Flexible Pyroelectric Sensors for Energy Harvesting Applications

  • Chapter
  • First Online:
Flexible Sensors for Energy-Harvesting Applications

Abstract

The chapter elucidates some of the significant work done on the use of flexible pyroelectric sensing prototypes for energy-harvesting applications. The efficiency of these sensors has been judged based on the diversified temperature variant shown with respect to the disparate materials processed to form the sensors. These sensing prototypes have been used in pure and combined forms, where other major forms like piezoelectric and triboelectric sensors have been conjugated with them for a wide range of applications. Some of the pyroelectric polymers like PVDF have been combined with carbon-based allotropes and metallic nanowires to develop highly efficient prototypes. A few of the major research work related to the deployment of these sensors for temperature sensing and other types of biomedical uses have been highlighted. Finally, some of the existing challenges, along with the probable solutions, have been mentioned in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Fu, S. Zhao, R. Zhu, A wearable multifunctional pulse monitor using thermosensation-based flexible sensors. IEEE Trans. Biomed. Eng. 66(5), 1412–1421 (2018)

    Article  Google Scholar 

  2. T. Han et al., Multifunctional flexible sensor based on laser-induced graphene. Sensors 19(16), 3477 (2019)

    Article  CAS  Google Scholar 

  3. S.C. Mukhopadhyay, Novel planar electromagnetic sensors: modeling and performance evaluation. Sensors 5(12), 546–579 (2005)

    Article  Google Scholar 

  4. S. C. Mukhopadhyay, New Developments in Sensing Technology for Structural Health Monitoring. (Springer, 2011)

    Google Scholar 

  5. Z. Lu et al., A Self-Powered Portable Flexible Sensor of Monitoring Speed Skating Techniques. Biosensors 11(4), 108 (2021)

    Article  CAS  Google Scholar 

  6. W. Li et al., Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Appl. Mater. Interfaces. 10(40), 34485–34493 (2018)

    Article  CAS  Google Scholar 

  7. M.E.E. Alahi, N. Pereira-Ishak, S.C. Mukhopadhyay, L. Burkitt, An internet-of-things enabled smart sensing system for nitrate monitoring. IEEE Internet Things J. 5(6), 4409–4417 (2018)

    Article  Google Scholar 

  8. A.I. Zia, S.C. Mukhopadhyay, P.-L. Yu, I.H. Al-Bahadly, C.P. Gooneratne, J. Kosel, Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens. Bioelectron. 67, 342–349 (2015)

    Article  CAS  Google Scholar 

  9. A. Mohd Syaifudin, S. Mukhopadhyay, P. Yu, Modelling and fabrication of optimum structure of novel interdigital sensors for food inspection. Int. J. Numer. Model. Electron. Networks Devices Fields 251, 64–81, (2012)

    Google Scholar 

  10. A. Mehmood et al., Graphene based nanomaterials for strain sensor application—a review. J. Environ. Chem. Eng. 8(3), 103743 (2020)

    Google Scholar 

  11. A. Nag, A. Mitra, S.C. Mukhopadhyay, Graphene and its sensor-based applications: a review. Sens. Actuators A 270, 177–194 (2018)

    Article  CAS  Google Scholar 

  12. F. Wang, L. Liu, W.J. Li, Graphene-based glucose sensors: a brief review. IEEE Trans. Nanobiosci. 14(8), 818–834 (2015)

    Article  Google Scholar 

  13. M. Nasr Esfahani, B.E. Alaca, A review on size‐dependent mechanical properties of nanowires. Adv. Eng. Mater. 21(8), 1900192 (2019)

    Google Scholar 

  14. T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J.P. Simonato, D. Bellet, Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12(44), 6052–6075 (2016)

    Article  CAS  Google Scholar 

  15. U. Yogeswaran, S.-M. Chen, A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8(1), 290–313 (2008)

    Article  CAS  Google Scholar 

  16. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis Int. J. Devoted Fundam Pract. Aspects Electroanalysis 22(10), 1027–1036 (2010)

    Google Scholar 

  17. N. Afsarimanesh, A. Nag, S. Sarkar, G.S. Sabet, T. Han, S.C. Mukhopadhyay, A review on fabrication, characterization and implementation of wearable strain sensors. Sens. Actuators A Phys. 112355 (2020)

    Google Scholar 

  18. H. Liu et al., Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6(45), 12121–12141 (2018)

    Article  CAS  Google Scholar 

  19. W.A.D.M. Jayathilaka et al., Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 31(7), 1805921 (2019)

    Article  CAS  Google Scholar 

  20. J. Gao, S. He, A. Nag, J.W.C. Wong, A review of the use of carbon nanotubes and graphene-based sensors for the detection of aflatoxin M1 compounds in milk. Sensors 21(11), 3602 (2021)

    Article  CAS  Google Scholar 

  21. A. Nag et al., A transparent strain sensor based on PDMS-embedded conductive fabric for wearable sensing applications. IEEE Access 6, 71020–71027 (2018)

    Article  Google Scholar 

  22. A. Nag, S.C. Mukhopadhyay, J. Kosel, Sensing system for salinity testing using laser-induced graphene sensors. Sens. Actuators A 264, 107–116 (2017)

    Article  CAS  Google Scholar 

  23. A. Nag, S.C. Mukhopadhyay, J. Kosel, Tactile sensing from laser-ablated metallized PET films. IEEE Sens. J. 17(1), 7–13 (2016)

    Article  Google Scholar 

  24. E. Kovalska, A. Baldycheva, A. Somov, Wireless graphene-enabled wearable temperature sensor. in Journal of Physics: Conference Series, vol. 1571, no. 1, (IOP Publishing, 2020), p. 012001

    Google Scholar 

  25. A. Somov, E. Kovalska, A. Baldycheva, Wireless graphene temperature sensor. in 2020 IEEE Sensors, (IEEE, 2020), pp. 1–4

    Google Scholar 

  26. M. Bassoli, V. Bianchi, I.D. Munari, A plug and play IoT Wi-Fi smart home system for human monitoring. Electronics 7(9), 200 (2018)

    Article  Google Scholar 

  27. X. Zhang et al., Two-dimensional MoS 2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566(7744), 368–372 (2019)

    Article  CAS  Google Scholar 

  28. Y.-G. Park, S. Lee, J.-U. Park, Recent progress in wireless sensors for wearable electronics. Sensors 19(20), 4353 (2019)

    Article  Google Scholar 

  29. A. Shinde, P. Sahatiya, A. Kadu, and S. Badhulika, Wireless smartphone-assisted personal healthcare monitoring system using a MoS2-based flexible, wearable and ultra-low-cost functional sensor. Flex. Printed Electron. 4(2), 025003 (2019)

    Google Scholar 

  30. K. Malhi, S.C. Mukhopadhyay, J. Schnepper, M. Haefke, H. Ewald, A zigbee-based wearable physiological parameters monitoring system. IEEE Sens. J. 12(3), 423–430 (2010)

    Article  Google Scholar 

  31. V. Bianchi, P. Ciampolini, I. De Munari, RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Trans. Instrum. Meas. 68(2), 566–575 (2018)

    Article  Google Scholar 

  32. F. Bibi, C. Guillaume, N. Gontard, B. Sorli, A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends Food Sci. Technol. 62, 91–103 (2017)

    Article  CAS  Google Scholar 

  33. C.L. Baumbauer et al., Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics. Sci. Rep. 10(1), 1–12 (2020)

    Article  CAS  Google Scholar 

  34. M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A 269, 79–90 (2018)

    Article  CAS  Google Scholar 

  35. A. Nag, M.E.E. Alahi, S. Feng, S.C. Mukhopadhyay, IoT-based sensing system for phosphate detection using Graphite/PDMS sensors. Sens. Actuators A 286, 43–50 (2019)

    Article  CAS  Google Scholar 

  36. S.A. Miyagi, M.R. Mak’ruf, E.D. Setioningsih, T. Das, Design of respiration rate meter using flexible sensor. J Electron. Electromedical Eng. Med. Inform. 2(1), 13–18 (2020)

    Google Scholar 

  37. V. Vujović, M. Maksimović, Raspberry Pi as a sensor web node for home automation. Comput. Electr. Eng. 44, 153–171 (2015)

    Article  Google Scholar 

  38. S. G. Nikhade, Wireless sensor network system using Raspberry Pi and zigbee for environmental monitoring applications. in 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), (IEEE, 2015), pp. 376–381

    Google Scholar 

  39. G. Dere, Biomedical applications with using embedded systems. in Data Acquisition-Recent Advances and Applications in Biomedical Engineering: IntechOpen, (2021)

    Google Scholar 

  40. Y.A. Rivas-Sánchez, M.F. Moreno-Pérez, J. Roldán-Cañas, Environment control with low-cost microcontrollers and microprocessors: application for green walls. Sustainability 11(3), 782 (2019)

    Article  Google Scholar 

  41. A. Malinowski, H. Yu, Comparison of embedded system design for industrial applications. IEEE Trans. Industr. Inf. 7(2), 244–254 (2011)

    Article  Google Scholar 

  42. B.J. Hansen, Y. Liu, R. Yang, Z.L. Wang, Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7), 3647–3652 (2010)

    Article  CAS  Google Scholar 

  43. Z. Li, G. Zhu, R. Yang, A.C. Wang, Z.L. Wang, Muscle-driven in vivo nanogenerator. Adv. Mater. 22(23), 2534–2537 (2010)

    Article  CAS  Google Scholar 

  44. S. Yan et al., Eggshell membrane and expanded polytetrafluoroethylene piezoelectric-enhanced triboelectric bio-nanogenerators for energy harvesting. Int. J. Energy Res. 45(7), 11053–11064 (2021)

    Article  CAS  Google Scholar 

  45. Y. Liu et al., Piezoelectric energy harvesting for self‐powered wearable upper limb applications. Nano Select (2021)

    Google Scholar 

  46. T. Prada et al., Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O 2/Ar plasma etching for triboelectric nanogenerator applications. Nano Res. 1–8 (2021)

    Google Scholar 

  47. G. Khandelwal, N.P.M.J. Raj, V. Vivekananthan, S.-J. Kim, Biodegradable metal-organic framework MIL-88A for triboelectric nanogenerator. Iscience 242, 102064 (2021)

    Google Scholar 

  48. M. Hoffmann et al., Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 18, 154–164 (2015)

    Article  CAS  Google Scholar 

  49. Y.-C. Hu, W.-L. Hsu, Y.-T. Wang, C.-T. Ho, P.-Z. Chang, Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide do**. Sensors 14(4), 6877–6890 (2014)

    Article  CAS  Google Scholar 

  50. A. Davidson, A. Buis, I. Glesk, Toward novel wearable pyroelectric temperature sensor for medical applications. IEEE Sens. J. 17(20), 6682–6689 (2017)

    Article  CAS  Google Scholar 

  51. R.A. Surmenev, R.V. Chernozem, I.O. Pariy, M.A. Surmeneva, A review on piezo-and pyroelectric responses of flexible nano-and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy 79, 105442 (2021)

    Google Scholar 

  52. G. Wang et al., Flexible pressure sensor based on PVDF nanofiber. Sens. Actuators A 280, 319–325 (2018)

    Article  CAS  Google Scholar 

  53. Y. **n et al., The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: a brief review. Ferroelectrics 502(1), 28–42 (2016)

    Article  CAS  Google Scholar 

  54. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, X. Zhang, Properties and applications of the β phase poly (vinylidene fluoride). Polymers 10(3), 228 (2018)

    Article  CAS  Google Scholar 

  55. C. Wu et al., Quick response PZT/P (VDF-TrFE) composite film pyroelectric infrared sensor with patterned polyimide thermal isolation layer. Infrared Phys. Technol. 66, 34–38 (2014)

    Article  CAS  Google Scholar 

  56. Y. Yang, Y. Zhou, J.M. Wu, Z.L. Wang, Single micro/nanowire pyroelectric nanogenerators as self-powered temperature sensors. ACS Nano 6(9), 8456–8461 (2012)

    Article  CAS  Google Scholar 

  57. A. Nag, M.E.E. Alahi, S.C. Mukhopadhyay, Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activities. Appl. Mater. Today 22, 100953 (2021)

    Google Scholar 

  58. F. Marra, S. Minutillo, A. Tamburrano, M.S. Sarto, Production and characterization of Graphene Nanoplatelet-based ink for smart textile strain sensors via screen printing technique. Mater. Des. 198, 109306 (2021)

    Google Scholar 

  59. A. Nag, S. Feng, S. Mukhopadhyay, J. Kosel, D. Inglis, 3D printed mould-based graphite/PDMS sensor for low-force applications. Sens. Actuators A 280, 525–534 (2018)

    Article  CAS  Google Scholar 

  60. A. Nag, N. Afasrimanesh, S. Feng, S.C. Mukhopadhyay, Strain induced graphite/PDMS sensors for biomedical applications. Sens. Actuators A 271, 257–269 (2018)

    Article  CAS  Google Scholar 

  61. T. Han, A. Nag, S.C. Mukhopadhyay, Y. Xu, Carbon nanotubes and its gas-sensing applications: a review. Sens. Actuators A 291, 107–143 (2019)

    Article  CAS  Google Scholar 

  62. J. Chen, B. Liu, X. Gao, D. Xu, A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv. 8(49), 28048–28085 (2018)

    Article  CAS  Google Scholar 

  63. A. Nag, S.C. Mukhopadhyay, J. Kosel, Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sens. Actuators A 251, 148–155 (2016)

    Article  CAS  Google Scholar 

  64. S. Mun, H.-U. Ko, L. Zhai, S.-K. Min, H.-C. Kim, J. Kim, Enhanced electromechanical behavior of cellulose film by zinc oxide nanocoating and its vibration energy harvesting. Acta Mater. 114, 1–6 (2016)

    Article  CAS  Google Scholar 

  65. J. Zhu et al., Zinc oxide-enhanced piezoelectret polypropylene microfiber for mechanical energy harvesting. ACS Appl. Mater. Interfaces. 10(23), 19940–19947 (2018)

    Article  CAS  Google Scholar 

  66. Y. Liu et al., Skin-integrated graphene-embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing. Adv. Mater. Technol. 4(12), 1900744 (2019)

    Article  CAS  Google Scholar 

  67. L. Dong et al., Multifunctional pacemaker lead for cardiac energy harvesting and pressure sensing. Adv. Healthcare Mater. 9(11), 2000053 (2020)

    Article  CAS  Google Scholar 

  68. M.M. Alam, A. Sultana, D. Mandal, Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator. ACS Appl. Energy Mater. 1(7), 3103–3112 (2018)

    Article  CAS  Google Scholar 

  69. J. Sintusiri, V. Harnchana, V. Amornkitbamrung, A. Wongsa, P. Chindaprasirt, Portland cement-TiO2 triboelectric nanogenerator for robust large-scale mechanical energy harvesting and instantaneous motion sensor applications. Nano Energy 74, 104802 (2020)

    Google Scholar 

  70. A. Thakre, A. Kumar, H.-C. Song, D.-Y. Jeong, J. Ryu, Pyroelectric energy conversion and its applications—flexible energy harvesters and sensors. Sensors 19(9), 2170 (2019)

    Article  CAS  Google Scholar 

  71. M. Dietze, M. Es-Souni, Dielectric and pyroelectric properties of thick and thin film relaxor-ceramic/PVDF-TrFE composites. Funct. Compos. Struct. 1(3), 035005 (2019)

    Google Scholar 

  72. S.-M. Zeng et al., Electrocaloric effect and pyroelectric properties in Ce-doped BaCexTi1− xO3 ceramics. J. Alloy. Compd. 776, 731–739 (2019)

    Article  CAS  Google Scholar 

  73. C. Mart, M. Czernohorsky, S. Zybell, T. Kämpfe, W. Weinreich, Frequency domain analysis of pyroelectric response in silicon-doped hafnium oxide (HfO2) thin films. Appl. Phys. Lett. 113(12), 122901 (2018)

    Google Scholar 

  74. M. Aleksandrova, A. Sohan, P. Kollu, G. Dobrikov, Pyroelectric properties of BaxSr (1–x) TiO3/PVDF-TrFE coating on silicon. Membranes 11(8), 577 (2021)

    Article  CAS  Google Scholar 

  75. Y. Yang et al., Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanoparticle-based electrodes. Adv. Func. Mater. 30(29), 1909652 (2020)

    Article  CAS  Google Scholar 

  76. E. Kar, N. Bose, B. Dutta, N. Mukherjee, S. Mukherjee, Ultraviolet-and microwave-protecting, self-cleaning e-skin for efficient energy harvesting and tactile mechanosensing. ACS Appl. Mater. Interfaces. 11(19), 17501–17512 (2019)

    Article  CAS  Google Scholar 

  77. Y. **, J. Hua, Y. Shi, Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting. Nano Energy 69 104390 (2020)

    Google Scholar 

  78. I. Izadgoshasb, Y.Y. Lim, L. Tang, R.V. Padilla, Z.S. Tang, M. Sedighi, Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system. Energy Convers. Manage. 184, 559–570 (2019)

    Article  Google Scholar 

  79. G. Vats, A. Kumar, N. Ortega, C.R. Bowen, R.S. Katiyar, Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures. Energy Environ. Sci. 9(4), 1335–1345 (2016)

    Article  CAS  Google Scholar 

  80. M. H. Park, H.J. Kim, Y.J. Kim, T. Moon, K. Do Kim, C.S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1− xO2 films. Nano Energy 12, 131–140 (2015)

    Google Scholar 

  81. X. Hao, Y. Zhao, S. An, Giant thermal–electrical energy harvesting effect of Pb0. 97La0. 02 (Zr0. 75Sn0. 18Ti0. 07) O3 antiferroelectric thick film. J. Am. Ceram. Soc. 98(2), 361–365 (2015)

    Article  CAS  Google Scholar 

  82. X. Hao, Y. Zhao, Q. Zhang, Phase structure tuned electrocaloric effect and pyroelectric energy harvesting performance of (Pb0. 97La0. 02)(Zr, Sn, Ti) O3 antiferroelectric thick films. J. Phys. Chem. C 119(33), 18877–18885 (2015)

    Article  CAS  Google Scholar 

  83. F. Zhuo et al., Phase transformations, anisotropic pyroelectric energy harvesting and electrocaloric properties of (Pb, La)(Zr, Sn, Ti) O 3 single crystals. Phys. Chem. Chem. Phys. 19(21), 13534–13546 (2017)

    Article  CAS  Google Scholar 

  84. G. Vats et al., Giant energy harvesting potential in (100)-oriented 0.68 PbMg 1/3 Nb 2/3 O 3–0.32 PbTiO 3 with Pb (Zr 0.3 Ti 0.7) O 3/PbO x buffer layer and (001)-oriented 0.67 PbMg 1/3 Nb 2/3 O 3–0.33 PbTiO 3 thin films. J. Adv. Dielectr. 4(4), 1450029 (2014)

    Google Scholar 

  85. D.-S. Ju, Z. Zhou, J.-P. Ou, Study on strain-sensing of PVDF films. J. Funct. Mater. 35, 450–452 (2004)

    CAS  Google Scholar 

  86. P. Zhu et al., A novel bi-functional double-layer rGO–PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium–sulfur batteries. J. Mater. Chem. A 5(29), 15096–15104 (2017)

    Article  CAS  Google Scholar 

  87. L. Battista, L. Mecozzi, S. Coppola, V. Vespini, S. Grilli, P. Ferraro, Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals. Appl. Energy 136, 357–362 (2014)

    Article  CAS  Google Scholar 

  88. C.-M. Wu, M.-H. Chou, T.F. Chala, Y. Shimamura, R.-I. Murakami, Infrared-driven poly (vinylidene difluoride)/tungsten oxide pyroelectric generator for non-contact energy harvesting. Compos. Sci. Technol. 178, 26–32 (2019)

    Article  CAS  Google Scholar 

  89. J.-G. Sun, T.-N. Yang, C.-Y. Wang, L.-J. Chen, A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy 48, 383–390 (2018)

    Article  CAS  Google Scholar 

  90. Q. Yang, Z. Shi, D. Ma, Y. He, J. Wang, Flexible PbTiO3-nanowires/P (VDF-TrFE) composite films and their dielectric, ferroelectric and pyroelectric properties. Ceram. Int. 44(12), 14850–14856 (2018)

    Article  CAS  Google Scholar 

  91. H. Li et al., A wearable solar-thermal-pyroelectric harvester: Achieving high power output using modified rGO-PEI and polarized PVDF. Nano Energy 73, 104723 (2020)

    Google Scholar 

  92. M. Abbasipour, R. Khajavi, A.A. Yousefi, M.E. Yazdanshenas, F. Razaghian, A. Akbarzadeh, Improving piezoelectric and pyroelectric properties of electrospun PVDF nanofibers using nanofillers for energy harvesting application. Polym. Adv. Technol. 30(2), 279–291 (2019)

    Article  CAS  Google Scholar 

  93. K. Roy et al., A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl. Nano Mater. 2(4), 2013–2025 (2019)

    Article  CAS  Google Scholar 

  94. Z. Jiang, G. Zheng, Z. Han, Y. Liu, J. Yang, Enhanced ferroelectric and pyroelectric properties of poly (vinylidene fluoride) with addition of graphene oxides. J. Appl. Phys. 115(20), 204101 (2014)

    Google Scholar 

  95. T. Zhao et al., Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor. Appl. Energy 195, 754–760 (2017)

    Article  CAS  Google Scholar 

  96. L. Chen, J. Dong, M. He, X. Wang, A self-powered, flexible ultra-thin Si/ZnO nanowire photodetector as full-spectrum optical sensor and pyroelectric nanogenerator. Beilstein J. Nanotechnol. 11(1), 1623–1630 (2020)

    Article  CAS  Google Scholar 

  97. F. Sarf, Metal oxide gas sensors by nanostructures. Gas Sens. 1 (2020)

    Google Scholar 

  98. C. Sun et al., Flexible printed circuit board as novel electrodes for acoustofluidic devices. IEEE Trans. Electron Devices 68(1), 393–398 (2020)

    Article  Google Scholar 

  99. Y. Wang et al., Flexible printed circuit board based on graphene/polyimide composites with excellent thermal conductivity and sandwich structure. Compos. Part A Appl. Sci. Manuf. 138, 106075 (2020)

    Google Scholar 

Download references

Funding

This study was funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s Excellence Strategy—EXC 2050/1—Project ID 390696704—Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische Universität Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Nag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nag, A., Afsarimanesh, N., Mukhopadhyay, S.C. (2022). Flexible Pyroelectric Sensors for Energy Harvesting Applications. In: Nag, A., Mukhopadhyay, S.C. (eds) Flexible Sensors for Energy-Harvesting Applications. Smart Sensors, Measurement and Instrumentation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-99600-0_7

Download citation

Publish with us

Policies and ethics

Navigation