C-ITS Applications, Use Cases and Requirements for V2X Communication Systems—Threading Through IEEE 802.11p to 5G

  • Chapter
  • First Online:
Towards a Wireless Connected World: Achievements and New Technologies

Abstract

The existence of multiple wireless technologies and standards spurs the development of a wide range of cooperative applications for vehicular networking environments. Vehicle-to-Everything (V2X) communication systems enable several vehicular applications, and each poses a different set of performance requirements. Implementing these applications promises to bring substantial improvements to the way we travel. Therefore, identifying and addressing these requirements is necessary for develo** future V2X communication systems. This chapter first describes the main application classes and analyzes their needs in several system performance metrics. Next, we provide a detailed review of the existing and next-generation communication technologies for multiple relevant objectives, including IEEE 802.11p, IEEE 802.11bd, LTE-V2x, C-V2X, 5G NR, and heterogeneous V2X. Finally, we presented a perspective on different V2X communication systems in their capabilities to support envisioned vehicular applications and use cases. Based on the analysis, we determine the suitability of communication technologies to satisfy the requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IEEE Std 802.11-2016, IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks–Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Revision of IEEE Std 802.11-2012, 1-3534, (2016). https://doi.org/10.1109/IEEESTD.2016.7786995

  2. IEEE P802.11-TASK GROUP BD (NGV) Meeting Update

    Google Scholar 

  3. LTE, Overview of 3GPP Release 8 (2010)

    Google Scholar 

  4. 5G Automotive Association (5GAA), The Case for Cellular V2X for Safety and Cooperative Driving. White Paper (2016)

    Google Scholar 

  5. QualComm, 5G NR based C-V2X, Presentation (2019)

    Google Scholar 

  6. J. Gozalvez, M. Sepulcre, R. Molina, O. Altintas, Heterogeneous V2X Networks for Connected and Automated Vehicles. Speaker Presentation at IEEE 5G Summit (2017)

    Google Scholar 

  7. M. Boban, A. Kousaridas, K. Manolakis, J. Eichinger, W. Xu, Connected roads of the future: use cases, requirements, and design considerations for vehicle-to-everything communications. IEEE Vehicular Technol. Mag. 13(3), 110–123 (2018). https://doi.org/10.1109/MVT.2017.2777259

    Article  Google Scholar 

  8. ETSI TR 102 638, Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions, Std. ETSI TR 102 638 V1.1.2, (2009)

    Google Scholar 

  9. DOT HS 809 859, Vehicle Safety Communications Project Task 3 Final Report: Identify Intelligent Vehicle Safety Applications Enabled by DSRC, (2005)

    Google Scholar 

  10. C2C-CC Manifesto, CAR 2 CAR Communication Consortium Manifesto Overview of the C2C-CC System, V 1.1 (2007)

    Google Scholar 

  11. D. Bowman, S. Baker, S. Stone, Z. Doerzaph, R. Hanowski, Development of Performance Requirements for Commercial Vehicle Safety Applications, (Report No. DOT HS 811 772) (National Highway Traffic Safety Administration, Washington, DC, 2013)

    Google Scholar 

  12. G. Pocovi, M. Lauridsen, B. Soret, K.I. Pedersen, P. Mogensen, Automation for on-road vehicles: use cases and requirements for radio design, in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015). https://doi.org/10.1109/VTCFall.2015.7390848

  13. K. Zheng, Q. Zheng, P. Chatzimisios, W. **ang, Y. Zhou, Heterogeneous vehicular networking: a survey on architecture, challenges, and solutions. IEEE Commun. Surv. Tutor. 17(4), 2377–2396 (2015). https://doi.org/10.1109/COMST.2015.2440103

    Article  Google Scholar 

  14. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects, 5G; Service requirements for enhanced V2X scenarios, 3GPP TS 22.186 version 15.3.0 Release 15, 3GPP TR 22.186, 3GPP, (2018)

    Google Scholar 

  15. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Enhancement of 3GPP Support for 5G V2X Services (v16.2.0, Release 16), 3GPP TR 22.886, 3GPP, (2018)

    Google Scholar 

  16. 3GPP TR 22.885, Study on LTE Support for Vehicle to Everything (V2X) Services, (Release 14), 3GPP Technical Specification Group Radio Access Network, v1.0.0, September 2015

    Google Scholar 

  17. IEEE P802.11ax/D8.0, IEEE Draft Standard for Information technology– Telecommunications and information exchange between systems Local and metropolitan area networks–Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High Efficiency WLAN, 1-820, (2020)

    Google Scholar 

  18. G. Naik, B. Choudhury, J. Park, IEEE 802.11bd & 5G NR V2X: Evolution of Radio Access Technologies for V2X Communications, IEEE Access, 7 (2019), pp. 70169–70184. https://doi.org/10.1109/ACCESS.2019.2919489

  19. L. Jianhan, A. Gary, P. Thomas,IEEE 802.11-19/0774r1 Modulation Scheme for 11bd Range Extension Update, IEEE NGV Meeting (2019)

    Google Scholar 

  20. M. Hiroyuki et al., IEEE 802.11-18/1187r1 mmW for V2X use cases (IEEE NGV Meetings, 2018)

    Google Scholar 

  21. F. Michael et al., IEEE 802.11-19/784r0 Adaptive Repetition Scheme for NGV (IEEE NGV Meeting, 2019)

    Google Scholar 

  22. Y. Rui et al., IEEE 802.11-19/1596r0 PHY Signaling for Adaptive Repetition of 11p PPDU (IEEE NGV Meeting, 2019)

    Google Scholar 

  23. S. Coffey, IEEE 802.11-19/1299r0 Extended Range Modes in 11bd (IEEE NGV Meeting, 2019)

    Google Scholar 

  24. L. Dongguk et al., IEEE 802.11-19/332r2 PHY designs for 11bd (IEEE NGV Meeting, 2019)

    Google Scholar 

  25. IEEE P802.11MC DRAFT, Information Technology—Telecommunications and Information Exchange Between Systems Local And Metropolitan Area Networks—Specific Requirements PART 11: Wireless LAN Medium Access Control (MAC) AND Physical Layer (PHY) Specifications (2016)

    Google Scholar 

  26. S. Stephan et al., IEEE 802.11-19/0365r0 Consideration on Positioning with 802.11bd (IEEE NGV Meeting, 2019)

    Google Scholar 

  27. S. Stephan et al., IEEE 802.11-20/1728r1 802.11bd NGV Ranging Status and Types (IEEE NGV Meeting, 2020)

    Google Scholar 

  28. IEEE P802.11az/D1.0, IEEE Draft Standard for Information Technology—Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications—Enhancements for Positioning (2019), pp. 1–187

    Google Scholar 

  29. B. Sun et al., IEEE 802.11-19/0202r0 TGbd agreed terminology and requirements (IEEE NGV Meeting, 2019)

    Google Scholar 

  30. F. Michael et al., IEEE 802.11-18/1577r0 Additional Details About Interoperable NGV PHY Improvements (IEEE NGV Meeting, 2018)

    Google Scholar 

  31. F. Michael et al., IEEE 802.11-18/1186r0 Interoperable NGV PHY Improvements (IEEE NGV Meeting, 2018)

    Google Scholar 

  32. F. Michael et al., IEEE 802.11-19/0082r3 Interoperable Approach for NGV New Modulations (IEEE NGV Meeting, 2019)

    Google Scholar 

  33. H. Onn et al., IEEE 802.11-18/XXXXr0 Backward Compatible PHY Feasibility (IEEE NGV Meeting, 2018)

    Google Scholar 

  34. L. Dongguk et al., IEEE 802.11-19/0009r0 Consideration on Features for 11bd (IEEE NGV Meeting, 2019)

    Google Scholar 

  35. 3GPP TR 36.885, Study on LTE-based V2X Services, (Release 14), 3GPP Technical Specification Group Radio Access Network, v14.0.0 (2016)

    Google Scholar 

  36. A. Papathanassiou, A. Khoryaev, Cellular V2X as the Essential Enabler of Superior Global Connected Transportation Services. IEEE 5G Tech Focus 1(2), (2017)

    Google Scholar 

  37. R. Molina-Masegosa, J. Gozalvez, System Level Evaluation of LTE-V2V Mode 4 Communications and its Distributed Scheduling (IEEE VTC2017-Spring, 2017)

    Google Scholar 

  38. N.H. Mahmood, M.M.L. Lechuga, D. Laselva, K.I. Pedersen, G. Berardinelli G, Reliability oriented dual connectivity for URLLC services in 5G New Radio, in 15th IEEE International Symposium on Wireless Communication Systems (ISWCS) (2018)

    Google Scholar 

  39. A. Karimi, K.I. Pedersen, N.H. Mahmood, J. Steiner, P. Mogensen, 5G centralized multi-cell scheduling for URLLC: algorithms and system-level performance. IEEE Access 6, 72253–72262 (2018). https://doi.org/10.1109/ACCESS.2018.2880289

    Article  Google Scholar 

  40. C. Campolo, A. Molinaro, A. Iera, F. Menichella, 5G network slicing for vehicle-to-everything services. IEEE Wireless Commun. 24(6), 38–45 (2017). https://doi.org/10.1109/MWC.2017.1600408

    Article  Google Scholar 

  41. A. Memedi, F. Dressler, Vehicular visible light communications: a survey. IEEE Commun. Surv. Tutor. 23(1), 161–181 (2021). https://doi.org/10.1109/COMST.2020.3034224

    Article  Google Scholar 

  42. T. Zugno, M. Drago, M. Giordani, M. Polese, M. Zorzi, Toward standardization of millimeter-wave vehicle-to-vehicle networks: open challenges and performance evaluation. IEEE Commun. Mag. 58(9), 79–85 (2020). https://doi.org/10.1109/MCOM.001.2000041

    Article  Google Scholar 

  43. S. Zeadally, M.A. Javed, E.B. Hamida, Vehicular communications for ITS: standardization and challenges. IEEE Commun. Standards Mag. 4(1), 11–17 (2020). https://doi.org/10.1109/MCOMSTD.001.1900044

    Article  Google Scholar 

  44. K. Wevers, M. Lu, V2X Communication for ITS—from IEEE 802.11p Towards 5G. IEEE 5G Tech Focus 1(2), (2017)

    Google Scholar 

  45. National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT), Federal Motor Vehicle Safety Standards; V2V Communications, Notice of Proposed Rulemaking (NPRM), NHTSA-2016-0126, (2016)

    Google Scholar 

  46. European Commission, A European strategy on cooperative intelligent transport systems, a milestone towards cooperative, connected and automated mobility, in Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions (COM, 2016) 766 final

    Google Scholar 

  47. K.Z. Ghafoor, M. Guizani, L. Kong, H.S. Maghdid, K.F. Jasim, Enabling efficient coexistence of DSRC and C-V2X in vehicular networks. IEEE Wireless Commun. 27(2), 134–140 (2019). https://doi.org/10.1109/MWC.001.1900219

    Article  Google Scholar 

  48. G. Naik, J. Liu, J.-M. Park, Coexistence of Dedicated Short Range Communications (DSRC) and Wi-Fi: Implications to Wi-Fi Performance (Proc, IEEE INFOCOM, 2017)

    Google Scholar 

  49. G. Naik, J. Liu, J.-M. Park, Coexistence of wireless technologies in the 5 GHz bands: a survey of existing solutions and a roadmap for future research. IEEE Commun. Surv. Tutor. (2018)

    Google Scholar 

  50. 5G Automotive Association, ITS spectrum utilization in the Asia Pacific Region, White Paper (2018)

    Google Scholar 

  51. Z.H. Mir, F. Filali, Applications, requirements, and design guidelines for multi-tiered vehicular network architecture, 2018 Wireless Days (WD). Dubai (2018). https://doi.org/10.1109/WD.2018.8361686

  52. Z.H. Mir, J. Toutouh, F. Filali, Y.-B. Ko, Enabling DSRC and C-V2X integrated hybrid vehicular networks: architecture and protocol. IEEE Access 8, 180909–180927 (2020). https://doi.org/10.1109/ACCESS.2020.3027074

    Article  Google Scholar 

  53. M.B. Brahim, Z.H. Mir, W. Znaidi, F. Filali, N. Hamdi, QoS-aware video transmission over hybrid wireless network for connected vehicles. IEEE Access 5, 8313–8323 (2017). https://doi.org/10.1109/ACCESS.2017.2682278

    Article  Google Scholar 

  54. N. Dreyer, A. Moller, Z.H. Mir, F. Filali, T. Kurner, A data traffic steering algorithm for IEEE 802.11p/LTE hybrid vehicular networks, in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall) (2016). https://doi.org/10.1109/VTCFall.2016.7880850

  55. J.A. Olivera, I. Cortazar, C. Pinart, A. Los Santos, I. Lequerica, VANBA: a simple handover mechanism for transparent, always-on V2V communications, in IEEE 69th Vehicular Technology Conference (VTC2009-Spring) (2009)

    Google Scholar 

  56. A. Filippi, Wireless connectivity in automotive, in CWTe 2016 Research Retreat, Centre for Wireless Technology Eindhoven (CWTe) (2016)

    Google Scholar 

  57. Z.H. Mir, F. Filali, Evaluation of DSRC and LTE-V2x: need for next-generation V2X communication systems, in International Conference on Computing and Communication Networks (ICCCN-2022) (2022)

    Google Scholar 

  58. Z.H. Mir, F. Filali, LTE and IEEE 802.11p for vehicular networking: a performance evaluation. EURASIP JWCN 2014(89) (2014)

    Google Scholar 

  59. D. Puthal, Z.H. Mir, F. Filali, H. Menouar, Cross-layer architecture for congestion control in Vehicular Ad-hoc Networks, in 2013 International Conference on Connected Vehicles and Expo (ICCVE) (2013), pp. 887–892. https://doi.org/10.1109/ICCVE.2013.6799921.

  60. W. Anwar, S. Dev, A. Kumar, N. Franchi, G. Fettweis, PHY abstraction techniques for V2X enabling technologies: modeling and analysis. IEEE Trans. Vehicular Technol. 70(2), 1501–1517 (2021). https://doi.org/10.1109/TVT.2021.3053425

    Article  Google Scholar 

  61. R. Jacob, W. Anwar, N. Schwarzenberg, N. Franchi, G. Fettweis, System-level performance comparison of IEEE 802.11p and 802.11bd draft in highway scenarios, in 2020 27th International Conference on Telecommunications (ICT) (2020). https://doi.org/10.1109/ICT49546.2020.9239538

  62. W. Anwar, A. Traßl, N. Franchi, G. Fettweis, On the reliability of NR-V2X and IEEE 802.11bd, in 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (2019). https://doi.org/10.1109/PIMRC.2019.8904104

  63. W. Anwar,N. Franchi , G. Fettweis, Physical layer evaluation of V2X communications technologies: 5G NR-V2X, LTE-V2X, IEEE 802.11bd, and IEEE 802.11p, in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall) (2019). https://doi.org/10.1109/VTCFall.2019.8891313

  64. R. Jacob, W. Anwar, G. Fettweis, J. Pohlmann, Exploiting multi-RAT diversity in vehicular ad-hoc networks to improve reliability of cooperative automated driving applications, 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall) (2019). https://doi.org/10.1109/VTCFall.2019.8891072

  65. A. Qayyum, M. Usama, J. Qadir, A. Al-Fuqaha, Securing connected and autonomous vehicles: challenges posed by adversarial machine learning and the way forward. IEEE Commun. Surv. Tutor. 22(2), 998–1026 (2020). https://doi.org/10.1109/COMST.2020.2975048

    Article  Google Scholar 

  66. J. He, K.-H. Yang, H. Chen, 6G cellular networks and connected autonomous vehicles. IEEE Netw. 35(4), 255–261 (2021). https://doi.org/10.1109/MNET.011.2000541

  67. M. Noor-A-Rahim, Z. Liu, H. Lee, M.O. Khyam, J. He, D. Pesch, K. Moessner, W. Saad, H.V. Poor, 6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities CoRR (2020). ar**v:2012.07753. Last accessed 16 Jan 2022

  68. X. Zhou, W. Liang, J. She, Z. Yan, K.I.-K. Wang, Two-layer federated learning with heterogeneous model aggregation for 6G supported internet of vehicles. IEEE Trans. Vehicular Technol. 70(6), 5308–5317 (2021). https://doi.org/10.1109/TVT.2021.3077893

    Article  Google Scholar 

  69. J. Hu, C. Chen, L. Cai, M.R. Khosravi, Q. Pei, S. Wan, UAV-assisted vehicular edge computing for the 6G internet of vehicles: architecture. Intell. Challeng. IEEE Commun. Standards Mag. 5(2), 12–18 (2021). https://doi.org/10.1109/MCOMSTD.001.2000017

    Article  Google Scholar 

  70. J. Sanghvi, P. Bhattacharya, S. Tanwar, R. Gupta, N. Kumar, M. Guizani, Res6Edge: an edge-AI enabled resource sharing scheme for C-V2X communications towards 6G, in 2021 International Wireless Communications and Mobile Computing (IWCMC) (2021), pp. 149–154. https://doi.org/10.1109/IWCMC51323.2021.9498593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeeshan Hameed Mir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hameed Mir, Z., Filali, F. (2022). C-ITS Applications, Use Cases and Requirements for V2X Communication Systems—Threading Through IEEE 802.11p to 5G. In: Pathan, AS.K. (eds) Towards a Wireless Connected World: Achievements and New Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-04321-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04321-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04320-8

  • Online ISBN: 978-3-031-04321-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation