Diagnostic Applications of Nuclear Medicine: Malignant Melanoma

  • Reference work entry
  • First Online:
Nuclear Oncology

Abstract

Malignant melanoma was diagnosed in approximately 74,000 patients in 2015 in the USA. Melanoma accounts for about 3% of all skin cancers. Major parameters that impact prognosis include Breslow thickness, ulceration, tumor location, growth pattern, histological subtype, patient’s age, gender, and tumor status of regional lymph nodes. Melanomas are staged using the American Joint Committee on Cancer (AJCC) TNM system, which has incorporated the histological status of SLN into its latest staging system version of cutaneous malignant melanoma.

In early stage melanoma (AJCC I–II), sentinel lymph node biopsy (SLNB) is the standard of care for nodal staging. Lymphoscintigraphy with SPECT/CT improves the detection of SLN. In AJCC stage I–II melanoma, [18F]FDG PET/CT has poor sensitivity for the detection of nodal metastases but it is sensitive for the detection of distant metastases. In patients with AJCC stage III (regional nodal involvement) or stage IV disease (systemic metastases), [18F]FDG PET/CT is useful to identify metastatic disease. PET imaging in melanoma patients should include the arms and legs, especially in patients whose primary lesions arise on extremities. False-negative results can occur with small skin and brain metastases, and lesions adjacent to the heart, kidneys, or urinary bladder.

Although [18F]FDG PET/CT is more specific in the diagnosis of melanoma pulmonary metastases, chest CT is more sensitive. Most PET false negatives in recurrent disease are typically less than 1 cm in diameter and are mainly pulmonary and hepatic in location or in the brain. [18F]FDG PET/CT is useful in treatment monitoring of metastatic melanoma and in posttherapy surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AJCC:

American Joint Committee on Cancer

APC:

Antigen-presenting cell

bFGF:

Basic fibroblast growth factor

BRAF:

RAF serine−/threonine-specific protein kinase

Breslow thickness:

A prognostic factor in cutaneous melanoma, based on description of how deeply tumor cells have invaded the skin (also called “Breslow depth”)

CDK4:

Cyclin-dependent kinase 4

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

ceCT:

Contrast-enhanced computed tomography

CI:

Confidence interval

c-KIT:

A proto-oncogene encoding for tyrosine-protein kinase Kit (or CD117), also known as mast/stem cell growth factor receptor (SCFR)

Clark level:

A staging system for cutaneous melanoma based on description of the level of anatomic invasion of the melanoma in the skin (generally used in conjunction with Breslow’s depth)

COT:

A mitogen-activated protein serine/threonine kinase involved in T-cell activation

CR:

Complete response

CT:

X-ray computed tomography

ERK:

Extracellular signal-regulated kinase

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

18F-FLT:

3′-18F-fluoro-3′-deoxythymidine

FDA:

United States Food and Drug Administration

GLUT:

Glucose transporter family

HR:

Hazard ratio, a statistical parameter used in survival analysis

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

IGFR1:

Insulin-like growth factor 1

LAG-3:

Lymphocyte-activation gene 3

LDH:

Lactate dehydrogenase

LS:

Lymphoscintigraphy

M:

Metastasis status according to the AJCC/UICC TNM staging system

MAGE:

Melanoma-associated antigen gene

MAPK:

Mitogen-activated protein kinase

MHC:

Major histocompatibility complex

MIP:

Maximum Intensity Projection PET image

MRI:

Magnetic resonance imaging

N:

Lymph node status according to the AJCC/UICC TNM staging system

NCCN:

National Comprehensive Cancer Network

NRAS:

Oncogene encoding for a membrane protein that shuttles between the Golgi apparatus and the plasma membrane

ORR:

Overall response rate

OS:

Overall survival

PDGF:

Platelet-derived growth factor

PD-L1:

Programmed death ligand

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PFS:

Progression-free survival

PI3K:

Phosphatidylinositol 3-kinase

PlGF:

Placental growth factor

PTEN:

Gene encoding for the phosphatase and tensin homolog protein, a tumor suppressor (PTEN deletions indicate a poor prognosis)

RAF:

Rapidly accelerated fibrosarcoma, related to retroviral oncogenes

RECIST:

Response evaluation criteria in solid tumors

S-100:

A low-molecular-weight calcium-binding protein expressed in melanomas, but also in other benign and malignant conditions

SLN:

Sentinel lymph node

SLNB:

Sentinel lymph node biopsy

SLNE:

Sentinel lymph node excision

SPECT:

Single photon emission computed tomography

SPECT/CT:

Single photon emission computed tomography/computed tomography

SUV:

Standardized uptake value

SUVmax:

Standardized uptake value at point of maximum

T:

Tumor status according to the AJCC/UICC TNM staging system

TGF:

Transforming growth factor

TIM-3:

T-cell immunoglobulin and mucin-domain containing-3

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

UV:

Ultraviolet

VEGF:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  1. Australian Institute of Health and Welfare (AIHW). Cancer incidence projections, Australia 2011 to 2020 – Summary. Canberra: AIHW; 2020.

    Google Scholar 

  2. Australian Institute of Health and Welfare (AIHW) and Melanoma Institute of Australia. Melanoma facts and statistics. Canberra: AIHW; 2019.

    Google Scholar 

  3. Ali Z, Yousaf N, Larkin J. Melanoma epidemiology, biology and prognosis. EJC Suppl. 2013;11(2):81–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eide MJ, Weinstock MA. Association of UV index, latitude, and melanoma incidence in non-white populations – US Surveillance, Epidemiology, and End Results (SEER) Program, 1992 to 2001. Arch Dermatol. 2005;141(4):477.

    Article  PubMed  Google Scholar 

  5. Welch HG, Woloshin S, et al. Skin biopsy rates and incidence of melanoma: population based ecological study. BMJ. 2005;331(7515):481.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gandini S, Sera F, et al. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic features. Eur J Cancer. 2005;41(14):2040–59.

    Article  PubMed  Google Scholar 

  7. Pampena R, Kyrgidis A, et al. A meta-analysis of nevus-associated melanoma: prevalence and practical implications. J Am Acad Dermatol. 2017;77(5):938.

    Article  PubMed  Google Scholar 

  8. Bataille V, Bishop JA, et al. Risk of cutaneous melanoma in relation to the numbers, types and sites of naevi: a case-control study. Br J Cancer. 1996;73(12):1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Purdue MP, From L, et al. Etiologic and other factors predicting nevus-associated cutaneous malignant melanoma. Cancer Epidemiol Biomarkers Prev. 2005;14(8):2015.

    Article  PubMed  Google Scholar 

  10. Whiteman DC, Stickley M, et al. Anatomic site, sun exposure, and risk of cutaneous melanoma. J Clin Oncol. 2006;24(19):3172.

    Article  PubMed  Google Scholar 

  11. Ghiasvand R, Robsahm TE, et al. Association of phenotypic characteristics and UV radiation exposure with risk of melanoma on different body sites. JAMA Dermatol. 2019;155(1):39.

    Article  PubMed  Google Scholar 

  12. Cooke KR, Fraser J. Migration and death from malignant melanoma. Int J Cancer. 1985;36(2):175.

    Article  CAS  PubMed  Google Scholar 

  13. Lazovich D, Isaksson VR, et al. Association between indoor tanning and melanoma in younger men and women. JAMA Dermatol. 2016;152(3):268.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stern RS, PUVA Follow up Study. The risk of melanoma in association with long-term exposure to PUVA. J Am Acad Dermatol. 2001;44(5):755.

    Article  CAS  PubMed  Google Scholar 

  15. Kubica AW, Brewer JD, et al. Melanoma in immunosuppressed patients. Mayo Clin Proc. 2012;87(10):991–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brewer JD, Christenson LJ, et al. Malignant melanoma in solid transplant recipients: collection of database cases and comparison with surveillance, epidemiology, and end results data for outcome analysis. Arch Dermatol. 2011;147(7):790.

    Article  PubMed  Google Scholar 

  17. Mariette X, Matucci-Cerinic M, et al. Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: a systematic review and meta-analysis. Ann Rheum Dis. 2011;70(11):1895.

    Article  PubMed  Google Scholar 

  18. Carlos G, Anforth R, et al. Cutaneous toxic effects of BRAF inhibitors alone and in combination with MEK inhibitors for metastatic melanoma. JAMA Dermatol. 2015;151(10):1103.

    Article  PubMed  Google Scholar 

  19. Li WQ, Qureshi AA, et al. Sildenafil use and increased risk of incident melanoma in US men: a prospective cohort study. JAMA Intern Med. 2014;174(6):964.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Miller DD, Cowen EW, et al. Melanoma associated with long-term voriconazole therapy: a new manifestation of chronic photosensitivity. Arch Dermatol. 2010;146(3):300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Merimsky O, Inbar M, et al. Cigarette smoking and skin cancer. Clin Dermatol. 1998;16(5):585.

    Article  CAS  PubMed  Google Scholar 

  22. Asgari MM, Maruti SS, et al. Antioxidant supplementation and risk of incident melanomas: results of a large prospective cohort study. Arch Dermatol. 2009;145(8):879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gabree M, Patel D, Rodgers L. Clinical applications of melanoma genetics. Curr Treat Options Oncol. 2014;15(2):336.

    Article  PubMed  Google Scholar 

  24. Goldstein AM, Chan M, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2007;44(2):99.

    Article  CAS  PubMed  Google Scholar 

  25. Leachman SA, Lucero OM, et al. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev. 2017;36(1):77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Amaral T, Sinnberg T, et al. The mitogen-activated protein kinase pathway in melanoma. Part I – Activation and primary resistance mechanisms to BRAF inhibition. Eur J Cancer. 2017;73:85–92.

    Article  CAS  PubMed  Google Scholar 

  27. Davies H, Bignell GR, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949.

    Article  CAS  PubMed  Google Scholar 

  28. Pollock PM, Harper UL, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33(1):19.

    Article  CAS  PubMed  Google Scholar 

  29. Dong J, Phelps RG, et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res. 2003;63(14):3883.

    CAS  PubMed  Google Scholar 

  30. Menzies AM, Haydu LE, et al. Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res. 2012;18(12):3242.

    Article  CAS  PubMed  Google Scholar 

  31. Long GV, Menzies AM, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29(10):1239.

    Article  PubMed  Google Scholar 

  32. Shain AH, Yeh I, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36.

    Article  PubMed  Google Scholar 

  33. Clark WH, Elder DE, et al. The biologic forms of malignant melanoma. Hum Pathol. 1986;17(5):443.

    Article  PubMed  Google Scholar 

  34. Clark WH, Mihm MC, et al. Lentigo maligna and lentigo-maligna melanoma. Am J Pathol. 1969;55(1):39.

    PubMed  PubMed Central  Google Scholar 

  35. Coleman WP, Loria PR, et al. Acral lentiginous melanoma. Arch Dermatol. 1980;116(7):773.

    Article  PubMed  Google Scholar 

  36. Keung EZ, Balch CM, et al. Key changes in the AJCC eight edition melanoma staging system. Melanoma Lett. 2018;36(1):1–10.

    Google Scholar 

  37. Gershenwald JE, Scolyer RA, et al. Melanoma staging: evidence-based changes in the American joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(6):472.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Leiter U, Meier F, et al. The natural course of cutaneous melanoma. J Surg Oncol. 2004;86:172–8.

    Article  PubMed  Google Scholar 

  39. Balch CM, Soong SJ, et al. Age as a prognostic factor in patients with localised melanoma and regional metastases. Ann Surg Oncol. 2013;20(12):3961–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Balch CM, Thompson JF, et al. Age as a predictor of sentinel node metastasis among patients with localised melanoma: an inverse correlation of melanoma mortality and incidence of sentinel node metastasis among young and old patients. Ann Surg Oncol. 2014;21(4):1075–81.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Joosse A, Collette S, et al. Superior outcome of women with stage I/II cutaneous melanoma: pooled analysis of four EORT phase III trials. J Clin Oncol. 2012;30(18):2240.

    Article  PubMed  Google Scholar 

  42. Callender GG, Egger ME, et al. Prognostic implications of anatomic location of primary cutaneous melanoma of 1mm or thicker. Am J Surg. 2011;202(6):659–64.

