A Pipeline for Segmenting and Classifying Brain Lesions Caused by Stroke: A Machine Learning Approach

  • Conference paper
  • First Online:
Information Systems and Technologies (WorldCIST 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 470))

Included in the following conference series:

  • 1058 Accesses

Abstract

Brain injuries caused by strokes are one of the leading causes of disability in the world. Current procedures require a specialized physician to analyze an MRI image before making a diagnosis carefully, but the procedure can be costly and time-consuming. Artificial intelligence techniques play an essential role in analyzing this kind of image. This work proposes an end-to-end approach in three stages: pre-processing, for normalizing the images to the standard MNI space, as well as inhomogeneities and bias corrections; then lesion segmentation using a CNN network trained for Cerebrovascular Accidents and feature extraction; and, at the end classification for determining the vascular territory within which the lesion occurred. Four Deep Neural Network architectures and four Shallow Machine Learning models were designed, analyzed, and compared based on their performance scores, reaching an accuracy of 84% with the DL models and 95% with the Shallow ML models. The proposed method can be used as an automatic predictor for decision-making to assist health service providers of stroke lesion identification from MRI images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carrillo-Mora, P.: Situación actual del manejo de las lesiones cerebrales adquiridas en adultos y su rehabilitación. Investigación en Discapacidad 3(4), 190–193 (2014)

    Google Scholar 

  2. Kuklina, E.V., Tong, X., George, M.G., Bansil, P.: Epidemiology and prevention of stroke: a worldwide perspective. Expert Rev. Neurotherapeut. 12(2), 199–208 (2012)

    Google Scholar 

  3. INEC:Estadística de defunciones generales del Ecuador (2020). https://www.ecuadorencifras.gob.ec/documentos/web-inec/Sitios/Defunciones

  4. Moreno-Zambrano, D., Santamaría, D., Ludeña, C., Barco, A., Vásquez, D., Santibáñez-Vásquez, R.: Enfermedad Cerebrovascular en el Ecuador: Análisis de los últimos 25 años de mortalidad, realidad actual y recomendaciones. Rev. Ecuat. Neurol. 25(1–3), 17–20 (2016)

    Google Scholar 

  5. Loayza, F.R., Sola-Mora, J., Castro-Valladares, L., Litardo, J., Nuñez-Idrovo, L., Mora, H.: Pre-operative patient-specific alloplastic implant design and manufacturing: cranioplasty application. In 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp. 1–5. IEEE, October 2018

    Google Scholar 

  6. Araújo, T., et al.: Classification of breast cancer histology images using convolutional neural networks. PloS One 12(6) (2017). https://doi.org/10.1371/journal.pone.0177544

  7. Saver, J.L., et al.: Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. Jama 316(12), 1279–1289 (2016). https://doi.org/10.1001/jama.2016.13647

  8. Singh, H., Meyer, A.N., Thomas, E.J.: The frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populations. BMJ Qual. Safety 23(9), 727–731 (2014)

    Google Scholar 

  9. Sarkar, U., et al.: Challenges of making a diagnosis in the outpatient setting: a multi-site survey of primary care physicians. BMJ Qual. Saf. 21(8), 641–648 (2012)

    Google Scholar 

  10. Pelaez, E., Loayza, F.: A deep learning model to screen for Corona Virus Disease (COVID-19) from X-ray chest images. In: 2020 IEEE ANDESCON, pp. 1–6. IEEE, October 2020

    Google Scholar 

  11. Chilamkurthy, S., et al.: Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392(10162), 2388–2396 (2018). https://doi.org/10.1016/S0140-6736(18)31645-3

  12. González-Villá, S., Oliver, A., Huo, Y., Lladó, X., Landman, B.A.: A fully automated pipeline for brain structure segmentation in multiple sclerosis. NeuroImage: Clin. 27, 102306 (2020). https://doi.org/10.1016/j.nicl.2020.102306.

  13. Roura, E., et al.: Automated detection of lupus white matter lesions in MRI. Front. Neuroinform. 10, 33 (2016). https://doi.org/10.3389/fninf.2016.00033

  14. McKinley, R., et al.: Fully automated stroke tissue estimation using random forest classifiers (FASTER). J. Cerebral Blood Flow Metabol. 37(8), 2728–2741 (2017). https://doi.org/10.1177/0271678X16674221

  15. Viteri, J.A., Loayza, F.R., Peláez, E., Layedra, F.: Automatic brain white matter hypertinsities segmentation using deep learning techniques. In: HEALTHINF, pp. 244–252 (2021). https://doi.org/10.5220/0010360302440252,

  16. Liew, S.L., et al.: A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci. data 5(1), 1–11 (2018). https://doi.org/10.1038/sdata.2018.11

  17. Bisong, E.: Google Colaboratory. In: Building machine learning and deep learning models on google cloud platform. Apress, Berkeley, CA (2019). https://doi.org/10.1007/978-1-4842-4470-8-7

  18. Lowekamp, B.C., Chen, D.T., Ibáñez, L., Blezek, D.: The design of SimpleITK. Front. Neuroinform. 7, 45 (2013)

    Google Scholar 

  19. Tustison, N.J., et al.: The ANTsX ecosystem for quantitative biological and medical imaging. Sci. Rep. 11(1), 1–13 (2021)

    Google Scholar 

  20. Chollet, F.: Keras: the python deep learning library. Astrophysics Source Code Library, ascl-1806 (2018)

    Google Scholar 

  21. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  22. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. ar**v preprint ar**v:1603.04467 (2016)

  23. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal. Mach. Intell. 12(7), 629–639 (1990). https://doi.org/10.1109/34.56205

  24. Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.L.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47, S102 (2009). https://doi.org/10.1016/S1053-8119(09)70884-5

  25. Hao, Y.: CLCI-Net: cross-level fusion and context inference networks for lesion segmentation of chronic stroke. In: Shen, D., (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 266–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_30

  26. Clèrigues, A., Valverde, S., Bernal, J., Freixenet, J., Oliver, A., Lladó, X.: Acute and sub-acute stroke lesion segmentation from multimodal MRI. Comput. Meth. Prog. Biomed. 194, 105521 (2020)

    Google Scholar 

  27. Garg, R., Oh, E., Naidech, A., Kording, K., Prabhakaran, S.: Automating ischemic stroke subtype classification using machine learning and natural language processing. J. Stroke Cerebrovasc. Dis. 28(7), 2045–2051 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Pelaez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mena, R., Macas, A., Pelaez, E., Loayza, F., Franco-Maldonado, H. (2022). A Pipeline for Segmenting and Classifying Brain Lesions Caused by Stroke: A Machine Learning Approach. In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F. (eds) Information Systems and Technologies. WorldCIST 2022. Lecture Notes in Networks and Systems, vol 470. Springer, Cham. https://doi.org/10.1007/978-3-031-04829-6_37

Download citation

Publish with us

Policies and ethics

Navigation