Discrete Description of Crack Kinematics in Regularized Free Discontinuities of Crack Faces

  • Chapter
  • First Online:
Material Modeling and Structural Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 161))

Abstract

The fracture mechanical free discontinuity problem can be associated with a generalized, variational approach of GRIFFITH’s fracture theory. By introducing a regularization for the sharp displacement discontinuity at cracks and crack surfaces, stable computational fracture models are developed, e.g., the phase-field fracture formulation and the eigenfracture approach. The presented work summarizes recent findings regarding unrealistic deformation kinematics at cracks predicted by conventional formulations of both models and introduces the variational framework of Representative Crack Element to overcome these discrepancies. Illustrative examples for crack propagation and post-fracture behavior at small and finite deformations, brittle and cohesive failure as well as for rate-dependent materials frictional crack contact demonstrate the flexibility and the generality of the introduced Representative Crack Element.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alessi R, Vidoli S, De Lorenzis L (2018) A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case. Engineering Fracture Mechanics 190:53–73, DOI https://doi.org/10.1016/j.engfracmech.2017.11.036

  • Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering 50:1701–1736, DOI https://doi.org/10.1002/nme.93

  • Ambati M, Gerasimov T, De Lorenzis L (2015a) Phase-field modeling of ductile fracture. Computational Mechanics 55:1017–1040, DOI https://doi.org/10.1007/s00466-015-1151-4

  • Ambati M, Gerasimov T, De Lorenzis L (2015b) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational Mechanics 55:383–405, DOI https://doi.org/10.1007/s00466-014-1109-y

  • Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via Γ-convergence. Communications on Pure and Applied Mathematics 43:999–1036, DOI https://doi.org/10.1002/cpa.3160430805

  • Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford

    Google Scholar 

  • Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57:1209–1229, DOI https://doi.org/10.1016/j.jmps.2009.04.011

  • Aragao FTS (2011) Computational microstructure modeling of asphalt mixtures subjected to ratedependent fracture. Ph.d. thesis, University of Nebraska-Lincoln

    Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 7:55–129, DOI https://doi.org/10.1016/S0065-2156(08)70121-2

  • Blanco PJ, Sánchez PJ, Souza Neto EA, Feijóo RA (2016) Variational foundations and generalized unified theory of RVE-based multiscale models. Archives of Computational Methods in Engineering 23:191–253, DOI https://doi.org/10.1007/s11831-014-9137-5

  • Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Computer Methods in Applied Mechanics and Engineering 273:100–118, DOI https://doi.org/10.1016/j.cma.2014.01.016

  • Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Computer Methods in Applied Mechanics and Engineering 312:130–166, DOI https://doi.org/10.1016/j.cma.2016.09.005

  • Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48:797–826, DOI https://doi.org/10.1016/S0022-5096(99)00028-9

  • Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. Journal of Elasticity 91:5–148

    Google Scholar 

  • Braun M (1997) Configurational forces induced by finite-element discretization. Proceedings of the Estonian Academy of Sciences Physics - Mathematics 46:24–31

    Google Scholar 

  • Bryant EC, Sun W (2018) A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics. Computer Methods in Applied Mechanics and Engineering 342:561–584, DOI https://doi.org/10.1016/j.cma.2018.08.008

  • Carrara P, Ambati M, Alessi R, De Lorenzis L (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361:112,731, DOI https://doi.org/10.1016/j.cma.2019.112731

  • Chambolle A, Conti S, Francfort GA (2018) Approximation of a brittle fracture energy with a constraint of non-interpenetration. Archive for Rational Mechanics and Analysis 228:867–889, DOI https://doi.org/10.1007/s00205-017-1207-z

  • De Giorgi E, Ambrosio L (1988) Un nuovo tipo di funzionale del calcolo delle variazioni. Atti della Accademia Nazionale dei Lincei Classe di Scienze Fisiche, Matematiche e Naturali Rendiconti Lincei Matematica e Applicazioni 82:199–210

    Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 8:100–104, DOI https://doi.org/10.1016/0022-5096(60)90013-2

  • Fei F, Choo J (2020a) A phase-field method for modeling cracks with frictional contact. International Journal for Numerical Methods in Engineering 121:740–762, DOI https://doi.org/10.1002/nme.6242

  • Fei F, Choo J (2020b) A phase-field model of frictional shear fracture in geologic materials. Computer Methods in Applied Mechanics and Engineering 369:113,265, DOI https://doi.org/10.1016/j.cma.2020.113265

  • Foulk JW, Allen DH, Helms KLE (2000) Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Computer Methods in Applied Mechanics and Engineering 183:51–66, DOI https://doi.org/10.1016/S0045-7825(99)00211-X

  • Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46:1319–1342, DOI https://doi.org/10.1016/S0022-5096(98)00034-9

  • Freddi F, Royer-Carfagni G (2009) Variational models for cleavage and shear fractures. Proceedings of the XIX AIMETA Symposium pp 715–716

    Google Scholar 

  • Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58:1154–1174, DOI https://doi.org/10.1016/j.jmps.2010.02.010

  • Geelen RJM, Liu Y, Hu T, Tupek MR, Dolbow JE (2019) A phase-field formulation for dynamic cohesive fracture. Computer Methods in Applied Mechanics and Engineering 348:680–711, DOI https://doi.org/10.1016/j.cma.2019.01.026

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London Series A 221:163–198, DOI https://doi.org/10.1098/rsta.1921.0006

  • Gültekin O, Dal H, Holzapfel GA (2018) Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phasefield model. Computer Methods in Applied Mechanics and Engineering 331:23–52, DOI https://doi.org/10.1016/j.cma.2017.11.008

  • Gurtin ME (2000) Configurational Forces as Basic Concepts of Continuum Physics. Applied Mathematical Sciences, Springer, New York, DOI https://doi.org/10.1007/978-0-387-22656-9_5

  • Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. Journal of the Mechanics and Physics of Solids 57:342–368, DOI https://doi.org/10.1016/j.jmps.2008.10.012

  • Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Physical Review Letters 93:105,504, DOI https://doi.org/10.1103/PhysRevLett.93.105504

  • Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. International Journal for Numerical Methods in Engineering 99:906–924, DOI https://doi.org/10.1002/nme.4709

  • Hill R (1963) Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids 11:357–372, DOI https://doi.org/10.1016/0022-5096(63)90036-X

  • Hocine N, Abdelaziz M, Imad A (2002) Fracture problems of rubbers : J integral estimation based upon η factors and investigation on the strain energy density distribution as a local criterion. International Journal of Fracture 117:1–23, DOI https://doi.org/10.1023/A:1020967429222

  • Kienzler R, Herrmann G (2000) Mechanics in Material Space: with Applications to Defect and Fracture Mechanics. Springer, Berlin, Heidelberg, DOI https://doi.org/10.1007/978-3-642-57010-0_4

  • Kim YR, Aragao FTS (2013) Microstructure modeling of rate-dependent fracture behavior in bituminous paving mixtures. Finite Elements in Analysis and Design 63:23–32, DOI https://doi.org/10.1016/j.finel.2012.08.004

  • Kuhn C, Müller R (2010) A continuum phase field model for fracture. Engineering Fracture Mechanics 77:3625–3634, DOI https://doi.org/10.1016/j.engfracmech.2010.08.009

  • Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. A practical application to the French Panthéon in Paris. Journal of Elasticity 95:1–30, DOI https://doi.org/10.1007/s10659-009-9189-1

  • Linse T, Hennig P, Kästner M, de Borst R (2017) A convergence study of phasefield models for brittle fracture. Engineering Fracture Mechanics 184:307–318, DOI https://doi.org/10.1016/j.engfracmech.2017.09.013

  • Loew PJ, Peters B, Beex LAA (2019) Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification. Journal of the Mechanics and Physics of Solids 127:266–294, DOI https://doi.org/10.1016/j.jmps.2019.03.022

  • Luo C, Chen L, Huang Y (2021) A phase-field crack model based on a directional strain decomposition and a stress-driven Crack-Opening Indicator. Computer Methods in Applied Mechanics and Engineering 384:113,928, DOI https://doi.org/10.1016/j.cma.2021.113928

  • Mandal TK, Nguyen VP, Wu JY (2019) Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture. Engineering Fracture Mechanics 217:106,532, DOI https://doi.org/10.1016/j.engfracmech.2019.106532

  • Maugin GA (1995) Material forces: Concepts and applications. Applied Mechanics Reviews 48:213, DOI https://doi.org/10.1115/1.3005101

  • Maugin GA (2010) Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. Routledge & CRC Press, Boca Raton

    Google Scholar 

  • Miehe C, Gürses E (2007) A robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignment. International Journal for Numerical Methods in Engineering 72:127–155, DOI https://doi.org/10.1002/nme.1999

  • Miehe C, Schänzel LM (2014) Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure. Journal of the Mechanics and Physics of Solids 65:93–113, DOI https://doi.org/10.1016/j.jmps.2013.06.007

  • Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778, DOI https://doi.org/10.1016/j.cma.2010.04.011

  • Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering 83:1273–1311, DOI https://doi.org/10.1002/nme.2861

  • Miehe C, Hofacker M, Schänzel LM, Aldakheel F (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Computer Methods in Applied Mechanics and Engineering 294:486–522, DOI https://doi.org/10.1016/j.cma.2014.11.017

  • Mueller R, Maugin GA (2002) On material forces and finite element discretizations. Computational Mechanics 29:52–60, DOI https://doi.org/10.1007/s00466-002-0322-2

  • Nguyen VP, Wu JY (2018) Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Computer Methods in Applied Mechanics and Engineering 340:1000–1022, DOI https://doi.org/10.1016/j.cma.2018.06.015

  • Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for threedimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering 44:1267–1282

    Google Scholar 

  • Özenç K, Kaliske M (2014) An implicit adaptive node-splitting algorithm to assess the failure mechanism of inelastic elastomeric continua. International Journal for Numerical Methods in Engineering 100:669–688, DOI https://doi.org/10.1002/nme.4774

  • Palmer AC, Rice JR, Hill R (1973) The growth of slip surfaces in the progressive failure of overconsolidated clay. Proceedings of the Royal Society of London A Mathematical and Physical Sciences 332:527–548, DOI https://doi.org/10.1098/rspa.1973.0040

  • Pandolfi A, Ortiz M (2012) An eigenerosion approach to brittle fracture. International Journal for Numerical Methods in Engineering 92:694–714, DOI https://doi.org/10.1002/nme.4352

  • Pandolfi A, Weinberg K, Ortiz M (2021) A comparative accuracy and convergence study of eigenerosion and phase-field models of fracture. Computer Methods in Applied Mechanics and Engineering 386:114,078, DOI https://doi.org/10.1016/j.cma.2021.114078

  • Pham K, Amor H, Marigo JJ, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20:618–652, DOI https://doi.org/10.1177/1056789510386852

  • Qinami A, Pandolfi A, Kaliske M (2020) Variational eigenerosion for rate-dependent plasticity in concrete modeling at small strain. International Journal for Numerical Methods in Engineering 121:1388–1409, DOI https://doi.org/10.1002/nme.6271

  • Schänzel LM (2015) Phase field modeling of fracture in rubbery and glassy polymers at finite thermo-viscoelastic deformations. Phd thesis, Universität Stuttgart, Stuttgart

    Google Scholar 

  • Schellekens JCJ, de Borst R (1993) On the numerical integration of interface elements. International Journal for Numerical Methods in Engineering 36:43–66, DOI https://doi.org/10.1002/nme.1620360104

  • Schmidt B, Fraternali F, Ortiz M (2009) An eigendeformation approach to variational fracture. Multiscale Modeling & Simulation 7(3):1237–1266, DOI https://doi.org/10.1137/080712568

  • Seiler M, Linse T, Hantschke P, Kästner M (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224:106,807, DOI https://doi.org/10.1016/j.engfracmech.2019.106807

  • Shen R, Waisman H, Guo L (2019) Fracture of viscoelastic solids modeled with a modified phase field method. Computer Methods in Applied Mechanics and Engineering 346:862–890, DOI https://doi.org/10.1016/j.cma.2018.09.018

  • Steinke C, Kaliske M (2019) A phase-field crack model based on directional stress decomposition. Computational Mechanics 63:1019–1046, DOI https://doi.org/10.1007/s00466-018-1635-0

  • Stochino F, Qinami A, Kaliske M (2017) Eigenerosion for static and dynamic brittle fracture. Engineering Fracture Mechanics 182:537–551, DOI https://doi.org/10.1016/j.engfracmech.2017.05.025

  • Storm J, Supriatna D, Kaliske M (2020) The concept of representative crack elements for phasefield fracture: Anisotropic elasticity and thermo-elasticity. International Journal for Numerical Methods in Engineering 121:779–805, DOI https://doi.org/10.1002/nme.6244

  • Storm J, Qinami A, Kaliske M (2021a) The concept of representative crack elements applied to eigenfracture. Mechanics Research Communications 116:103,747, DOI https://doi.org/10.1016/j.mechrescom.2021.103747

  • Storm J, Yin B, Kaliske M (2021b) The concept of representative crack elements (rce) for phasefield fracture - transient thermo-mechanics. Submitted

    Google Scholar 

  • Strobl M, Seelig T (2016) On constitutive assumptions in phase field approaches to brittle fracture. Procedia Structural Integrity 2:3705–3712, DOI https://doi.org/10.1016/j.prostr.2016.06.460

  • Teichtmeister S, Kienle D, Aldakheel F, Keip MA (2017) Phase field modeling of fracture in anisotropic brittle solids. International Journal of Non-Linear Mechanics 97:1–21, DOI https://doi.org/10.1016/j.ijnonlinmec.2017.06.018

  • van den Bosch MJ, Schreurs PJG, Geers MGD (2008) On the development of a 3D cohesive zone element in the presence of large deformations. Computational Mechanics 42:171–180, DOI https://doi.org/10.1007/s00466-007-0184-8

  • Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. International Journal for Numerical Methods in Engineering 96:43–62, DOI https://doi.org/10.1002/nme.4553

  • Vignollet J, May S, de Borst R, Verhoosel CV (2014) Phase-field models for brittle and cohesive fracture. Meccanica 49:2587–2601, DOI https://doi.org/10.1007/s11012-013-9862-0

  • Yin B, Kaliske M (2020a) An anisotropic phase-field model based on the equivalent crack surface energy density at finite strain. Computer Methods in Applied Mechanics and Engineering 369:113,202, DOI https://doi.org/10.1016/j.cma.2020.113202

  • Yin B, Kaliske M (2020b) A ductile phase-field model based on degrading the fracture toughness: Theory and implementation at small strain. Computer Methods in Applied Mechanics and Engineering 366:113,068, DOI https://doi.org/10.1016/j.cma.2020.113068

  • Yin B, Kaliske M (2020c) Fracture simulation of viscoelastic polymers by the phase-field method. Computational Mechanics 65:293–309, DOI https://doi.org/10.1007/s00466-019-01769-1

  • Yin B, Khodor J, Kaliske M (2020a) Fracture and fatigue failure simulation of polymeric material at finite deformation by the phase-field method and the material force approach. Advances in Polymer Science 286:347–376, DOI https://doi.org/10.1007/12_2020_63

  • Yin B, Steinke C, Kaliske M (2020b) Formulation and implementation of strain rate dependent fracture toughness in context of the phase-field method. International Journal for Numerical Methods in Engineering 121:233–255, DOI https://doi.org/10.1002/nme.6207

  • Yin B, Storm J, Kaliske M (2021) Viscoelastic phase-field fracture using the framework of representative crack elements. International Journal of Fracture DOI https://doi.org/10.1007/s10704-021-00522-1

  • Zhang X, Vignes C, Sloan SW, Sheng D (2017) Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale. Computational Mechanics 59:737–752, DOI https://doi.org/10.1007/s00466-017-1373-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, B., Storm, J., Kaliske, M. (2022). Discrete Description of Crack Kinematics in Regularized Free Discontinuities of Crack Faces. In: Altenbach, H., Beitelschmidt, M., Kästner, M., Naumenko, K., Wallmersperger, T. (eds) Material Modeling and Structural Mechanics . Advanced Structured Materials, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-030-97675-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97675-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97674-3

  • Online ISBN: 978-3-030-97675-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation