solid products of peanut shell torrefaction. Energy Sources Part A Recovery Util Environ Effects 42(10):1235–1246

    Google Scholar 

  • Zheng A, Li L, Zhao Z, Tian Y, Li H (2021). Effect of torrefaction pretreatment on chemical structure and pyrolysis behaviors of Cellulose. Paper presented at the IOP conference series: earth and environmental science

    Google Scholar 

  • Zhou H, Zhao L, Fu X, Zhu Y, Pan Y (2020) Effects of typical alkaline earth metal salts on cellulose torrefaction: solid products and thermal gravimetric analysis. Bioresources 15(1):1678–1691

    Google Scholar 

  • Zhou X, Li W, Mabon R, Broadbelt LJ (2016) A critical review on hemicellulose pyrolysis. Energy Technol 4:29

    CAS  Google Scholar 

  • Zhou X, Li W, Mabonb R, Broadbelt LJ (2018) A mechanistic model of fast pyrolysis of hemicellulose. Energy Environ. Sci 11:1240, 11, 21

    Google Scholar 

  • Zhu C, Han C-G, Saito G, Akiyama T (2016) Facile synthesis of MnO/carbon composites by a single-step nitrate-cellulose combustion synthesis for Li ion battery anode. J Alloys Compd 689:931–937

    Google Scholar 

  • Zimmermann A, Visscher C, Kaltschmitt M (2021) Plant-based fructans for increased animal welfare: provision processes and remaining challenges. Biomass Convers Biorefinery 1–19

    Google Scholar 

  • Zou J, Oladipo J, Fu S, Al-Rahbi A, Yang H, Wu C, Cai N, Williams P, Chen H (2018). Hydrogen production from cellulose catalytic gasification on CeO2/Fe2O3 catalyst. Energy Convers Manag 171:241–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Quynh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, A.Q., Trinh, L.T.P. (2022). Thermochemical Conversion of Cellulose and Hemicellulose. In: Nghiem, N.P., Kim, T.H., Yoo, C.G. (eds) Biomass Utilization: Conversion Strategies. Springer, Cham. https://doi.org/10.1007/978-3-031-05835-6_6

Download citation

Publish with us

Policies and ethics

Navigation