    Article  PubMed  Google Scholar 

  43. Thomas NE, Edmiston SN, et al. Association between NRAS and BRAF mutational status and melanoma-specific survival among patients with higher-risk primary melanoma. JAMA Oncol. 2015;1(3):359.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mitkov M, Joseph R, et al. Steroid hormone influence on melanomagenesis. Mol Cell Endocrinol. 2015;417:94–102.

    Article  CAS  PubMed  Google Scholar 

  45. Morton DL, Thompson JF, et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N Engl J Med. 2014;370(7):599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Faries MB, Thompson JF, et al. Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med. 2017;376(23):2211.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nathan FE, Mastrangelo MJ, et al. Adjuvant therapy for cutaneous melanoma. Semin Oncol. 1995;22:647–61.

    CAS  PubMed  Google Scholar 

  48. Kirkwood JM, Strawderman MH, et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma. J Clin Oncol. 1996;14:7–17.

    Article  CAS  PubMed  Google Scholar 

  49. Alexander MM, Eggermont MD, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375:1845–55.

    Article  Google Scholar 

  50. Weber J, Mandala M, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377:1824–35.

    Article  CAS  PubMed  Google Scholar 

  51. Alexander MM, Eggermont MD, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378:1789–801.

    Article  Google Scholar 

  52. Dummer R, Hauschild A, et al. Fiver-year analysis of adjuvant dabrafenib plus trametinib in stage III melanoma. N Engl J Med. 2020;383:1139–48.

    Article  CAS  PubMed  Google Scholar 

  53. Hodi F, O’Day S, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robert C, Long GV, et al. Nivolumab in previously untreated nivolumab without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    Article  CAS  PubMed  Google Scholar 

  55. Robert C, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(36):2521–32.

    Article  CAS  PubMed  Google Scholar 

  56. Larkin J, Chiarion-Sileni V, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381:1535–46.

    Article  CAS  PubMed  Google Scholar 

  57. Robert C, Grob J, et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381:626–36.

    Article  CAS  PubMed  Google Scholar 

  58. Larkin J, Ascierto PA, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–76.

    Article  PubMed  Google Scholar 

  59. Dummer R, Ascierto PA, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicenter, open-label, randomised phase 3 trial. Lancet Oncology. 2018;19(5):603–15.

    Article  CAS  PubMed  Google Scholar 

  60. Felcht M, Thomas M. Angiogenesis in malignant melanoma. Dermatol Ges. 2015;13(2):125–36.

    Google Scholar 

  61. Yu C, Liu X, et al. Combination of immunotherapy with targeted therapy: theory and practice in metastatic melanoma. Front Immunol. 2019 May;7(10):990.

    Article  Google Scholar 

  62. Gutzmer R, Stroyakovskiy D, et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF V600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020;395:1835–44.

    Article  CAS  PubMed  Google Scholar 

  63. Morton DL, Thompson JF, et al. Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med. 2006;355:1307–17.

    Article  CAS  PubMed  Google Scholar 

  64. Wagner JD, Schauwecker D, et al. Prospective study of fluorodeoxyglucose-positron emission tomography imaging of lymph node basins in melanoma patients undergoing sentinel node biopsy. J Clin Oncol. 1999;17:1508–15.

    Article  CAS  PubMed  Google Scholar 

  65. Morton DL, Thompson JF, Essner R. Validation of the accuracy of intraoperative lymphatic map** and sentinel lymphadenectomy for early-stage melanoma: a multicenter trial. Multicenter Selective Lymphadenectomy Trial Group. Ann Surg. 1999;230:453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gershenwald JE, Thompson W, et al. Multi-institutional melanoma lymphatic map** experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J Clin Oncol. 1999;17:976–83.

    Article  CAS  PubMed  Google Scholar 

  67. Belhocine T, Scott AM, et al. The role of nuclear medicine in the management of cutaneous malignant melanoma. J Nucl Med. 2006;47:957–67.

    PubMed  Google Scholar 

  68. Quartuccio N, Garau LM, et al. Comparison of 99mTc-labeled colloid SPECT/CT and planar lymphoscintigraphy in sentinel lymph node detection in patients with melanoma: a meta-analysis. J Clin Med. 2020;9(6):1680–95.

    Article  CAS  PubMed Central  Google Scholar 

  69. Schafer A, Herbst RA, et al. Sentinel lymph node excision (SLNE) and positron emission tomography in the staging of stage I–II melanoma patients. Hautarzt. 2003;54:440–7.

    CAS  PubMed  Google Scholar 

  70. Fink AM, Holle-Robatsch S, et al. Positron emission tomography is not useful in detecting metastasis in the sentinel lymph node in patients with primary malignant melanoma stage I and II. Melanoma Res. 2004;14:141–5.

    Article  PubMed  Google Scholar 

  71. Hafner J, Schmid MH, et al. Baseline staging in cutaneous malignant melanoma. Br J Dermatol. 2004;150:677–86.

    Article  CAS  PubMed  Google Scholar 

  72. Libberecht K, Husada G, et al. Initial staging of malignant melanoma by positron emission tomography and sentinel node biopsy. Acta Chir Belg. 2005;105:621–5.

    Article  CAS  PubMed  Google Scholar 

  73. Wagner JD, Schauwecker D, et al. Inefficacy of F-18 fluorodeoxy-d-glucose-positron emission tomography scans for initial evaluation in early-stage cutaneous melanoma. Cancer. 2005;104:570–9.

    Article  PubMed  Google Scholar 

  74. Crippa F, Leutner M, et al. Which kinds of lymph node metastases can FDG PET detect? A clinical study in melanoma. J Nucl Med. 2000;41:1491–4.

    CAS  PubMed  Google Scholar 

  75. Mijnhout GS, Hoekstra OS, et al. How morphometric analysis of metastatic load predicts the (un)usefulness of PET scanning: the case of lymph node staging in melanoma. J Clin Pathol. 2003;56:283–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. **ng Y, Bronstein Y, et al. Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: a meta-analysis. J Natl Cancer Inst. 2011;103:129–42.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vereecken P, Laporte M, et al. Evaluation of extensive initial staging procedure in intermediate/high-risk melanoma patients. J Eur Acad Dermatol Venereol. 2005;19:66–73.

    Article  CAS  PubMed  Google Scholar 

  78. Fletcher JW, Djulbegovic B, et al. Recommendations on the use of [18F]FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  79. Stas M, Stroobants S, et al. [18F]FDG PET scan in the staging of recurrent melanoma: additional value and therapeutic impact. Melanoma Res. 2002;12:479–90.

    Article  CAS  PubMed  Google Scholar 

  80. Harris MT, Berlangieri SU, et al. Impact of 2-deoxy-2[F-18]fluoro-d-glucose positron emission tomography on the management of patients with advanced melanoma. Mol Imaging Biol. 2005;7:304–8.

    Article  PubMed  Google Scholar 

  81. Bastiaannet E, Wobbes T, et al. Prospective comparison of [18F]FDG PET/CT in patients with melanoma and palpable lymph node metastases: diagnostic accuracy and impact on treatment. J Clin Oncol. 2009;27:4774–80.

    Article  PubMed  Google Scholar 

  82. Perng P, Marcus C, Subramaniam RM. 18F-FDG PET/CT and melanoma: staging, immune modulation and mutation-targeted therapy assessment and prognosis. American Journal of Roentgenology. 2015;205:259–70.

    Google Scholar 

  83. Niebling MG, Bastiaannet E, Hoekstra OS, Bonenkamp JJ, Koelemij R, Hoekstra HJ. Outcome of clinical stage III melanoma patients with FDG-PET and whole-body CT added to the diagnostic workup. Ann Surg Oncol. 2013;20:3098–105.

    Article  CAS  PubMed  Google Scholar 

  84. Garbe C, Amaral T, et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics - Update 2019. Eur J Cancer. 2020;126:141–58.

    Article  CAS  PubMed  Google Scholar 

  85. Strobel K, Bode B, et al. Limited value of [18F]FDG PET/CT and S-100B tumour marker in the detection of liver metastases from uveal melanoma compared to liver metastases from cutaneous melanoma. Eur J Nucl Med Mol Imag. 2009;36:1774–82.

    Article  CAS  Google Scholar 

  86. Schröer-Günther MA, Wolff RF, et al. F-18-fluoro-2-deoxyglucose positron emission tomography (PET) and PET/computed tomography imaging in primary staging of patients with malignant melanoma: a systematic review. Syst Rev. 2012;1:62.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Loffler M, Weckesser M, et al. Malignant melanoma and [18F]FDG PET: should the whole body scan include the legs? Nuklearmedizin. 2003;42:167–72.

    Article  CAS  PubMed  Google Scholar 

  88. Coleman RE, Delbeke D, et al. Concurrent PET/ CT with an integrated imaging system: intersociety dialogue from the Joint Working Group of the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance. J Nucl Med. 2005;46:1225–39.

    PubMed  Google Scholar 

  89. Balch CM, Soong SJ, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol. 2001;19:3622–34.

    Article  CAS  PubMed  Google Scholar 

  90. Hofmann U, Szedlak M, et al. Primary staging and follow-up in melanoma patient-monocenter evaluation of methods, costs and patient survival. Br J Cancer. 2002;87:151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weiss M, Loprinzi CL, et al. Utility of follow-up tests for detecting recurrent disease in patients with malignant melanomas. JAMA. 1995;274:1703–5.

    Article  CAS  PubMed  Google Scholar 

  92. Damian DL, Fulham MJ, et al. Positron emission tomography in the detection and management of metastatic melanoma. Melanoma Res. 1996;6:325–9.

    Article  CAS  PubMed  Google Scholar 

  93. Rinne D, Baum RP, et al. Primary staging and follow-up of high risk melanoma patients with whole-body [18F]fluorodeoxyglucose positron emission tomography: results of a prospective study of 100 patients. Cancer. 1998;82:1664–71.

    Article  CAS  PubMed  Google Scholar 

  94. Tyler DS, Onaitis M, et al. Positron emission tomography scanning in malignant melanoma. Cancer. 2000;89:1019–25.

    Article  CAS  PubMed  Google Scholar 

  95. Jiménez-Requena F, Delgado-Bolton RC, et al. Meta-analysis of the performance of [18F]FDG PET in cutaneous melanoma. Eur J Nucl Med Mol Imag. 2010;37:284–300.

    Article  Google Scholar 

  96. Swetter SM, Carroll LA, et al. Positron emission tomography is superior to computed tomography for metastatic detection in melanoma patients. Ann Surg Oncol. 2002;9:646–53.

    Article  PubMed  Google Scholar 

  97. Brady MS, Akhurst T, et al. Utility of preoperative [18]F-fluorodeoxyglucose-positron emission tomography scanning in high-risk melanoma patients. Ann Surg Oncol. 2006;13:525–32.

    Article  PubMed  Google Scholar 

  98. Dalrymple-Hay MJ, Rome PD, et al. Pulmonary metastatic melanoma – The survival benefit associated with positron emission tomography scanning. Eur J Cardiothorac Surg. 2002;21:611–4.

    Article  CAS  PubMed  Google Scholar 

  99. Fulham MJ, Kelley B, et al. Impact of FDG PET on the management of patients with suspected or proven metastatic melanoma prior to surgery: a prospective, multi-centre study as part of the Australian PET Data Collection Project. J Nucl Med. 2007;48(Suppl 2):191P.

    Google Scholar 

  100. Madu MF, Timmerman P, et al. PET/CT surveillance detects asymptomatic recurrences in stage IIIB and IIIC melanoma patients: a prospective cohort study. Melanoma Res. 2017;27:251–7.

    Article  PubMed  Google Scholar 

  101. Veit-Haibach P, Vogt FM, et al. Diagnostic accuracy of contrast enhanced FDG-PET/CT in primary staging of cutaneous malignant melanoma. Eur J Nucl Med Mol Imag. 2009;36:910–8.

    Article  Google Scholar 

  102. Reinhardt MJ, Joe AY, et al. Diagnostic performance of whole body dual modality [18F]FDG PET/CT imaging for N- and M-staging of malignant melanoma: experience with 250 consecutive patients. J Clin Oncol. 2006;24:1178–87.

    Article  PubMed  Google Scholar 

  103. Falk MS, Truitt AK, et al. Interpretation, accuracy and management implications of FDG PET/CT in cutaneous malignant melanoma. Nucl Med Commun. 2007;28:273–80.

    Article  CAS  PubMed  Google Scholar 

  104. Iagaru A, Quon A, et al. 2-Deoxy-2-[F-18]fluorodeoxyglucose positron emission tomography/computed tomography in the management of melanoma. Mol Imaging Biol. 2007;9:50–7.

    Article  CAS  PubMed  Google Scholar 

  105. Schöder H, Larson SM, Yeung HW. PET/CT in oncology:integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J Nucl Med. 2004;45(Suppl1):72S–81.

    PubMed  Google Scholar 

  106. Mottaghy FM, Sunderkotter C, Schubert R, et al. Direct comparison of [18F]FDG PET/CT with PET alone and with side-by-side PET and CT in patients with malignant melanoma. Eur J Nucl Med Mol Imag. 2007;34:1355–64.

    Article  Google Scholar 

  107. Macapinlac HA. The utility of 2-deoxy-2-[18F]fluoro-d-glucose- positron emission tomography and combined positron emission tomography and computed tomography in lymphoma and melanoma. Mol Imaging Biol. 2004;6:200–7.

    Article  PubMed  Google Scholar 

  108. Pfannenberg C, Aschoff P, et al. Prospective comparison of [18F]fluorodeoxyglocose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced melanoma. Eur J Cancer. 2007;43:557–64.

    Article  PubMed  Google Scholar 

  109. Strobel K, Dummer R, et al. Chemotherapy response assessment in stage IV melanoma patients-comparison of [18F]FDG-PET/CT, CT, brain MRI, and tumor marker S-100B. Eur J Nucl Med Mol Imag. 2008;35:1786–95.

    Article  Google Scholar 

  110. González AB, Jiménez RB, et al. Biochemotherapy in the treatment of metastatic melanoma in selected patients. Clin Transl Oncol. 2009;11:382–6.

    Article  Google Scholar 

  111. Hofman MS, Constantinidou A, et al. Assessing response to chemotherapy in metastatic melanoma with FDG PET: early experience. Nucl Med Commun. 2007;28:902–6.

    Article  PubMed  Google Scholar 

  112. Zheng B, Jeong JH, et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell. 2009;33:237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Carlino MS, Saunders CA, et al. [18F]-labelled fluorodeoxyglucose-positron emission tomography (FDG-PET) heterogeneity of response is prognostic in dabrafenib treated BRAF mutant metastatic melanoma. Eur J Cancer. 2013;49:395–402.

    Article  CAS  PubMed  Google Scholar 

  114. McArthur GA, Puzanov I, et al. Marked, homogeneous, and early [18F]fluorodeoxyglucose- positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol. 2012;30:1628–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tan AC, Emmett L, et al. FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma. Ann Oncol. 2018;29(10):2115–20.

    Article  CAS  PubMed  Google Scholar 

  116. Iravani A, Osman MM, et al. FDG PET/CT for tumoral and systemic immune response monitoring of advanced melanoma during first-line combination ipilimumab and nivolumab treatment. Eur J Nucl Med Mol Imaging. 2020;47:2776–86.

    Article  CAS  PubMed  Google Scholar 

  117. Kong BY, Menzies AM, et al. Residual FDG-PET metabolic activity in metastatic melanoma patients with prolonged response to anti-PD-1 therapy. Pigment Cell & Melanoma Research. 2016;29:572–7.

    Article  CAS  Google Scholar 

  118. Ayati N, Sadeghi R, et al. The value of 18F-FDG PET/CT for predicting or monitoring immunotherapy response in patients with metastatic melanoma: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2021;48:428–48.

    Article  CAS  PubMed  Google Scholar 

  119. Wong ANM, McArther GA, et al. The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):S67–77.

    Article  Google Scholar 

  120. Wolchok JD, Hoos A, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clinical Cancer Research. 2009;15:7412–20.

    Article  CAS  PubMed  Google Scholar 

  121. Hofman MS, Hicks RJ. How we read oncologic FDG PET/CT. Cancer Imaging. 2016;16:35–48.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gulec SA, Faries MB, et al. The role of fluorine-18 deoxyglucose positron emission tomography in the management of patients with metastatic melanoma: impact on surgical decision making. Clin Nucl Med. 2003;28:961–5.

    Article  PubMed  Google Scholar 

  123. Singh B, Ezziddin S, et al. Preoperative [18F]-FDG-PET/CT imaging and sentinel node biopsy in the detection of regional lymph node metastases in malignant melanoma. Melanoma Res. 2008;18:346–52.

    Article  PubMed  Google Scholar 

  124. Maubec E, Lumbroso J, et al. F-18 fluorodeoxy-d-glucose positron emission tomography scan in the initial evaluation of patients with a primary melanoma thicker than 4 mm. Melanoma Res. 2007;17:147–54.

    Article  PubMed  Google Scholar 

  125. Krug B, Crott R, et al. Role of PET in the initial staging of cutaneous malignant melanoma: systematic review. Radiology. 2008;249:836–44.

    Article  PubMed  Google Scholar 

  126. Niebling MG, Bastiaannet E, et al. Outcome of clinical stage III melanoma patients with FDG-PET and whole-body CT added to the diagnostic workup. Ann Surg Oncol. 2013;20:3098–105.

    Article  CAS  PubMed  Google Scholar 

  127. Eigtved A, Andersson AP, et al. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of silent metastases from malignant melanoma. Eur J Nucl Med. 2000;27:70–5.

    Article  CAS  PubMed  Google Scholar 

  128. Krug B, Crott R, et al. Cost-effectiveness analysis of FDG PET-CT in the management of pulmonary metastases from malignant melanoma. Acta Oncol. 2010;49(2):192–200.

    Article  PubMed  Google Scholar 

  129. Cobben DC, Jager PL, et al. 18F-3-fluoro-3-deoxy-l-thymidine: a new tracer for staging of metastatic melanoma? J Nucl Med. 2003;44:1927–32.

    Google Scholar 

  130. Ishiwata K, Kubota K, et al. Selective 2-(F18)fluorodopa uptake for melanogenesis in murine metastatic melanomas. J Nucl Med. 1991;32:95–101.

    CAS  PubMed  Google Scholar 

  131. Dimitrakopoulou-Strauss A, Strauss LG, Burger C. Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-l-dopa with 18F-FDG and 15O-water using compartment and non-compartment analysis. J Nucl Med. 2001;42:248–56.

    CAS  PubMed  Google Scholar 

  132. Beer AJ, Haubner R, et al. Positron emission tomography using [18F]-Galacto-RGD identifies the level of integrin avb3 expression in man. Clin Cancer Res. 2006;12:3942–9.

    Article  CAS  PubMed  Google Scholar 

  133. Greguric I, Taylor SR, et al. Discovery of [18F]N-(2-(diethylamino)ethyl)-6-fluoronicotinamide: a melanoma positron emission tomography imaging radiotracer with high tumor to body contrast ratio and rapid renal clearance. J Med Chem. 2009;52:5299–302.

    Article  CAS  PubMed  Google Scholar 

  134. Denoyer D, Potdevin T, et al. Improved detection of regional melanoma metastasis using 18F-6-fluoro-N-[2-(diethylamino)ethyl] pyridine-3-carboxamide, a melanin-specific PET probe, by perilesional administration. J Nucl Med. 2011;52:115–22.

    Article  PubMed  Google Scholar 

  135. Zhang C, Zhang Z, et al. Melanoma imaging using 18F-labeled α-melanocyte-stimulating hormone derivatives with positron emission tomography. Mol Pharm. 2018;15:2116–22.

    Article  CAS  PubMed  Google Scholar 

  136. Zhang C, Zhang Z, et al. Preclinical melanoma imaging with 68Ga-labeled α-melanocyte-stimulating hormone derivatives using PET. Theranostics. 2017;7:805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Scott, A.M., Lee, ST., Senko, C., Ciprotti, M., Kee, D. (2022). Diagnostic Applications of Nuclear Medicine: Malignant Melanoma. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-05494-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05494-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05493-8

  • Online ISBN: 978-3-031-05494-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation