Basic Concepts of Design of Peptide-Based Therapeutics

  • Chapter
  • First Online:
Peptide Therapeutics

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 47))

Abstract

Peptides are natural ligands for numerous receptors in the human body, and many of these, such as hormones, neurotransmitters, and growth factors, have physiological roles. Peptides are highly selective and relatively well tolerated in the human body. More than 80 peptide-based drugs approved by the FDA are now on the market. A major challenge in peptide-based therapeutics is in vivo stability of peptides for oral administration. There have been several attempts to increase the enzymatic stability of peptides using backbone or side-chain modification. These methods include cyclization, stapled peptide approach, and N-methylation, in addition to grafting peptides to cyclic peptide or cyclotide frameworks. Peptide therapeutics gained momentum during the last decade as the three-dimensional structures of many proteins were elucidated. The functions of these proteins and their relevance in the biochemical pathways of diseases were revealed. In this chapter, the fundamentals of peptide-based drug design are covered, with an emphasis on the structural biology aspects of peptide drug design. Four examples, namely, the design of an angiotensin-converting enzyme inhibitor; an RGD peptide cilengitide; the use of a naturally occurring peptide, polymyxin; and, finally, a relatively new area in peptide-based drug design, protein-protein interaction inhibitors, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aapro M, Krendyukov A, Schiestl M, Gascon P. Epoetin biosimilars in the treatment of chemotherapy-induced anemia: 10 years’ experience gained. BioDrugs. 2018;32:129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acharya KR, Sturrock ED, Riordan JF, Ehlers MR. Ace revisited: a new target for structure-based drug design. Nat Rev Drug Discov. 2003;2:891–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainsworth GC, Brown AM, Brownlee G. Aerosporin, an antibiotic produced by Bacillus aerosporus Greer. Nature. 1947;159:263.

    Article  CAS  PubMed  Google Scholar 

  • Albert-Wolf M, Meuer SC, Wallich R. Dual function of recombinant human CD58: inhibition of T cell adhesion and activation via the CD2 pathway. Int Immunol. 1991;3:1335–47.

    Article  CAS  PubMed  Google Scholar 

  • Alday-Parejo B, Stupp R, Ruegg C. Are integrins still practicable targets for anti-cancer therapy? Cancers (Basel). 2019;11

    Google Scholar 

  • Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med. 2012;2:a007161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aumailley M, Gurrath M, Muller G, Calvete J, Timpl R, Kessler H. Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett. 1991;291:50–4.

    Article  CAS  PubMed  Google Scholar 

  • Bakdash G, Sittig SP, van Dijk T, Figdor CG, de Vries IJ. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front Immunol. 2013;4:53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balanescu A, Radu E, Nat R, Regalia T, Bo**ca V, Predescu V, Predeteanu D. Co-stimulatory and adhesion molecules of dendritic cells in rheumatoid arthritis. J Cell Mol Med. 2002;6:415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballantine RD, Li YX, Qian PY, Cochrane SA. Rational design of new cyclic analogues of the antimicrobial lipopeptide tridecaptin A1. Chem Commun. 2018;54:10634–7.

    Article  CAS  Google Scholar 

  • Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, Strasser JF, Villani R, Cheresh DA, Black PM. Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery. 2001;49:380–9. discussion 90

    CAS  PubMed  Google Scholar 

  • Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid HA, Jelinek R, Gilon C, Hoffman A, Kessler H. Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew Chem Int Ed Engl. 2008;47:2595–9.

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Brunel JM, Dubus JC, Reynaud-Gaubert M, Rolain JM. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti-Infect Ther. 2012;10:917–34.

    Article  CAS  PubMed  Google Scholar 

  • Bond A. Exenatide (Byetta) as a novel treatment option for type 2 diabetes mellitus. Proc (Baylor Univ Med Cent). 2006;19:281–4.

    Article  Google Scholar 

  • Bottger R, Hoffmann R, Knappe D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One. 2017;12:e0178943.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nat Protoc. 2007;2:1269–75.

    Article  CAS  PubMed  Google Scholar 

  • Bretscher PA. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc Natl Acad Sci U S A. 1999;96:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodsky IE, Ernst RK, Miller SI, Falkow S. mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides. J Bacteriol. 2002;184:3203–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3:238–50.

    Article  CAS  PubMed  Google Scholar 

  • Brown P, Dawson MJ. Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J Antibiot (Tokyo). 2017;70:386–94.

    Article  CAS  Google Scholar 

  • Brown P, Abbott E, Abdulle O, Boakes S, Coleman S, Divall N, Duperchy E, Moss S, Rivers D, Simonovic M, Singh J, Stanway S, Wilson A, Dawson MJ. Design of next generation polymyxins with lower toxicity: the discovery of SPR206. ACS Infect Dis. 2019;5:1645–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrele C, Martinek TA, Reiser O, Berlicki L. Peptides containing beta-amino acid patterns: challenges and successes in medicinal chemistry. J Med Chem. 2014;57:9718–39.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti P, Pal D. The interrelationships of side-chain and main-chain conformations in proteins. Prog Biophys Mol Biol. 2001;76:1–102.

    Article  CAS  PubMed  Google Scholar 

  • Chambers CA, Allison JP. Co-stimulation in T cell responses. Curr Opin Immunol. 1997;9:396–404.

    Article  CAS  PubMed  Google Scholar 

  • Chamian F, Lowes MA, Lin SL, Lee E, Kikuchi T, Gilleaudeau P, Sullivan-Whalen M, Cardinale I, Khatcherian A, Novitskaya I, Wittkowski KM, Krueger JG. Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc Natl Acad Sci U S A. 2005;102:2075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee J, Mierke D, Kessler H. N-methylated cyclic pentaalanine peptides as template structures. J Am Chem Soc. 2006;128:15164–72.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee B, Saha I, Raghothama S, Aravinda S, Rai R, Shamala N, Balaram P. Designed peptides with homochiral and heterochiral diproline templates as conformational constraints. Chemistry. 2008a;14:6192–204.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee J, Gilon C, Hoffman A, Kessler H. N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res. 2008b;41:1331–42.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel). 2020;9

    Google Scholar 

  • Chinot OL. Cilengitide in glioblastoma: when did it fail? Lancet Oncol. 2014;15:1044–5.

    Article  PubMed  Google Scholar 

  • Corradi HR, Schwager SL, Nchinda AT, Sturrock ED, Acharya KR. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design. J Mol Biol. 2006;357:964–74.

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ. NMR in drug design. CRC Press; 1996.

    Google Scholar 

  • Crecente-Garcia S, Neckebroeck A, Clark JS, Smith BO, Thomson AR. beta-turn mimics by chemical ligation. Org Lett. 2020;22:4424–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cudic P, Stawikowski M. Pseudopeptide synthesis via Fmoc solid-phase synthetic methodology. Mini Rev Organ Chem. 2007;4:268–80.

    Article  CAS  Google Scholar 

  • Cunningham AD, Qvit N, Mochly-Rosen D. Peptides and peptidomimetics as regulators of protein-protein interactions. Curr Opin Struct Biol. 2017;44:59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis SJ, Ikemizu S, Evans EJ, Fugger L, Bakker TR, van der Merwe PA. The nature of molecular recognition by T cells. Nat Immunol. 2003;4:217–24.

    Article  CAS  PubMed  Google Scholar 

  • Davis JM, Tsou LK, Hamilton AD. Synthetic non-peptide mimetics of alpha-helices. Chem Soc Rev. 2007;36:326–34.

    Article  CAS  PubMed  Google Scholar 

  • de Veer SJ, Kan MW, Craik DJ. Cyclotides: from structure to function. Chem Rev. 2019;119:12375–421.

    Article  PubMed  Google Scholar 

  • de Visser PC, Kriek NM, van Hooft PA, Van Schepdael A, Filippov DV, van der Marel GA, Overkleeft HS, van Boom JH, Noort D. Solid-phase synthesis of polymyxin B1 and analogues via a safety-catch approach. J Pept Res. 2003;61:298–306.

    Article  PubMed  Google Scholar 

  • Dechantsreiter MA, Planker E, Matha B, Lohof E, Holzemann G, Jonczyk A, Goodman SL, Kessler H. N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. J Med Chem. 1999;42:3033–40.

    Article  CAS  PubMed  Google Scholar 

  • Deike S, Rothemund S, Voigt B, Samantray S, Strodel B, Binder WH. beta-Turn mimetic synthetic peptides as amyloid-beta aggregation inhibitors. Bioorg Chem. 2020;101:104012.

    Article  CAS  PubMed  Google Scholar 

  • Del Borgo MP, Kulkarni K, Aguilar MI. Using β-amino acids and β-peptide templates to create bioactive ligands and biomaterials. Curr Pharm Des. 2017;23:3772–85.

    PubMed  Google Scholar 

  • Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, Li J, Velkov T. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot (Tokyo). 2014;67:147–51.

    Article  CAS  Google Scholar 

  • Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dishon S, Schumacher A, Fanous J, Talhami A, Kassis I, Karussis D, Gilon C, Hoffman A, Nussbaum G. Development of a novel backbone cyclic peptide inhibitor of the innate immune TLR/IL1R signaling protein MyD88. Sci Rep. 2018;8:9476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dishon S, Schumacher-Klinger A, Gilon C, Hoffman A, Nussbaum G. Myristoylation confers oral bioavailability and improves the bioactivity of c(MyD 4-4), a cyclic peptide inhibitor of MyD88. Mol Pharm. 2019;16:1516–22.

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Chopra I. Leakage of periplasmic proteins from Escherichia coli mediated by polymyxin B nonapeptide. Antimicrob Agents Chemother. 1986;29:781–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drugs for type 2 diabetes. Med Lett Drugs Ther. 2019;61:169–78.

    Google Scholar 

  • Dyson HJ, Rance M, Houghten RA, Lerner RA, Wright PE. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J Mol Biol. 1988;201:161–200.

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt B, Grosse W, Essen LO, Geyer A. Structural characterization of a beta-turn mimic within a protein-protein interface. Proc Natl Acad Sci U S A. 2010;107:18336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilken HM, Adams RH. Turning on the angiogenic microswitch. Nat Med. 2010;16:853–4.

    Article  CAS  PubMed  Google Scholar 

  • Espagnolle N, Depoil D, Zaru R, Demeur C, Champagne E, Guiraud M, Valitutti S. CD2 and TCR synergize for the activation of phospholipase Cgamma1/calcium pathway at the immunological synapse. Int Immunol. 2007;19:239–48.

    Article  CAS  PubMed  Google Scholar 

  • Fang Y. Label-free receptor assays. Drug Discov Today Technol. 2011;7:e5–e11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer G, Rossmann M, Hyvonen M. Alternative modulation of protein-protein interactions by small molecules. Curr Opin Biotechnol. 2015;35:78–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher BF, Hong SH, Gellman SH. Helix propensities of amino acid residues via thioester exchange. J Am Chem Soc. 2017;139:13292–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 2011;11:37–51.

    Article  PubMed  Google Scholar 

  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–8.

    Article  CAS  PubMed  Google Scholar 

  • Foye WO. Foye’s principles of medicinal chemistry. Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  • Frey V, Viaud J, Subra G, Cauquil N, Guichou JF, Casara P, Grassy G, Chavanieu A. Structure-activity relationships of Bak derived peptides: affinity and specificity modulations by amino acid replacement. Eur J Med Chem. 2008;43:966–72.

    Article  CAS  PubMed  Google Scholar 

  • Fuller AA, Du D, Liu F, Davoren JE, Bhabha G, Kroon G, Case DA, Dyson HJ, Powers ET, Wipf P, Gruebele M, Kelly JW. Evaluating beta-turn mimics as beta-sheet folding nucleators. Proc Natl Acad Sci U S A. 2009;106:11067–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geyer A, Mueller G, Kessler H. Conformational analysis of a cyclic RGD peptide containing a. psi.[CH2-NH] bond: a positional shift in backbone structure caused by a single dipeptide mimetic. J Am Chem Soc. 1994;116:7735–43.

    Article  CAS  Google Scholar 

  • Gibbs AC, Bjorndahl TC, Hodges RS, Wishart DS. Probing the structural determinants of type II’ beta-turn formation in peptides and proteins. J Am Chem Soc. 2002;124:1203–13.

    Article  CAS  PubMed  Google Scholar 

  • Giddu S, Subramanian V, Yoon HS, Satyanarayanajois SD. Design of beta-hairpin peptides for modulation of cell adhesion by beta-turn constraint. J Med Chem. 2009;52:726–36.

    Article  CAS  PubMed  Google Scholar 

  • Gilon C, Halle D, Chorev M, Selinger Z, Byk G. Backbone cyclization: a new method for conferring conformational constraint on peptides. Biopolymers. 1991;31:745–50.

    Article  CAS  PubMed  Google Scholar 

  • Gokhale A, Weldeghiorghis TK, Taneja V, Satyanarayanajois SD. Conformationally constrained peptides from CD2 to modulate protein-protein interactions between CD2 and CD58. J Med Chem. 2011;54:5307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gokhale A, Kanthala S, Latendresse J, Taneja V, Satyanarayanajois S. Immunosuppression by co-stimulatory molecules: inhibition of CD2-CD48/CD58 interaction by peptides from CD2 to suppress progression of collagen-induced arthritis in mice. Chem Biol Drug Des. 2013;82:106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gokhale AS, Sable R, Walker JD, McLaughlin L, Kousoulas KG, Jois SD. Inhibition of cell adhesion and immune responses in the mouse model of collagen-induced arthritis with a peptidomimetic that blocks CD2-CD58 interface interactions. Biopolymers. 2015;

    Google Scholar 

  • Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7.

    Article  CAS  PubMed  Google Scholar 

  • Haubner R, Schmitt W, Hölzemann G, Goodman SL, Jonczyk A, Kessler H. Cyclic RGD peptides containing β-turn mimetics. J Am Chem Soc. 1996;118:7881–91.

    Article  CAS  Google Scholar 

  • Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helander IM, Kilpelainen I, Vaara M. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol Microbiol. 1994;11:481–7.

    Article  CAS  PubMed  Google Scholar 

  • Henninot A, Collins JC, Nuss JM. The current state of peptide drug discovery: back to the future? J Med Chem. 2018;61:1382–414.

    Article  CAS  PubMed  Google Scholar 

  • Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91–100.

    Article  PubMed  Google Scholar 

  • Hruby VJ. Conformational and topographical considerations in the design of biologically active peptides. Biopolymers. 1993;33:1073–82.

    Article  CAS  PubMed  Google Scholar 

  • Hruby VJ. Designing peptide receptor agonists and antagonists. Nat Rev Drug Discov. 2002;1:847–58.

    Article  CAS  PubMed  Google Scholar 

  • Hruby VJ, Cai M. Design of peptide and peptidomimetic ligands with novel pharmacological activity profiles. Annu Rev Pharmacol Toxicol. 2013;53:557–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Li S, Korngold R. Immunoglobulin superfamily proteins: structure, mechanisms, and drug discovery. Biopolymers. 1997;43:367–82.

    Article  CAS  PubMed  Google Scholar 

  • Humphries MJ. The molecular basis and specificity of integrin-ligand interactions. J Cell Sci. 1990;97(Pt 4):585–92.

    Article  CAS  PubMed  Google Scholar 

  • Hurevich M, Ratner-Hurevich M, Tal-Gan Y, Shalev DE, Ben-Sasson SZ, Gilon C. Backbone cyclic helix mimetic of chemokine (C-C motif) receptor 2: a rational approach for inhibiting dimerization of G protein-coupled receptors. Bioorg Med Chem. 2013;21:3958–66.

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson EG, Thornton JM. A revised set of potentials for beta-turn formation in proteins. Protein Sci. 1994;3:2207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayatunga MK, Thompson S, Hamilton AD. alpha-Helix mimetics: outwards and upwards. Bioorg Med Chem Lett. 2014;24:717–24.

    Article  CAS  PubMed  Google Scholar 

  • Jo H, Meinhardt N, Wu Y, Kulkarni S, Hu X, Low KE, Davies PL, DeGrado WF, Greenbaum DC. Development of alpha-helical calpain probes by mimicking a natural protein-protein interaction. J Am Chem Soc. 2012;134:17704–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jois SD, **ing L, Nagarajarao LM. Targeting T-cell adhesion molecules for drug design. Curr Pharm Des. 2006;12:2797–812.

    Article  CAS  PubMed  Google Scholar 

  • Jones MC. Therapies for diabetes: pramlintide and exenatide. Am Fam Physician. 2007;75:1831–5.

    PubMed  Google Scholar 

  • Kaizuka Y, Douglass AD, Vardhana S, Dustin ML, Vale RD. The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J Cell Biol. 2009;185:521–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamradt T, Mitchison NA. Tolerance and autoimmunity. N Engl J Med. 2001;344:655–64.

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa K, Sato Y, Ohki K, Okimura K, Uchida Y, Shindo M, Sakura N. Contribution of each amino acid residue in polymyxin B(3) to antimicrobial and lipopolysaccharide binding activity. Chem Pharm Bull(Tokyo). 2009;57:240–4.

    Article  CAS  Google Scholar 

  • Karle IL, Flippen-Anderson JL, Uma K, Balaram H, Balaram P. Alpha-helix and mixed 3(10)/alpha-helix in cocrystallized conformers of Boc-Aib-Val-Aib-Aib-Val-Val-Val-Aib-Val-Aib-OMe. Proc Natl Acad Sci U S A. 1989;86:765–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaspar AA, Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today. 2013;18:807–17.

    Article  CAS  PubMed  Google Scholar 

  • Kerr JS, Slee AM, Mousa SA. The alpha v integrin antagonists as novel anticancer agents: an update. Expert Opin Investig Drugs. 2002;11:1765–74.

    Article  CAS  PubMed  Google Scholar 

  • Khakshoor O, Nowick JS. Artificial beta-sheets: chemical models of beta-sheets. Curr Opin Chem Biol. 2008;12:722–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Sun ZY, Byron O, Campbell G, Wagner G, Wang J, Reinherz EL. Molecular dissection of the CD2-CD58 counter-receptor interface identifies CD2 Tyr86 and CD58 Lys34 residues as the functional “hot spot”. J Mol Biol. 2001;312:711–20.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen KA, Horwitz AF, Buck CA. A monoclonal antibody identifies a glycoprotein complex involved in cell-substratum adhesion. Exp Cell Res. 1985;157:218–26.

    Article  CAS  PubMed  Google Scholar 

  • Koch-Weser J, Sidel VW, Federman EB, Kanarek P, Finer DC, Eaton AE. Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med. 1970;72:857–68.

    Article  CAS  PubMed  Google Scholar 

  • Krauson AJ, He J, Wimley WC. Gain-of-function analogues of the pore-forming peptide melittin selected by orthogonal high-throughput screening. J Am Chem Soc. 2012;134:12732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo F, Miyanaga A, Eguchi T. Biosynthesis of natural products containing beta-amino acids. Nat Prod Rep. 2014;31:1056–73.

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018;2018

    Google Scholar 

  • Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30:131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanning ME, Fletcher S. Multi-facial, non-peptidic alpha-helix mimetics. Biology (Basel). 2015;4:540–55.

    CAS  Google Scholar 

  • Lao BB, Drew K, Guarracino DA, Brewer TF, Heindel DW, Bonneau R, Arora PS. Rational design of topographical helix mimics as potent inhibitors of protein-protein interactions. J Am Chem Soc. 2014;136:7877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26:2700–7.

    Article  CAS  PubMed  Google Scholar 

  • Laxio Arenas J, Kaffy J, Ongeri S. Peptides and peptidomimetics as inhibitors of protein-protein interactions involving beta-sheet secondary structures. Curr Opin Chem Biol. 2019;52:157–67.

    Article  CAS  PubMed  Google Scholar 

  • Lemke TL, Williams DA. Foye’s principles of medicinal chemistry. Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  • Lenci E, Trabocchi A. Peptidomimetic toolbox for drug discovery. Chem Soc Rev. 2020;49:3262–77.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Schoneich C, Borchardt RT. Chemical instability of protein pharmaceuticals: Mechanisms of oxidation and strategies for stabilization. Biotechnol Bioeng. 1995;48:490–500.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006;6:589–601.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen S, Zhang WD, Hu HG. Stapled helical peptides bearing different anchoring residues. Chem Rev. 2020;120:10079–144.

    Article  CAS  PubMed  Google Scholar 

  • Lindsay R, Krege JH, Marin F, ** L, Stepan JJ. Teriparatide for osteoporosis: importance of the full course. Osteoporos Int. 2016;27:2395–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling S, Liu Y, Fu J, Colletta A, Gilon C, Holoshitz J. Shared epitope-antagonistic ligands: a new therapeutic strategy in mice with erosive arthritis. Arthritis Rheumatol. 2015;67:2061–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chow VT, Jois SD. A novel, rapid and sensitive heterotypic cell adhesion assay for CD2-CD58 interaction, and its application for testing inhibitory peptides. J Immunol Methods. 2004;291:39–49.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ying J, Chow VT, Hruby VJ, Satyanarayanajois SD. Structure-activity studies of peptides from the “hot-spot” region of human CD2 protein: development of peptides for immunomodulation. J Med Chem. 2005;48:6236–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Li C, Ke S, Satyanarayanajois SD. Structure-based rational design of beta-hairpin peptides from discontinuous epitopes of cluster of differentiation 2 (CD2) protein to modulate cell adhesion interaction. J Med Chem. 2007;50:4038–47.

    Article  CAS  PubMed  Google Scholar 

  • Lohof E, Planker E, Mang C, Burkhart F, Dechantsreiter MA, Haubner R, Wester HJ, Schwaiger M, Holzemann G, Goodman SL, Kessler H. Carbohydrate derivatives for use in drug design: cyclic alpha(v)-selective RGD peptides this work was supported by the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft, and the Sanderstiftung. The authors thank M. Urzinger, B. Cordes, M. Kranawetter, M. Wolff, and A. Zeller for technical assistance. Angew Chem Int Ed Engl. 2000;39:2761–4.

    Article  CAS  PubMed  Google Scholar 

  • London N, Raveh B, Schueler-Furman O. Druggable protein-protein interactions – from hot spots to hot segments. Curr Opin Chem Biol. 2013;17:952–9.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Perez PM, Grimsey E, Bourne L, Mikut R, Hilpert K. Screening and optimizing antimicrobial peptides by using SPOT-synthesis. Front Chem. 2017;5:25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loughlin WA, Tyndall JD, Glenn MP, Hill TA, Fairlie DP. Update 1 of: beta-strand mimetics. Chem Rev. 2010;110:PR32–69.

    Article  CAS  PubMed  Google Scholar 

  • Love BL, Johnson A, Smith LS. Linaclotide: a novel agent for chronic constipation and irritable bowel syndrome. Am J Health Syst Pharm. 2014;71:1081–91.

    Article  CAS  PubMed  Google Scholar 

  • Mabonga L, Kappo AP. Peptidomimetics: a synthetic tool for inhibiting protein–protein interactions in cancer. Int J Pept Res Ther. 2020;26:225–41.

    Article  CAS  Google Scholar 

  • MacDonald TJ, Taga T, Shimada H, Tabrizi P, Zlokovic BV, Cheresh DA, Laug WE. Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery. 2001;48:151–7.

    CAS  PubMed  Google Scholar 

  • Martin JL, Begun J, Schindeler A, Wickramasinghe WA, Alewood D, Alewood PF, Bergman DA, Brinkworth RI, Abbenante G, March DR, Reid RC, Fairlie DP. Molecular recognition of macrocyclic peptidomimetic inhibitors by HIV-1 protease. Biochemistry. 1999;38:7978–88.

    Article  CAS  PubMed  Google Scholar 

  • Mas-Moruno C, Rechenmacher F, Kessler H. Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anti Cancer Agents Med Chem. 2010;10:753–68.

    Article  CAS  Google Scholar 

  • Masuyer G, Schwager SL, Sturrock ED, Isaac RE, Acharya KR. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci Rep. 2012;2:717.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathur J, Waldor MK. The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun. 2004;72:3577–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavromoustakos T, Durdagi S, Koukoulitsa C, Simcic M, Papadopoulos MG, Hodoscek M, Grdadolnik SG. Strategies in the rational drug design. Curr Med Chem. 2011;18:2517–30.

    Article  CAS  PubMed  Google Scholar 

  • McGregor MJ, Islam SA, Sternberg MJ. Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J Mol Biol. 1987;198:295–310.

    Article  CAS  PubMed  Google Scholar 

  • Miranda LP, Holder JR, Shi L, Bennett B, Aral J, Gegg CV, Wright M, Walker K, Doellgast G, Rogers R, Li H, Valladares V, Salyers K, Johnson E, Wild K. Identification of potent, selective, and metabolically stable peptide antagonists to the calcitonin gene-related peptide (CGRP) receptor. J Med Chem. 2008;51:7889–97.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi M, Liu S. Collagen-induced arthritis models. Methods Mol Biol. 2018;1868:3–7.

    Article  CAS  PubMed  Google Scholar 

  • Modell AE, Blosser SL, Arora PS. Systematic targeting of protein-protein interactions. Trends Pharmacol Sci. 2016;37:702–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison KL, Weiss GA. Combinatorial alanine-scanning. Curr Opin Chem Biol. 2001;5:302–7.

    Article  CAS  PubMed  Google Scholar 

  • Mrowietz U. Treatment targeted to cell surface epitopes. Clin Exp Dermatol. 2002;27:591–6.

    Article  CAS  PubMed  Google Scholar 

  • Muller G, Gurrath M, Kessler H. Pharmacophore refinement of gpIIb/IIIa antagonists based on comparative studies of antiadhesive cyclic and acyclic RGD peptides. J Comput Aided Mol Des. 1994;8:709–30.

    Article  CAS  PubMed  Google Scholar 

  • Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat Rev Drug Discov. 2021;20:309–25.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–72.

    Article  CAS  PubMed  Google Scholar 

  • Nowick JS. Exploring beta-sheet structure and interactions with chemical model systems. Acc Chem Res. 2008;41:1319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okimura K, Ohki K, Sato Y, Ohnishi K, Sakura N. Semi-synthesis of polymyxin B (2-10) and colistin (2-10) analogs employing the Trichloroethoxycarbonyl (Troc) group for side chain protection of alpha, gamma-diaminobutyric acid residues. Chem Pharm Bull(Tokyo). 2007;55:1724–30.

    Article  CAS  Google Scholar 

  • Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry. 1971;10:4033–9.

    Article  CAS  PubMed  Google Scholar 

  • Orwa JA, Govaerts C, Busson R, Roets E, Van Schepdael A, Hoogmartens J. Isolation and structural characterization of colistin components. J Antibiot (Tokyo). 2001a;54:595–9.

    Article  CAS  Google Scholar 

  • Orwa JA, Govaerts C, Busson R, Roets E, Van Schepdael A, Hoogmartens J. Isolation and structural characterization of polymyxin B components. J Chromatogr A. 2001b;912:369–73.

    Article  CAS  PubMed  Google Scholar 

  • Padhi A, Sengupta M, Sengupta S, Roehm KH, Sonawane A. Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects. Tuberculosis (Edinb). 2014;94:363–73.

    Article  CAS  Google Scholar 

  • Paolillo M, Russo MA, Serra M, Colombo L, Schinelli S. Small molecule integrin antagonists in cancer therapy. Mini Rev Med Chem. 2009;9:1439–46.

    Article  CAS  PubMed  Google Scholar 

  • Parajuli P, Sable R, Shrestha L, Dahal A, Gauthier T, Taneja V, Jois S. Modulation of co-stimulatory signal from CD2-CD58 proteins by a grafted peptide. Chem Biol Drug Des. 2021;97:607–27.

    Article  CAS  PubMed  Google Scholar 

  • Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-based design of inhibitors of protein-protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed Engl. 2015;54:8896–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984a;309:30–3.

    Article  CAS  PubMed  Google Scholar 

  • Pierschbacher MD, Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci U S A. 1984b;81:5985–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierschbacher MD, Ruoslahti E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem. 1987;262:17294–8.

    Article  CAS  PubMed  Google Scholar 

  • Pierschbacher MD, Hayman EG, Ruoslahti E. Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell. 1981;26:259–67.

    Article  CAS  PubMed  Google Scholar 

  • Pierschbacher M, Hayman EG, Ruoslahti E. Synthetic peptide with cell attachment activity of fibronectin. Proc Natl Acad Sci U S A. 1983;80:1224–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30:557–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pope JE, Deer TR. Ziconotide: a clinical update and pharmacologic review. Expert Opin Pharmacother. 2013;14:957–66.

    Article  CAS  PubMed  Google Scholar 

  • Porto WF, Irazazabal L, Alves ESF, Ribeiro SM, Matos CO, Pires AS, Fensterseifer ICM, Miranda VJ, Haney EF, Humblot V, Torres MDT, Hancock REW, Liao LM, Ladram A, Lu TK, de la Fuente-Nunez C, Franco OL. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun. 2018;9:1490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Taichi M, Wei N, Yang H, Luo KQ, Tam JP. An orally active bradykinin B1 receptor antagonist engineered as a bifunctional chimera of sunflower trypsin inhibitor. J Med Chem. 2017;60:504–10.

    Article  CAS  PubMed  Google Scholar 

  • Rader AFB, Weinmuller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Orally active peptides: is there a magic bullet? Angew Chem Int Ed Engl. 2018;57:14414–38.

    Article  PubMed  Google Scholar 

  • Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963;7:95–9.

    Article  CAS  PubMed  Google Scholar 

  • Reardon DA, Neyns B, Weller M, Tonn JC, Nabors LB, Stupp R. Cilengitide: an RGD pentapeptide alphanubeta3 and alphanubeta5 integrin inhibitor in development for glioblastoma and other malignancies. Future Oncol. 2011;7:339–54.

    Article  CAS  PubMed  Google Scholar 

  • Rognan D. Rational design of protein–protein interaction inhibitors. Med Chem Commun. 2015;6:51–60.

    Article  CAS  Google Scholar 

  • Ross NT, Katt WP, Hamilton AD. Synthetic mimetics of protein secondary structure domains. Philos Trans A Math Phys Eng Sci. 2010;368:989–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rotondi KS, Gierasch LM. Natural polypeptide scaffolds: beta-sheets, beta-turns, and beta-hairpins. Biopolymers. 2006;84:13–22.

    Article  CAS  PubMed  Google Scholar 

  • Rubin SJS, Tal-Gan Y, Gilon C, Qvit N. Conversion of protein active regions into peptidomimetic therapeutic leads using backbone cyclization and cycloscan – how to do it yourself! Curr Top Med Chem. 2018;18:556–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238:491–7.

    Article  CAS  PubMed  Google Scholar 

  • Rustin MH. Long-term safety of biologics in the treatment of moderate-to-severe plaque psoriasis: review of current data. Br J Dermatol. 2012;167(Suppl 3):3–11.

    Article  CAS  PubMed  Google Scholar 

  • Ryan DP, Matthews JM. Protein-protein interactions in human disease. Curr Opin Struct Biol. 2005;15:441–6.

    Article  CAS  PubMed  Google Scholar 

  • Saab F, Ionescu C, Schweiger MJ. Bleeding risk and safety profile related to the use of eptifibatide: a current review. Expert Opin Drug Saf. 2012;11:315–24.

    Article  CAS  PubMed  Google Scholar 

  • Sable R, Durek T, Taneja V, Craik DJ, Pallerla S, Gauthier T, Jois S. Constrained cyclic peptides as immunomodulatory inhibitors of the CD2:CD58 protein-protein interaction. ACS Chem Biol. 2016;11:2366–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sable R, Parajuli P, Jois S. Peptides, peptidomimetics, and polypeptides from marine sources: a wealth of natural sources for pharmaceutical applications. Mar Drugs. 2017;15

    Google Scholar 

  • Satyanarayanajois SD, Buyuktimkin B, Gokhale A, Ronald S, Siahaan TJ, Latendresse JR. A peptide from the beta-strand region of CD2 protein that inhibits cell adhesion and suppresses arthritis in a mouse model. Chem Biol Drug Des. 2010;76:234–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satyanarayanajois SD, Ronald S, Liu J. Heterotypic cell adhesion assay for the study of cell adhesion inhibition. Methods Mol Biol. 2011;716:225–43.

    Article  CAS  PubMed  Google Scholar 

  • Seebach D, Gardiner J. Beta-peptidic peptidomimetics. Acc Chem Res. 2008;41:1366–75.

    Article  CAS  PubMed  Google Scholar 

  • Shapovalov M, Vucetic S, Dunbrack RL Jr. A new clustering and nomenclature for beta turns derived from high-resolution protein structures. PLoS Comput Biol. 2019;15:e1006844.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Wu AD, Chandramouli N, Fotsch C, Kardash G, Bair KW. Solid-phase total synthesis of polymyxin B1. J Pept Res. 1999;53:501–6.

    Article  CAS  PubMed  Google Scholar 

  • Strømgaard K, Krogsgaard-Larsen P, Madsen U. Textbook of drug design and discovery. CRC Press; 2017.

    Google Scholar 

  • Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, Wiuf C. Estimating the size of the human interactome. Proc Natl Acad Sci U S A. 2008;105:6959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, Aldape KD, Lhermitte B, Pietsch T, Grujicic D, Steinbach JP, Wick W, Tarnawski R, Nam DH, Hau P, Weyerbrock A, Taphoorn MJ, Shen CC, Rao N, Thurzo L, Herrlinger U, Gupta T, Kortmann RD, Adamska K, McBain C, Brandes AA, Tonn JC, Schnell O, Wiegel T, Kim CY, Nabors LB, Reardon DA, van den Bent MJ, Hicking C, Markivskyy A, Picard M, Weller M, Research European Organisation for, Cancer Treatment of, Consortium Canadian Brain Tumor, and Centric study team. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1100–8.

    Article  CAS  PubMed  Google Scholar 

  • Sturrock ED, Natesh R, van Rooyen JM, Acharya KR. Structure of angiotensin I-converting enzyme. Cell Mol Life Sci. 2004;61:2677–86.

    Article  CAS  PubMed  Google Scholar 

  • Talhami A, Swed A, Hess S, Ovadia O, Greenberg S, Schumacher-Klinger A, Rosenthal D, Shalev DE, Hurevich M, Lazarovici P, Hoffman A, Gilon C. Cyclizing painkillers: development of backbone-cyclic TAPS analogs. Front Chem. 2020;8:532577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan YS, Lane DP, Verma CS. Stapled peptide design: principles and roles of computation. Drug Discov Today. 2016;21:1642–53.

    Article  CAS  PubMed  Google Scholar 

  • Thompson AD, Dugan A, Gestwicki JE, Mapp AK. Fine-tuning multiprotein complexes using small molecules. ACS Chem Biol. 2012;7:1311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolliday N. High-throughput assessment of Mammalian cell viability by determination of adenosine triphosphate levels. Curr Protoc Chem Biol. 2010;2:153–61.

    Article  PubMed  Google Scholar 

  • Torres MDT, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide design principles for antimicrobial applications. J Mol Biol. 2019;431:3547–67.

    Article  CAS  PubMed  Google Scholar 

  • Tranqui L, Andrieux A, Hudry-Clergeon G, Ryckewaert JJ, Soyez S, Chapel A, Ginsberg MH, Plow EF, Marguerie G. Differential structural requirements for fibrinogen binding to platelets and to endothelial cells. J Cell Biol. 1989;108:2519–27.

    Article  CAS  PubMed  Google Scholar 

  • Tsubery H, Ofek I, Cohen S, Fridkin M. Structure activity relationship study of polymyxin B nonapeptide. Adv Exp Med Biol. 2000;479:219–22.

    Article  CAS  PubMed  Google Scholar 

  • Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, Calvo XR, Verhaert P. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteom. 2014;4:58–69.

    Article  CAS  Google Scholar 

  • Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A, Raghava GPS. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12:e0181748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaara M. Novel derivatives of polymyxins. J Antimicrob Chemother. 2013;68:1213–9.

    Article  CAS  PubMed  Google Scholar 

  • Vaara M, Fox J, Loidl G, Siikanen O, Apajalahti J, Hansen F, Frimodt-Moller N, Nagai J, Takano M, Vaara T. Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob Agents Chemother. 2008;52:3229–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vagner J, Qu H, Hruby VJ. Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol. 2008;12:292–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Merwe PA, Davis SJ. Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol. 2003;21:659–84.

    Article  PubMed  Google Scholar 

  • Velikovsky CA, Deng L, Chlewicki LK, Fernandez MM, Kumar V, Mariuzza RA. Structure of natural killer receptor 2B4 bound to CD48 reveals basis for heterophilic recognition in signaling lymphocyte activation molecule family. Immunity. 2007;27:572–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velkov T, Thompson PE, Nation RL, Li J. Structure – activity relationships of polymyxin antibiotics. J Med Chem. 2010;53:1898–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15:40–56.

    Article  CAS  PubMed  Google Scholar 

  • Vogler K, Studer RO, Lanz P, Lergier W, Bohni E. Syntheses in the polymyxin series. 9. Synthesis of polymyxin B-1. Helv Chim Acta. 1965;48:1161–77.

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Smolyar A, Tan K, Liu JH, Kim M, Sun ZY, Wagner G, Reinherz EL. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell. 1999;97:791–803.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 2009;37:D933–7.

    Article  CAS  PubMed  Google Scholar 

  • Weis WI, Kobilka BK. The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem. 2018;87:897–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wermuth J, Goodman SL, Jonczyk A, Kessler H. Stereoisomerism and biological activity of the selective and superactive αvβ3 integrin inhibitor cyclo (-RGDfV-) and its retro-inverso peptide. J Am Chem Soc. 1997;119:1328–35.

    Article  CAS  Google Scholar 

  • Wilmot CM, Thornton JM. Beta-turns and their distortions: a proposed new nomenclature. Protein Eng. 1990;3:479–93.

    Article  CAS  PubMed  Google Scholar 

  • Wilson AC, Meethal SV, Bowen RL, Atwood CS. Leuprolide acetate: a drug of diverse clinical applications. Expert Opin Investig Drugs. 2007;16:1851–63.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski K, Galyean R, Tariga H, Alagarsamy S, Croston G, Heitzmann J, Kohan A, Wisniewska H, Laporte R, Riviere PJ, Schteingart CD. New, potent, selective, and short-acting peptidic V1a receptor agonists. J Med Chem. 2011;54:4388–98.

    Article  CAS  PubMed  Google Scholar 

  • Wu YD, Gellman S. Peptidomimetics. Acc Chem Res. 2008;41:1231–2.

    Article  CAS  PubMed  Google Scholar 

  • **ong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–5.

    Article  CAS  PubMed  Google Scholar 

  • Yahav D, Farbman L, Leibovici L, Paul M. Colistin: new lessons on an old antibiotic. Clin Microbiol Infect. 2012;18:18–29.

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Chmielewski J. Inhibiting protein-protein interactions using designed molecules. Curr Opin Struct Biol. 2005;15:31–4.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Leftheris K. Insights into protein-ligand interactions in integrin complexes: advances in structure determinations. J Med Chem. 2020;63:5675–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research work was supported by funding from the National Cancer Institute of the National Institutes of Health grant 1RO1CA255176 to SJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seetharama D. Jois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jois, S.D. (2022). Basic Concepts of Design of Peptide-Based Therapeutics. In: Jois, S.D. (eds) Peptide Therapeutics. AAPS Advances in the Pharmaceutical Sciences Series, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-04544-8_1

Download citation

Publish with us

Policies and ethics

Navigation