Adaptive RBF Neural Network Control for Nonlinear System

  • Chapter
  • First Online:
Complex Systems: Spanning Control and Computational Cybernetics: Foundations

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 414))

  • 360 Accesses

Abstract

This chapter focuses on the neural network(NN)-based adaptive tracking control issue for a class of high-order nonlinear systems both subjected to the immeasurable state variables and unknown external disturbance as well as the actuator failures. Combining with the radial basis function neural networks(RBF NNs), the composite disturbance observer and state observer are established, respectively. Besides that, so as to c at ope with the sparsity of the control resources, the event-triggered control strategy is applied. The purpose of this work is to develop neural network-based adaptive tracking control schemes such that the output of nonlinear systems ultimately tracks that of the desired target and all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded by utilizing the back-step** technique. Finally, the numerical example is performed to verify the efficacy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  2. Narenndra, K.S., Mukhopadhyay, S.: Adaptive control of nonlinear multivariable systems using neural networks. Neural Netw. 7(5), 737–752 (1994)

    Article  Google Scholar 

  3. Georgi, M., Dimirovski: From recurrent neural networks to human neural networks and back: a computational cybernetics. In: 2018 International Conference on Electronics, Telecommunications, Automation, Informatics and Computer Science (2018). Accessed 20-22 September 2018

    Google Scholar 

  4. Ge, Q.B., Yang, Q.M., Zhuo, P., Liu, G.L., Tang, S.S.: Genetic algorithm-based sensor allocation with nonlinear centralized fusion observable degree. IEEE Trans. Neural. Netw. Learn. Syst. 30(12), 3665–3673 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cui, B., **a, Y.Q., Liu, K., Shen, G.H.: Finite-time tracking control for a class of uncertain strict-feedback nonlinear systems with state constraints: a smooth control approach. IEEE Trans. Neural. Netw. Learn. Syst. 31(11), 4920–4932 (2020)

    Article  MathSciNet  Google Scholar 

  6. Meng, W.C., Yang, Q.M., Jagannathan, S., Sun, Y.X.: Distributed control of high-order nonlinear input constrained multiagent systems using a backstep**-free method. IEEE Trans. Cybern. 49(11), 3923–3933 (2019)

    Article  Google Scholar 

  7. Cui, B., **a, Y.Q., Liu, K., Wang, Y.J., Zhai, D.H.: Velocity-observer-based distributed finite-time attitude tracking control for multiple uncertain rigid spacecraft. IEEE Trans. Ind. Inf. 16(4), 2509–2519 (2020)

    Article  Google Scholar 

  8. Yang, Q.M., Jagannathan, S., Sun, Y.X.: Robust integral of neural network and error sign control of MIMO nonlinear systems. IEEE Trans. Neural. Netw. Learn. Syst. 26(12), 3278–3286 (2015)

    Article  MathSciNet  Google Scholar 

  9. Yang, Q.M., Ge, S.S., Sun, Y.X.: Adaptive actuator fault tolerant control for uncertain nonlinear systems with multiple actuators. Automatica 60, 92–99 (2015)

    Article  MathSciNet  Google Scholar 

  10. Rao, H.X., Liu, F., Peng, H., Xu, Y., Lu, R.Q.: Observer-based impulsive synchronization for neural networks with uncertain exchanging information. IEEE Trans. Neural Netw. Learn. Syst. to be published (2019). https://doi.org/10.1109/TNNLS.2019.2946151

  11. Shang, Y., Chen, B., Lin, C.: Consensus tracking control for distributed nonlinear multiagent systems via adaptive neural backstep** approach. IEEE Trans. Syst. Man, Cybern., Syst. to be published (2018). https://doi.org/10.1109/TSMC.2018.28169282018

  12. Yoo, S.J.: Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed graph. IEEE Trans. Neural. Netw. Learn. Syst. 24(4), 666–672 (2013)

    Article  Google Scholar 

  13. Yang, Y., Tan, J., Yue, D., ** approach. Inf. Sci. 369, 748–764 (2016)

    Article  Google Scholar 

  14. Zhou, B., Song, Q.: Boundedness and complete stability of complex-valued neural networks with time delay. IEEE Trans. Neural. Netw. Learn. Syst. 24(8), 1227–1238 (2013)

    Article  Google Scholar 

  15. Rao, H.X., Xu, Y., Peng, H., Lu, R.Q., Su, C.Y.: Quasi-synchronization of time delay Markovian jump neural networks with impulsive driven transmission and fading channels. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2941582

    Article  Google Scholar 

  16. Yang, Y., Xu, H.W., Yue, D.: Observer-Based distributed secure consensus control of a class of linear multi-agent systems subject to random attacks. IEEE Trans. Circuits Syst. I, Reg. Pap. 66(8), 3089–3099 (2019)

    Google Scholar 

  17. Chen, B., Lin, C., Liu, X.P., Liu, K.F.: Observer-based adaptive fuzzy control for a class of nonlinear delayed systems. IEEE Trans. Syst. Man, Cybern. Syst. 46(1), 27–36 (2016)

    Google Scholar 

  18. Chen, C.L.P., Wen, G.X., Liu, Y.J., Liu, Z.: Observer-based adaptive backstep** consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Trans. Cybern. 46(7), 1591–1601 (2016)

    Article  Google Scholar 

  19. Wang, K., Liu, Y., Liu, Liu X.P.., **g, Y.W., Dimirovski, G.M.: Study on TCP/AQM network congestion with adaptive neural network and barrier Lyapunov function. Neurocomputing 363, 27–34 (2019)

    Article  Google Scholar 

  20. Wang, K., **g, Y.W., Liu, Y., Liu, X.P., Dimirovski G.M.: Adaptive finite-time congestion controller design of TCP/AQM systems based on neural network and funnel control. Neural Comput. Appl. 30(13), 9471–9478 (2020)

    Google Scholar 

  21. Chen, B., Zhang, H.G., Liu, X.P., Lin, C.: Neural observer and adaptive neural control design for a class of nonlinear systems. IEEE Trans. Neural. Netw. Learn. Syst. 29(8), 4261–4271

    Google Scholar 

  22. Zhang, Y.H., Sun, J., Liang, H.J., Li, H.Y.: Event-triggered adaptive tracking control for multiagent systems with unknown disturbances. IEEE Trans. Cybern. to be published (2018). https://doi.org/10.1109/TCYB.2018.2869084

  23. Wang, A.Q., Liu, L., Qiu, J.B., Feng, G.: Event-triggered robust adaptive fuzzy control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 27(8), 1648–1658 (2019)

    Article  Google Scholar 

  24. Qiu, J.B., Sun, K.K., Wang, T., Gao, H.J.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 27(11), 2152–2162 (2019)

    Article  Google Scholar 

  25. Li, Y.X., Yang, G.H.: Adaptive neural control of pure-feedback nonlinear systems with event-triggered communication. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6242–6251 (2018)

    Article  MathSciNet  Google Scholar 

  26. Li, Y.X., Tong, S.C., Yang, G.H.: Observer-based adaptive fuzzy decentralized event-triggered control of interconnected nonlinear system. IEEE Trans. Cybern. to be publised. https://doi.org/10.1109/TCYB.2019.2894024

  27. Chen, M., Ge, S.S.: Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Trans. Ind. Electron. 62(12), 7706–7716 (2015)

    Article  Google Scholar 

  28. Min, H.F., Xu, S.Y., Ma, Q., Zhang, B.Y., Zhang, Z.Q.: Composite-observer-based output-feedback control for nonlinear time-delay systems with input saturation and its application. IEEE Trans. Ind. Electron. 65(7), 5856–5863 (2017)

    Article  Google Scholar 

  29. Wang, L.J., Basin, M.V., Li, H.Y., Lu, R.Q.: Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Trans. Fuzzy Syst. 26(4), 2336–2347 (2018)

    Article  Google Scholar 

  30. Liu, W.H., Li, P.: Disturbance observer based fault-tolerant adaptive control for nonlinearly parameterized systems. IEEE Trans. Ind. Electron. 66(11), 8681–8891 (2019)

    Article  Google Scholar 

  31. Zhang, C.H., Yang, G.H.: Event-triggered adaptive output feedback control for a class of uncertain nonlinear systems with actuator failures. IEEE Trans. Cybern. 50(1), 201–210 (2020)

    Article  Google Scholar 

  32. Li, Y.X., Yang, G.H.: Observer-based fuzzy adaptive event-triggered control codesign for a class of uncertain nonlinear system. IEEE Trans. Fuzzy Syst. 26(3), 1589–1599 (2018)

    Article  Google Scholar 

  33. Wang, C.L., Guo, L., Wen, C.Y., Hu, Q.L., Qiao, J.Z.: Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults. IEEE Trans. Ind. Electron. 67(3), 2241–2250 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **n Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Huang, T., Chakrabarti, P. (2022). Adaptive RBF Neural Network Control for Nonlinear System. In: Shi, P., Stefanovski, J., Kacprzyk, J. (eds) Complex Systems: Spanning Control and Computational Cybernetics: Foundations. Studies in Systems, Decision and Control, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-030-99776-2_22

Download citation

Publish with us

Policies and ethics

Navigation