Geometric Approaches

  • Chapter
  • First Online:
Dimensionality Reduction in Data Science

Abstract

It is often the case that data is encoded as numeric vectors and hence is naturally embedded in a Euclidean space, with a dimension equal to the number of features. After the classical PCA that fits a linear (flat) subspace so that the total sum of squared distances of the data from the subspace (errors) is minimized, any distance function in this space can be used to endow it with a geometric structure, where ordinary intuition can be particularly powerful tools to reduce dimensionality. The idea can be generalized by changing the flat space to obtain a possibly nonlinear curved object (a so-called manifold) that can be fitted to the data while trying to minimize the deformations of distances as much as possible. Four major methods of this kind are reviewed, namely MDS, ISOMAP, t-SNE, and random projections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achlioptas, D. (2003). Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4), 671–687.

    Article  MathSciNet  Google Scholar 

  2. Arriaga, R. I., & Vempala, S. (2006). An algorithmic theory of learning: Robust concepts and random projection. Machine Learning, 63(2), 161–182.

    Article  Google Scholar 

  3. Baraniuk, R. G., & Wakin, M. B. (2009). Random projections of smooth manifolds. Foundations of Computational Mathematics, 9, 51–77.

    Article  MathSciNet  Google Scholar 

  4. Clarkson, K. L. (2008). Tighter bounds for random projections of manifolds. In Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry SCG’08 (pp. 39–48). New York: Association for Computing Machinery.

    Chapter  Google Scholar 

  5. Cox, T. F., & Cox, M. A. A. (2000). Multidimensional scaling (2nd edn.). Boca Raton: Chapman & Hall CRC.

    Book  Google Scholar 

  6. Dasgupta, S., & Gupta, A. (2003). An elementart proof of a theorem of Johnson and lindenstrauss. Random Structures and Algorithms, 22(1), 60–65.

    Article  MathSciNet  Google Scholar 

  7. Feller, W. (1971). An introduction to probability theory and its applications (vol. II, 2nd edn.). New York: Wiley.

    MATH  Google Scholar 

  8. Frankl, P., & Maehara, H. (1988). The Johnson-lindenstrauss lemma and the sphericity of some graphs. Journal of Combinatorial Theory, Series B, 44(3), 355–362.

    Article  MathSciNet  Google Scholar 

  9. Groenen, P. J. F., & Heiser, W. J. (1996). The tunneling method for global optimization in multidimensional scaling. Psychometrika, 61, 529–550.

    Article  Google Scholar 

  10. Guttman, L. (1968). A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika, 33, 469–506.

    Article  Google Scholar 

  11. Hinton, G. E., & Roweis, S. T. (2002). Stochastic neighbor embedding. In Advances in neural information processing systems (vol. 15, pp. 833–840). Cambridge: The MIT Press.

    Google Scholar 

  12. Hogg, R. V., McKean, J. W., & Craig, A. T. (2019). Introduction to mathematical statistics (8th edn.). London: Pearson.

    Google Scholar 

  13. Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proc. of ACM STOC.

    Google Scholar 

  14. Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of lipschitz map**s into a hilbert space. Contemporary Mathematics, 26, 189–206.

    Article  MathSciNet  Google Scholar 

  15. Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to parallel computing: Design and analysis of algorithms. San Francisco: Benjamin-Cummings.

    MATH  Google Scholar 

  16. Lee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction (1st edn.). Berlin: Springer.

    Book  Google Scholar 

  17. Maaten, L., & Hinton, G. E. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(86), 2579–2605.

    MATH  Google Scholar 

  18. Messick, S. M., & Abelson, R. P. (1956). The additive constant problem in multidimensional scaling. Pyschometrika, 21, 1–15.

    Article  Google Scholar 

  19. Nash, J. (1954). c 1 isometric imbeddings. Annals of Mathematics, 60(3), 383–396.

    Article  MathSciNet  Google Scholar 

  20. Shepard, R. N. (1962). The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika, 27(2), 219–246.

    Article  MathSciNet  Google Scholar 

  21. Silva, V., & Tenenbaum, J. B. (2002). Global versus local methods in nonlinear dimensionality reduction. In Proceedings of the 15th International Conference on Neural Information Processing System, NIPS’02 (pp. 721–728).

    Google Scholar 

  22. Tenenbaum, J. B., Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(22), 2319–2323.

    Article  Google Scholar 

  23. Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17(4), 401–419.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirman Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N. (2022). Geometric Approaches. In: Garzon, M., Yang, CC., Venugopal, D., Kumar, N., Jana, K., Deng, LY. (eds) Dimensionality Reduction in Data Science. Springer, Cham. https://doi.org/10.1007/978-3-031-05371-9_5

Download citation

Publish with us

Policies and ethics

Navigation