Epigenetic Epidemiology of Obesity and Type 2 Diabetes

  • Chapter
  • First Online:
Epigenetic Epidemiology

Abstract

Type 2 diabetes (T2D) and obesity are multifactorial and polygenic metabolic diseases. Combinations of genetic and non-genetic risk factors such as risk SNPs, age, unhealthy diets, and physical inactivity increase the risk for these diseases. Emerging data also support a key role for epigenetic mechanisms in the pathogenesis of T2D and obesity. In this chapter, we summarize current knowledge of epigenetic alterations found in individuals with T2D and obesity. We present studies performed in blood, as well as human tissues important for metabolism, i.e., adipose tissue, skeletal muscle, liver, and pancreatic islets. These studies have found differential DNA methylation associated with both T2D and obesity. Although some studies exist, there is still limited information regarding histone modifications in human tissues linked to metabolic diseases. We finally explore how epigenetic mechanisms may be targeted by epigenetic editing and inhibitors of epigenetic enzymes for future therapies and precision medicine in T2D and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

BWS:

Beckwith–Wiedemann syndrome

Cas:

CRISPR associated system

ChIP:

Chromatin immunoprecipitation

CRISPR:

Clustered regularly interspaced palindromic repeats

DMR:

Differentially methylated region

DNMT:

DNA methyltransferase

EWAS:

Epigenome-wide association study

GWAS:

Genome-wide association study

HDAC:

Histone deacetylase

ICR:

Imprinting control region

mQTL:

Methylation quantitative trait locus

PBL:

Peripheral blood lymphocyte

PBMC:

Peripheral blood mononuclear cells

SAM:

S-adenosylmethionine

SAT:

Subcutaneous adipose tissue

sgRNA:

Single guide RNA

T2D:

Type 2 diabetes

TALES:

Transcription activator-like effectors

TET:

Ten eleven translocation

VAT:

Visceral adipose tissue

WB:

Western blot

WGBS:

Whole-genome bisulfite sequencing

ZF:

Zinc finger

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R, Committee IDFDA (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  2. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Magi R, Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Zhao JH, Zhao W, Chen J, Fehrmann R, Hedman AK, Karjalainen J, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bolton JL, Bragg-Gresham JL, Buyske S, Demirkan A, Deng G, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Goel A, Gong J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Mangino M, Leach IM, Medina-Gomez C, Medland SE, Nalls MA, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Shungin D, Stancakova A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Isaacs A, Albrecht E, Arnlov J, Arscott GM, Attwood AP, Bandinelli S, Barrett A, Bas IN, Bellis C, Bennett AJ, Berne C, Blagieva R, Bluher M, Bohringer S, Bonnycastle LL, Bottcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Chen YI, Clarke R, Daw EW, de Craen AJM, Delgado G, Dimitriou M, Doney ASF, Eklund N, Estrada K, Eury E, Folkersen L, Fraser RM, Garcia ME, Geller F, Giedraitis V, Gigante B, Go AS, Golay A, Goodall AH, Gordon SD, Gorski M, Grabe HJ, Grallert H, Grammer TB, Grassler J, Gronberg H, Groves CJ, Gusto G, Haessler J, Hall P, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heard-Costa NL, Helmer Q, Hengstenberg C, Holmen O, Hottenga JJ, James AL, Jeff JM, Johansson A, Jolley J, Juliusdottir T, Kinnunen L, Koenig W, Koskenvuo M, Kratzer W, Laitinen J, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, Lindstrom J, Lo KS, Lobbens S, Lorbeer R, Lu Y, Mach F, Magnusson PKE, Mahajan A, McArdle WL, McLachlan S, Menni C, Merger S, Mihailov E, Milani L, Moayyeri A, Monda KL, Morken MA, Mulas A, Muller G, Muller-Nurasyid M, Musk AW, Nagaraja R, Nothen MM, Nolte IM, Pilz S, Rayner NW, Renstrom F, Rettig R, Ried JS, Ripke S, Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Scott WR, Seufferlein T, Shi J, Smith AV, Smolonska J, Stanton AV, Steinthorsdottir V, Stirrups K, Stringham HM, Sundstrom J, Swertz MA, Swift AJ, Syvanen AC, Tan ST, Tayo BO, Thorand B, Thorleifsson G, Tyrer JP, Uh HW, Vandenput L, Verhulst FC, Vermeulen SH, Verweij N, Vonk JM, Waite LL, Warren HR, Waterworth D, Weedon MN, Wilkens LR, Willenborg C, Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang Q, LifeLines Cohort S, Brennan EP, Choi M, Dastani Z, Drong AW, Eriksson P, Franco-Cereceda A, Gadin JR, Gharavi AG, Goddard ME, Handsaker RE, Huang J, Karpe F, Kathiresan S, Keildson S, Kiryluk K, Kubo M, Lee JY, Liang L, Lifton RP, Ma B, McCarroll SA, McKnight AJ, Min JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Okada Y, Perry JRB, Dorajoo R, Reinmaa E, Salem RM, Sandholm N, Scott RA, Stolk L, Takahashi A, Tanaka T, van’t Hooft FM, Vinkhuyzen AAE, Westra HJ, Zheng W, Zondervan KT, Consortium AD, Group A-BW, Consortium CAD, Consortium CK, Glgc, Icbp, Investigators M, Mu TC, Consortium MI, Consortium P, ReproGen C, Consortium G, International Endogene C, Heath AC, Arveiler D, Bakker SJL, Beilby J, Bergman RN, Blangero J, Bovet P, Campbell H, Caulfield MJ, Cesana G, Chakravarti A, Chasman DI, Chines PS, Collins FS, Crawford DC, Cupples LA, Cusi D, Danesh J, de Faire U, den Ruijter HM, Dominiczak AF, Erbel R, Erdmann J, Eriksson JG, Farrall M, Felix SB, Ferrannini E, Ferrieres J, Ford I, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gejman PV, Gieger C, Gottesman O, Gudnason V, Gyllensten U, Hall AS, Harris TB, Hattersley AT, Hicks AA, Hindorff LA, Hingorani AD, Hofman A, Homuth G, Hovingh GK, Humphries SE, Hunt SC, Hypponen E, Illig T, Jacobs KB, Jarvelin MR, Jockel KH, Johansen B, Jousilahti P, Jukema JW, Jula AM, Kaprio J, Kastelein JJP, Keinanen-Kiukaanniemi SM, Kiemeney LA, Knekt P, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, Kumari M, Kuusisto J, Lakka TA, Langenberg C, Marchand LL, Lehtimaki T, Lyssenko V, Mannisto S, Marette A, Matise TC, McKenzie CA, McKnight B, Moll FL, Morris AD, Morris AP, Murray JC, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Madden PAF, Pasterkamp G, Peden JF, Peters A, Postma DS, Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Rioux JD, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schunkert H, Schwarz PEH, Sever P, Shuldiner AR, Sinisalo J, Stolk RP, Strauch K, Tonjes A, Tregouet DA, Tremblay A, Tremoli E, Virtamo J, Vohl MC, Volker U, Waeber G, Willemsen G, Witteman JC, Zillikens MC, Adair LS, Amouyel P, Asselbergs FW, Assimes TL, Bochud M, Boehm BO, Boerwinkle E, Bornstein SR, Bottinger EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ, Cooper RS, de Bakker PIW, Dedoussis G, Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman CA, Hamsten A, Hui J, Hunter DJ, Hveem K, Kaplan RC, Kivimaki M, Kuh D, Laakso M, Liu Y, Martin NG, Marz W, Melbye M, Metspalu A, Moebus S, Munroe PB, Njolstad I, Oostra BA, Palmer CNA, Pedersen NL, Perola M, Perusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sattar N, Schadt EE, Schlessinger D, Slagboom PE, Snieder H, Spector TD, Thorsteinsdottir U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Walker M, Wallaschofski H, Wareham NJ, Watkins H, Weir DR, Wichmann HE, Wilson JF, Zanen P, Borecki IB, Deloukas P, Fox CS, Heid IM, O’Connell JR, Strachan DP, Stefansson K, van Duijn CM, Abecasis GR, Franke L, Frayling TM, McCarthy MI, Visscher PM, Scherag A, Willer CJ, Boehnke M, Mohlke KL, Lindgren CM, Beckmann JS, Barroso I, North KE, Ingelsson E, Hirschhorn JN, Loos RJF, Speliotes EK (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518(7538):197–206. https://doi.org/10.1038/nature14177

  3. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, Payne AJ, Steinthorsdottir V, Scott RA, Grarup N, Cook JP, Schmidt EM, Wuttke M, Sarnowski C, Magi R, Nano J, Gieger C, Trompet S, Lecoeur C, Preuss MH, Prins BP, Guo X, Bielak LF, Below JE, Bowden DW, Chambers JC, Kim YJ, Ng MCY, Petty LE, Sim X, Zhang W, Bennett AJ, Bork-Jensen J, Brummett CM, Canouil M, Ec Kardt KU, Fischer K, Kardia SLR, Kronenberg F, Lall K, Liu CT, Locke AE, Luan J, Ntalla I, Nylander V, Schonherr S, Schurmann C, Yengo L, Bottinger EP, Brandslund I, Christensen C, Dedoussis G, Florez JC, Ford I, Franco OH, Frayling TM, Giedraitis V, Hackinger S, Hattersley AT, Herder C, Ikram MA, Ingelsson M, Jorgensen ME, Jorgensen T, Kriebel J, Kuusisto J, Ligthart S, Lindgren CM, Linneberg A, Lyssenko V, Mamakou V, Meitinger T, Mohlke KL, Morris AD, Nadkarni G, Pankow JS, Peters A, Sattar N, Stancakova A, Strauch K, Taylor KD, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tuomilehto J, Witte DR, Dupuis J, Peyser PA, Zeggini E, Loos RJF, Froguel P, Ingelsson E, Lind L, Groop L, Laakso M, Collins FS, Jukema JW, Palmer CNA, Grallert H, Metspalu A, Dehghan A, Kottgen A, Abecasis GR, Meigs JB, Rotter JI, Marchini J, Pedersen O, Hansen T, Langenberg C, Wareham NJ, Stefansson K, Gloyn AL, Morris AP, Boehnke M, McCarthy MI (2018) Fine-map** type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 50(11):1505–1513. https://doi.org/10.1038/s41588-018-0241-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105(44):17046–17049. https://doi.org/10.1073/pnas.0806560105

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y, Weishaupt H, Attema J, Abels M, Wierup N, Almgren P, Jansson PA, Ronn T, Hansson O, Eriksson KF, Groop L, Ling C (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61(12):3322–3332. https://doi.org/10.2337/db11-1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ronn T, Volkov P, Davegardh C, Dayeh T, Hall E, Olsson AH, Nilsson E, Tornberg A, Dekker Nitert M, Eriksson KF, Jones HA, Groop L, Ling C (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9(6):e1003572. https://doi.org/10.1371/journal.pgen.1003572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hall E, Volkov P, Dayeh T, Esguerra JL, Salo S, Eliasson L, Ronn T, Bacos K, Ling C (2014) Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol 15(12):522. https://doi.org/10.1186/s13059-014-0522-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, Jorgensen SW, Brons C, Jansson PA, Eriksson KF, Pedersen O, Hansen T, Groop L, Stener-Victorin E, Vaag A, Nilsson E, Ling C (2015) Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 24(13):3792–3813. https://doi.org/10.1093/hmg/ddv124

    Article  CAS  PubMed  Google Scholar 

  9. Bacos K, Gillberg L, Volkov P, Olsson AH, Hansen T, Pedersen O, Gjesing AP, Eiberg H, Tuomi T, Almgren P, Groop L, Eliasson L, Vaag A, Dayeh T, Ling C (2016) Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun 7:11089. https://doi.org/10.1038/ncomms11089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Farhangi MA, Keshavarz SA, Eshraghian M, Ostadrahimi A, Saboor-Yaraghi AA (2013) White blood cell count in women: relation to inflammatory biomarkers, haematological profiles, visceral adiposity, and other cardiovascular risk factors. J Health Popul Nutr 31(1):58–64. https://doi.org/10.3329/jhpn.v31i1.14749

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chambers JC, Loh M, Lehne B, Drong A, Kriebel J, Motta V, Wahl S, Elliott HR, Rota F, Scott WR, Zhang W, Tan ST, Campanella G, Chadeau-Hyam M, Yengo L, Richmond RC, Adamowicz-Brice M, Afzal U, Bozaoglu K, Mok ZY, Ng HK, Pattou F, Prokisch H, Rozario MA, Tarantini L, Abbott J, Ala-Korpela M, Albetti B, Ammerpohl O, Bertazzi PA, Blancher C, Caiazzo R, Danesh J, Gaunt TR, de Lusignan S, Gieger C, Illig T, Jha S, Jones S, Jowett J, Kangas AJ, Kasturiratne A, Kato N, Kotea N, Kowlessur S, Pitkaniemi J, Punjabi P, Saleheen D, Schafmayer C, Soininen P, Tai ES, Thorand B, Tuomilehto J, Wickremasinghe AR, Kyrtopoulos SA, Aitman TJ, Herder C, Hampe J, Cauchi S, Relton CL, Froguel P, Soong R, Vineis P, Jarvelin MR, Scott J, Grallert H, Bollati V, Elliott P, McCarthy MI, Kooner JS (2015) Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol 3(7):526–534. https://doi.org/10.1016/S2213-8587(15)00127-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6(6):692–702. https://doi.org/10.4161/epi.6.6.16196

    Article  CAS  PubMed  Google Scholar 

  13. Dayeh T, Tuomi T, Almgren P, Perfilyev A, Jansson PA, de Mello VD, Pihlajamaki J, Vaag A, Groop L, Nilsson E, Ling C (2016) DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics 11(7):482–488. https://doi.org/10.1080/15592294.2016.1178418

    Article  PubMed  PubMed Central  Google Scholar 

  14. Walaszczyk E, Luijten M, Spijkerman AMW, Bonder MJ, Lutgers HL, Snieder H, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV (2018) DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels: a systematic review and replication in a case-control sample of the Lifelines study. Diabetologia 61(2):354–368. https://doi.org/10.1007/s00125-017-4497-7

    Article  CAS  PubMed  Google Scholar 

  15. Cardona A, Day FR, Perry JRB, Loh M, Chu AY, Lehne B, Paul DS, Lotta LA, Stewart ID, Kerrison ND, Scott RA, Khaw KT, Forouhi NG, Langenberg C, Liu C, Mendelson MM, Levy D, Beck S, Leslie RD, Dupuis J, Meigs JB, Kooner JS, Pihlajamaki J, Vaag A, Perfilyev A, Ling C, Hivert MF, Chambers JC, Wareham NJ, Ong KK (2019) Epigenome-wide association study of incident type 2 diabetes in a british population: EPIC-Norfolk study. Diabetes 68(12):2315–2326. https://doi.org/10.2337/db18-0290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Willmer T, Johnson R, Louw J, Pheiffer C (2018) Blood-based DNA methylation biomarkers for type 2 diabetes: potential for clinical applications. Front Endocrinol (Lausanne) 9:744. https://doi.org/10.3389/fendo.2018.00744

    Article  Google Scholar 

  17. Juvinao-Quintero DL, Marioni RE, Ochoa-Rosales C, Russ TC, Deary IJ, van Meurs JBJ, Voortman T, Hivert MF, Sharp GC, Relton CL, Elliott HR (2021) DNA methylation of blood cells is associated with prevalent type 2 diabetes in a meta-analysis of four European cohorts. Clin Epigenetics 13(1):40. https://doi.org/10.1186/s13148-021-01027-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mendelson MM, Marioni RE, Joehanes R, Liu C, Hedman AK, Aslibekyan S, Demerath EW, Guan W, Zhi D, Yao C, Huan T, Willinger C, Chen B, Courchesne P, Multhaup M, Irvin MR, Cohain A, Schadt EE, Grove ML, Bressler J, North K, Sundstrom J, Gustafsson S, Shah S, McRae AF, Harris SE, Gibson J, Redmond P, Corley J, Murphy L, Starr JM, Kleinbrink E, Lipovich L, Visscher PM, Wray NR, Krauss RM, Fallin D, Feinberg A, Absher DM, Fornage M, Pankow JS, Lind L, Fox C, Ingelsson E, Arnett DK, Boerwinkle E, Liang L, Levy D, Deary IJ (2017) Association of body mass index with DNA methylation and gene expression in blood cells and relations to cardiometabolic disease: a mendelian randomization approach. PLoS Med 14(1):e1002215. https://doi.org/10.1371/journal.pmed.1002215

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai PC, Ried JS, Zhang W, Yang Y, Tan S, Fiorito G, Franke L, Guarrera S, Kasela S, Kriebel J, Richmond RC, Adamo M, Afzal U, Ala-Korpela M, Albetti B, Ammerpohl O, Apperley JF, Beekman M, Bertazzi PA, Black SL, Blancher C, Bonder MJ, Brosch M, Carstensen-Kirberg M, de Craen AJ, de Lusignan S, Dehghan A, Elkalaawy M, Fischer K, Franco OH, Gaunt TR, Hampe J, Hashemi M, Isaacs A, Jenkinson A, Jha S, Kato N, Krogh V, Laffan M, Meisinger C, Meitinger T, Mok ZY, Motta V, Ng HK, Nikolakopoulou Z, Nteliopoulos G, Panico S, Pervjakova N, Prokisch H, Rathmann W, Roden M, Rota F, Rozario MA, Sandling JK, Schafmayer C, Schramm K, Siebert R, Slagboom PE, Soininen P, Stolk L, Strauch K, Tai ES, Tarantini L, Thorand B, Tigchelaar EF, Tumino R, Uitterlinden AG, van Duijn C, van Meurs JB, Vineis P, Wickremasinghe AR, Wijmenga C, Yang TP, Yuan W, Zhernakova A, Batterham RL, Smith GD, Deloukas P, Heijmans BT, Herder C, Hofman A, Lindgren CM, Milani L, van der Harst P, Peters A, Illig T, Relton CL, Waldenberger M, Jarvelin MR, Bollati V, Soong R, Spector TD, Scott J, McCarthy MI, Elliott P, Bell JT, Matullo G, Gieger C, Kooner JS, Grallert H, Chambers JC (2017) Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541(7635):81–86. https://doi.org/10.1038/nature20784

    Article  CAS  PubMed  Google Scholar 

  20. Campanella G, Gunter MJ, Polidoro S, Krogh V, Palli D, Panico S, Sacerdote C, Tumino R, Fiorito G, Guarrera S, Iacoviello L, Bergdahl IA, Melin B, Lenner P, de Kok T, Georgiadis P, Kleinjans JCS, Kyrtopoulos SA, Bueno-de-Mesquita HB, Lillycrop KA, May AM, Onland-Moret NC, Murray R, Riboli E, Verschuren M, Lund E, Mode N, Sandanger TM, Fiano V, Trevisan M, Matullo G, Froguel P, Elliott P, Vineis P, Chadeau-Hyam M (2018) Epigenome-wide association study of adiposity and future risk of obesity-related diseases. Int J Obes 42(12):2022–2035. https://doi.org/10.1038/s41366-018-0064-7

    Article  CAS  Google Scholar 

  21. Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, Spegel P, Mulder H (2018) The pathogenetic role of beta-cell mitochondria in type 2 diabetes. J Endocrinol 236(3):R145–R159. https://doi.org/10.1530/JOE-17-0367

    Article  CAS  PubMed  Google Scholar 

  22. Soyal S, Krempler F, Oberkofler H, Patsch W (2006) PGC-1alpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 49(7):1477–1488. https://doi.org/10.1007/s00125-006-0268-6

    Article  CAS  PubMed  Google Scholar 

  23. Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51(4):615–622. https://doi.org/10.1007/s00125-007-0916-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, Wollheim CB, Nitert MD, Ling C (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia 54(2):360–367. https://doi.org/10.1007/s00125-010-1967-6

    Article  CAS  PubMed  Google Scholar 

  25. Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, **g X, Renstrom E, Wollheim CB, Nitert MD, Ling C (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26(7):1203–1212. https://doi.org/10.1210/me.2012-1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujimoto K, Polonsky KS (2009) Pdx1 and other factors that regulate pancreatic beta-cell survival. Diabetes Obes Metab 11(Suppl 4):30–37. https://doi.org/10.1111/j.1463-1326.2009.01121.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, Mullen Y, Pfeifer GP, Ferreri K (2009) Insulin gene expression is regulated by DNA methylation. PLoS One 4(9):e6953. https://doi.org/10.1371/journal.pone.0006953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R, Calonne E, Volkmar U, Igoillo-Esteve M, Naamane N, Del Guerra S, Masini M, Bugliani M, Marchetti P, Cnop M, Eizirik DL, Fuks F (2012) DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 31(6):1405–1426. https://doi.org/10.1038/emboj.2011.503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dayeh T, Volkov P, Salo S, Hall E, Nilsson E, Olsson AH, Kirkpatrick CL, Wollheim CB, Eliasson L, Ronn T, Bacos K, Ling C (2014) Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10(3):e1004160. https://doi.org/10.1371/journal.pgen.1004160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Volkov P, Bacos K, Ofori JK, Esguerra JL, Eliasson L, Ronn T, Ling C (2017) Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes 66(4):1074–1085. https://doi.org/10.2337/db16-0996

    Article  CAS  PubMed  Google Scholar 

  31. Gage BK, Asadi A, Baker RK, Webber TD, Wang R, Itoh M, Hayashi M, Miyata R, Akashi T, Kieffer TJ (2015) The role of ARX in human pancreatic endocrine specification. PLoS One 10(12):e0144100. https://doi.org/10.1371/journal.pone.0144100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gauthier BR, Wiederkehr A, Baquie M, Dai C, Powers AC, Kerr-Conte J, Pattou F, MacDonald RJ, Ferrer J, Wollheim CB (2009) PDX1 deficiency causes mitochondrial dysfunction and defective insulin secretion through TFAM suppression. Cell Metab 10(2):110–118. https://doi.org/10.1016/j.cmet.2009.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, Ladenvall C, Ronn T, Ling C (2014) Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 10(11):e1004735. https://doi.org/10.1371/journal.pgen.1004735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dayeh TA, Olsson AH, Volkov P, Almgren P, Ronn T, Ling C (2013) Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 56(5):1036–1046. https://doi.org/10.1007/s00125-012-2815-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abderrahmani A, Yengo L, Caiazzo R, Canouil M, Cauchi S, Raverdy V, Plaisance V, Pawlowski V, Lobbens S, Maillet J, Rolland L, Boutry R, Queniat G, Kwapich M, Tenenbaum M, Bricambert J, Saussenthaler S, Anthony E, Jha P, Derop J, Sand O, Rabearivelo I, Leloire A, Pigeyre M, Daujat-Chavanieu M, Gerbal-Chaloin S, Dayeh T, Lassailly G, Mathurin P, Staels B, Auwerx J, Schurmann A, Postic C, Schafmayer C, Hampe J, Bonnefond A, Pattou F, Froguel P (2018) Increased hepatic PDGF-AA signaling mediates liver insulin resistance in obesity-associated type 2 diabetes. Diabetes 67(7):1310–1321. https://doi.org/10.2337/db17-1539

    Article  CAS  PubMed  Google Scholar 

  36. Barajas-Olmos F, Centeno-Cruz F, Zerrweck C, Imaz-Rosshandler I, Martinez-Hernandez A, Cordova EJ, Rangel-Escareno C, Galvez F, Castillo A, Maydon H, Campos F, Maldonado-Pintado DG, Orozco L (2018) Altered DNA methylation in liver and adipose tissues derived from individuals with obesity and type 2 diabetes. BMC Med Genet 19(1):28. https://doi.org/10.1186/s12881-018-0542-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirchner H, Sinha I, Gao H, Ruby MA, Schonke M, Lindvall JM, Barres R, Krook A, Naslund E, Dahlman-Wright K, Zierath JR (2016) Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab 5(3):171–183. https://doi.org/10.1016/j.molmet.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nilsson E, Matte A, Perfilyev A, de Mello VD, Kakela P, Pihlajamaki J, Ling C (2015) Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab 100(11):E1491–E1501. https://doi.org/10.1210/jc.2015-3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279(31):32345–32353. https://doi.org/10.1074/jbc.M313478200

    Article  CAS  PubMed  Google Scholar 

  40. Barres R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10(3):189–198. https://doi.org/10.1016/j.cmet.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  41. Ribel-Madsen R, Fraga MF, Jacobsen S, Bork-Jensen J, Lara E, Calvanese V, Fernandez AF, Friedrichsen M, Vind BF, Hojlund K, Beck-Nielsen H, Esteller M, Vaag A, Poulsen P (2012) Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One 7(12):e51302. https://doi.org/10.1371/journal.pone.0051302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeoung NH, Harris RA (2008) Pyruvate dehydrogenase kinase-4 deficiency lowers blood glucose and improves glucose tolerance in diet-induced obese mice. Am J Physiol Endocrinol Metab 295(1):E46–E54. https://doi.org/10.1152/ajpendo.00536.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lira VA, Benton CR, Yan Z, Bonen A (2010) PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 299(2):E145–E161. https://doi.org/10.1152/ajpendo.00755.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pilegaard H, Neufer PD (2004) Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise. Proc Nutr Soc 63(2):221–226. https://doi.org/10.1079/pns2004345

    Article  CAS  PubMed  Google Scholar 

  45. Bajpeyi S, Covington JD, Taylor EM, Stewart LK, Galgani JE, Henagan TM (2017) Skeletal muscle PGC1alpha-1 nucleosome position and -260 nt DNA methylation determine exercise response and prevent ectopic lipid accumulation in men. Endocrinology 158(7):2190–2199. https://doi.org/10.1210/en.2017-00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O’Gorman DJ, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411. https://doi.org/10.1016/j.cmet.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  47. Davegardh C, Sall J, Benrick A, Broholm C, Volkov P, Perfilyev A, Henriksen TI, Wu Y, Hjort L, Brons C, Hansson O, Pedersen M, Wurthner JU, Pfeffer K, Nilsson E, Vaag A, Stener-Victorin E, Pircs K, Scheele C, Ling C (2021) VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nat Commun 12(1):2431. https://doi.org/10.1038/s41467-021-22068-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nkonge KM, Nkonge DK, Nkonge TN (2020) The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol 6(1):20. https://doi.org/10.1186/s40842-020-00112-5

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P, Fadista J, Ronn T, Klarlund Pedersen B, Scheele C, Vaag A, Ling C (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63(9):2962–2976. https://doi.org/10.2337/db13-1459

    Article  PubMed  Google Scholar 

  50. Rodriguez-Rodero S, Menendez-Torre E, Fernandez-Bayon G, Morales-Sanchez P, Sanz L, Turienzo E, Gonzalez JJ, Martinez-Faedo C, Suarez-Gutierrez L, Ares J, Diaz-Naya L, Martin-Nieto A, Fernandez-Morera JL, Fraga MF, Delgado-Alvarez E (2017) Altered intragenic DNA methylation of HOOK2 gene in adipose tissue from individuals with obesity and type 2 diabetes. PLoS One 12(12):e0189153. https://doi.org/10.1371/journal.pone.0189153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dwivedi D, Kumari A, Rathi S, Mylavarapu SVS, Sharma M (2019) The dynein adaptor Hook2 plays essential roles in mitotic progression and cytokinesis. J Cell Biol 218(3):871–894. https://doi.org/10.1083/jcb.201804183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Andersen E, Ingerslev LR, Fabre O, Donkin I, Altintas A, Versteyhe S, Bisgaard T, Kristiansen VB, Simar D, Barres R (2019) Preadipocytes from obese humans with type 2 diabetes are epigenetically reprogrammed at genes controlling adipose tissue function. Int J Obes 43(2):306–318. https://doi.org/10.1038/s41366-018-0031-3

    Article  CAS  Google Scholar 

  53. Parrillo L, Spinelli R, Longo M, Desiderio A, Mirra P, Nigro C, Fiory F, Hedjazifar S, Mutarelli M, Carissimo A, Formisano P, Miele C, Smith U, Raciti GA, Beguinot F (2020) Altered PTPRD DNA methylation associates with restricted adipogenesis in healthy first-degree relatives of type 2 diabetes subjects. Epigenomics 12(10):873–888. https://doi.org/10.2217/epi-2019-0267

    Article  CAS  PubMed  Google Scholar 

  54. Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, Chang CT, Wang TY, Chen RH, Shiu CF, Liu YM, Chang CC, Chen P, Chen CH, Fann CS, Chen YT, Wu JY (2010) A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 6(2):e1000847. https://doi.org/10.1371/journal.pgen.1000847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pietilainen KH, Ismail K, Jarvinen E, Heinonen S, Tummers M, Bollepalli S, Lyle R, Muniandy M, Moilanen E, Hakkarainen A, Lundbom J, Lundbom N, Rissanen A, Kaprio J, Ollikainen M (2016) DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs. Int J Obes 40(4):654–661. https://doi.org/10.1038/ijo.2015.221

    Article  CAS  Google Scholar 

  56. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M, Heits N, Bell JT, Tsai PC, Spector TD, Deloukas P, Siebert R, Sipos B, Becker T, Rocken C, Schafmayer C, Hampe J (2014) Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci U S A 111(43):15538–15543. https://doi.org/10.1073/pnas.1412759111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Toro-Martin J, Guenard F, Tchernof A, Hould FS, Lebel S, Julien F, Marceau S, Vohl MC (2019) Body mass index is associated with epigenetic age acceleration in the visceral adipose tissue of subjects with severe obesity. Clin Epigenetics 11(1):172. https://doi.org/10.1186/s13148-019-0754-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S, Meduri E, Morange PE, Gagnon F, Grallert H, Waldenberger M, Peters A, Erdmann J, Hengstenberg C, Cambien F, Goodall AH, Ouwehand WH, Schunkert H, Thompson JR, Spector TD, Gieger C, Tregouet DA, Deloukas P, Samani NJ (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383(9933):1990–1998. https://doi.org/10.1016/S0140-6736(13)62674-4

    Article  CAS  PubMed  Google Scholar 

  59. Main AM, Gillberg L, Jacobsen AL, Nilsson E, Gjesing AP, Hansen T, Pedersen O, Ribel-Madsen R, Vaag A (2016) DNA methylation and gene expression of HIF3A: cross-tissue validation and associations with BMI and insulin resistance. Clin Epigenetics 8:89. https://doi.org/10.1186/s13148-016-0258-6

    Article  PubMed  PubMed Central  Google Scholar 

  60. Houde AA, Legare C, Biron S, Lescelleur O, Biertho L, Marceau S, Tchernof A, Vohl MC, Hivert MF, Bouchard L (2015) Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Med Genet 16:29. https://doi.org/10.1186/s12881-015-0174-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hall E, Dayeh T, Kirkpatrick CL, Wollheim CB, Dekker Nitert M, Ling C (2013) DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets. BMC Med Genet 14:76. https://doi.org/10.1186/1471-2350-14-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hall E, Volkov P, Dayeh T, Bacos K, Ronn T, Nitert MD, Ling C (2014) Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med 12:103. https://doi.org/10.1186/1741-7015-12-103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davegardh C, Broholm C, Perfilyev A, Henriksen T, Garcia-Calzon S, Peijs L, Hansen NS, Volkov P, Kjobsted R, Wojtaszewski JF, Pedersen M, Pedersen BK, Ballak DB, Dinarello CA, Heinhuis B, Joosten LA, Nilsson E, Vaag A, Scheele C, Ling C (2017) Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects. BMC Med 15(1):39. https://doi.org/10.1186/s12916-017-0792-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miao F, Gonzalo IG, Lanting L, Natarajan R (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279(17):18091–18097. https://doi.org/10.1074/jbc.M311786200

    Article  CAS  PubMed  Google Scholar 

  65. Miao F, Wu X, Zhang L, Yuan YC, Riggs AD, Natarajan R (2007) Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J Biol Chem 282(18):13854–13863. https://doi.org/10.1074/jbc.M609446200

    Article  CAS  PubMed  Google Scholar 

  66. Hou C, Zhao M, Li X, Li YJ, Lin Y, Lu QJ, Zhou ZG (2011) Histone H3 acetylation of tumor necrosis factor-alpha and cyclooxygenase-2 in patients with type 2 diabetes. Zhonghua Yi Xue Za Zhi 91(26):1805–1808

    CAS  PubMed  Google Scholar 

  67. Paneni F, Costantino S, Battista R, Castello L, Capretti G, Chiandotto S, Scavone G, Villano A, Pitocco D, Lanza G, Volpe M, Luscher TF, Cosentino F (2015) Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ Cardiovasc Genet 8(1):150–158. https://doi.org/10.1161/CIRCGENETICS.114.000671

    Article  CAS  PubMed  Google Scholar 

  68. Bhandare R, Schug J, Le Lay J, Fox A, Smirnova O, Liu C, Naji A, Kaestner KH (2010) Genome-wide analysis of histone modifications in human pancreatic islets. Genome Res 20(4):428–433. https://doi.org/10.1101/gr.102038.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP, Panhuis TM, Mieczkowski P, Secchi A, Bosco D, Berney T, Montanya E, Mohlke KL, Lieb JD, Ferrer J (2010) A map of open chromatin in human pancreatic islets. Nat Genet 42(3):255–259. https://doi.org/10.1038/ng.530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Parker SC, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, Akiyama JA, van Bueren KL, Chines PS, Narisu N, Program NCS, Black BL, Visel A, Pennacchio LA, Collins FS, National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program A, Authors NCSP (2013) Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A 110(44):17921–17926. https://doi.org/10.1073/pnas.1317023110

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pasquali L, Gaulton KJ, Rodriguez-Segui SA, Mularoni L, Miguel-Escalada I, Akerman I, Tena JJ, Moran I, Gomez-Marin C, van de Bunt M, Ponsa-Cobas J, Castro N, Nammo T, Cebola I, Garcia-Hurtado J, Maestro MA, Pattou F, Piemonti L, Berney T, Gloyn AL, Ravassard P, Skarmeta JLG, Muller F, McCarthy MI, Ferrer J (2014) Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 46(2):136–143. https://doi.org/10.1038/ng.2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stitzel ML, Sethupathy P, Pearson DS, Chines PS, Song L, Erdos MR, Welch R, Parker SC, Boyle AP, Scott LJ, Program NCS, Margulies EH, Boehnke M, Furey TS, Crawford GE, Collins FS (2010) Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab 12(5):443–455. https://doi.org/10.1016/j.cmet.2010.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thurner M, van de Bunt M, Torres JM, Mahajan A, Nylander V, Bennett AJ, Gaulton KJ, Barrett A, Burrows C, Bell CG, Lowe R, Beck S, Rakyan VK, Gloyn AL, McCarthy MI (2018) Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci. elife 7:e31977. https://doi.org/10.7554/eLife.31977

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chiou J, Zeng C, Cheng Z, Han JY, Schlichting M, Miller M, Mendez R, Huang S, Wang J, Sui Y, Deogaygay A, Okino ML, Qiu Y, Sun Y, Kudtarkar P, Fang R, Preissl S, Sander M, Gorkin DU, Gaulton KJ (2021) Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk. Nat Genet 53(4):455–466. https://doi.org/10.1038/s41588-021-00823-0

    Article  CAS  PubMed  Google Scholar 

  75. Rai V, Quang DX, Erdos MR, Cusanovich DA, Daza RM, Narisu N, Zou LS, Didion JP, Guan Y, Shendure J, Parker SCJ, Collins FS (2020) Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures. Mol Metab 32:109–121. https://doi.org/10.1016/j.molmet.2019.12.006

    Article  CAS  PubMed  Google Scholar 

  76. Greenwald WW, Chiou J, Yan J, Qiu Y, Dai N, Wang A, Nariai N, Aylward A, Han JY, Kadakia N, Regue L, Okino ML, Drees F, Kramer D, Vinckier N, Minichiello L, Gorkin D, Avruch J, Frazer KA, Sander M, Ren B, Gaulton KJ (2019) Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk. Nat Commun 10(1):2078. https://doi.org/10.1038/s41467-019-09975-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miguel-Escalada I, Bonas-Guarch S, Cebola I, Ponsa-Cobas J, Mendieta-Esteban J, Atla G, Javierre BM, Rolando DMY, Farabella I, Morgan CC, Garcia-Hurtado J, Beucher A, Moran I, Pasquali L, Ramos-Rodriguez M, Appel EVR, Linneberg A, Gjesing AP, Witte DR, Pedersen O, Grarup N, Ravassard P, Torrents D, Mercader JM, Piemonti L, Berney T, de Koning EJP, Kerr-Conte J, Pattou F, Fedko IO, Groop L, Prokopenko I, Hansen T, Marti-Renom MA, Fraser P, Ferrer J (2019) Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat Genet 51(7):1137–1148. https://doi.org/10.1038/s41588-019-0457-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bysani M, Agren R, Davegardh C, Volkov P, Ronn T, Unneberg P, Bacos K, Ling C (2019) ATAC-seq reveals alterations in open chromatin in pancreatic islets from subjects with type 2 diabetes. Sci Rep 9(1):7785. https://doi.org/10.1038/s41598-019-44076-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jufvas A, Sjodin S, Lundqvist K, Amin R, Vener AV, Stralfors P (2013) Global differences in specific histone H3 methylation are associated with overweight and type 2 diabetes. Clin Epigenetics 5(1):15. https://doi.org/10.1186/1868-7083-5-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Castellano-Castillo D, Denechaud PD, Fajas L, Moreno-Indias I, Oliva-Olivera W, Tinahones F, Queipo-Ortuno MI, Cardona F (2019) Human adipose tissue H3K4me3 histone mark in adipogenic, lipid metabolism and inflammatory genes is positively associated with BMI and HOMA-IR. PLoS One 14(4):e0215083. https://doi.org/10.1371/journal.pone.0215083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Puig LS, Altıntaş A, Casaní-Galdón S, Gabriel BM, Barrès R, Conesa A, Chibalin AV, Näslund E, Krook A, Pillon NJ, Zierath JR (2021) Circadian transcriptomic and epigenomic remodeling in response to lipid overload and human obesity. bioRxiv:2021.02.23.432336. https://doi.org/10.1101/2021.02.23.432336

  82. Varemo L, Henriksen TI, Scheele C, Broholm C, Pedersen M, Uhlen M, Pedersen BK, Nielsen J (2017) Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes. Genome Med 9(1):47. https://doi.org/10.1186/s13073-017-0432-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Williams K, Ingerslev LR, Bork-Jensen J, Wohlwend M, Hansen AN, Small L, Ribel-Madsen R, Astrup A, Pedersen O, Auwerx J, Workman CT, Grarup N, Hansen T, Barres R (2020) Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism. Nat Commun 11(1):2695. https://doi.org/10.1038/s41467-020-16537-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Elshorbagy AK, Nijpels G, Valdivia-Garcia M, Stehouwer CD, Ocke M, Refsum H, Dekker JM (2013) S-adenosylmethionine is associated with fat mass and truncal adiposity in older adults. J Nutr 143(12):1982–1988. https://doi.org/10.3945/jn.113.179192

    Article  CAS  PubMed  Google Scholar 

  85. Elshorbagy AK, Jerneren F, Samocha-Bonet D, Refsum H, Heilbronn LK (2016) Serum S-adenosylmethionine, but not methionine, increases in response to overfeeding in humans. Nutr Diabetes 6:e192. https://doi.org/10.1038/nutd.2015.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McDonnell E, Crown SB, Fox DB, Kitir B, Ilkayeva OR, Olsen CA, Grimsrud PA, Hirschey MD (2016) Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep 17(6):1463–1472. https://doi.org/10.1016/j.celrep.2016.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Malmgren S, Spegel P, Danielsson AP, Nagorny CL, Andersson LE, Nitert MD, Ridderstrale M, Mulder H, Ling C (2013) Coordinate changes in histone modifications, mRNA levels, and metabolite profiles in clonal INS-1 832/13 beta-cells accompany functional adaptations to lipotoxicity. J Biol Chem 288(17):11973–11987. https://doi.org/10.1074/jbc.M112.422527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jonsson J, Renault KM, Garcia-Calzon S, Perfilyev A, Estampador AC, Norgaard K, Lind MV, Vaag A, Hjort L, Michaelsen KF, Carlsen EM, Franks PW, Ling C (2021) Lifestyle intervention in pregnant women with obesity impacts cord blood DNA methylation, which associates with body composition in the offspring. Diabetes 70(4):854–866. https://doi.org/10.2337/db20-0487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Volkov P, Olsson AH, Gillberg L, Jorgensen SW, Brons C, Eriksson KF, Groop L, Jansson PA, Nilsson E, Ronn T, Vaag A, Ling C (2016) A genome-wide mQTL analysis in human adipose tissue identifies genetic variants associated with DNA methylation, gene expression and metabolic traits. PLoS One 11(6):e0157776. https://doi.org/10.1371/journal.pone.0157776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13(2):127–137. https://doi.org/10.1038/nmeth.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Choo Y, Klug A (1994) Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci U S A 91(23):11168–11172. https://doi.org/10.1073/pnas.91.23.11168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang M, Wang F, Li S, Wang Y, Bai Y, Xu X (2014) TALE: a tale of genome editing. Prog Biophys Mol Biol 114(1):25–32. https://doi.org/10.1016/j.pbiomolbio.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  93. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355. https://doi.org/10.1038/nbt.2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cano-Rodriguez D, Rots MG (2016) Epigenetic editing: on the verge of reprogramming gene expression at will. Curr Genet Med Rep 4(4):170–179. https://doi.org/10.1007/s40142-016-0104-3

    Article  PubMed  PubMed Central  Google Scholar 

  95. Stolzenburg S, Goubert D, Rots MG (2016) Rewriting DNA methylation signatures at will: the curable genome within reach? Adv Exp Med Biol 945:475–490. https://doi.org/10.1007/978-3-319-43624-1_17

    Article  CAS  PubMed  Google Scholar 

  96. Kameswaran V, Golson ML, Ramos-Rodriguez M, Ou K, Wang YJ, Zhang J, Pasquali L, Kaestner KH (2018) The dysregulation of the DLK1-MEG3 locus in islets from patients with type 2 diabetes is mimicked by targeted epimutation of its promoter with TALE-DNMT constructs. Diabetes 67(9):1807–1815. https://doi.org/10.2337/db17-0682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ou K, Yu M, Moss NG, Wang YJ, Wang AW, Nguyen SC, Jiang C, Feleke E, Kameswaran V, Joyce EF, Naji A, Glaser B, Avrahami D, Kaestner KH (2019) Targeted demethylation at the CDKN1C/p57 locus induces human beta cell replication. J Clin Invest 129(1):209–214. https://doi.org/10.1172/JCI99170

    Article  PubMed  Google Scholar 

  98. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167(1):233–247. https://doi.org/10.1016/j.cell.2016.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ling C, Ronn T (2019) Epigenetics in human obesity and type 2 diabetes. Cell Metab 29(5):1028–1044. https://doi.org/10.1016/j.cmet.2019.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Davegårdh C, Broholm C, Perfilyev A, Henriksen T, García-Calzón S, Peijs L, Hansen NS, Volkov P, Kjøbsted R, Wojtaszewski JFP, Pedersen M, Pedersen BK, Ballak DB, Dinarello CA, Heinhuis B, Joosten LAB, Nilsson E, Vaag A, Scheele C, Ling C (2017) Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects. BMC Med 15(1):39–39. https://doi.org/10.1186/s12916-017-0792-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Daneshpajooh M, Bacos K, Bysani M, Bagge A, Ottosson Laakso E, Vikman P, Eliasson L, Mulder H, Ling C (2017) HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia 60(1):116–125. https://doi.org/10.1007/s00125-016-4113-2

    Article  CAS  PubMed  Google Scholar 

  102. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduction Targeted Ther 4(1):62. https://doi.org/10.1038/s41392-019-0095-0

    Article  Google Scholar 

  103. Daneshpajooh M, Eliasson L, Bacos K, Ling C (2018) MC1568 improves insulin secretion in islets from type 2 diabetes patients and rescues beta-cell dysfunction caused by Hdac7 upregulation. Acta Diabetol 55(12):1231–1235. https://doi.org/10.1007/s00592-018-1201-4

    Article  PubMed  PubMed Central  Google Scholar 

  104. Backe MB, Andersson JL, Bacos K, Christensen DP, Hansen JB, Dorosz JJ, Gajhede M, Dahlby T, Bysani M, Kristensen LH, Ling C, Olsen L, Mandrup-Poulsen T (2018) Lysine demethylase inhibition protects pancreatic beta cells from apoptosis and improves beta-cell function. Mol Cell Endocrinol 460:47–56. https://doi.org/10.1016/j.mce.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  105. Backe MB, ** C, Andreone L, Sankar A, Agger K, Helin K, Madsen AN, Poulsen SS, Bysani M, Bacos K, Ling C, Perone MJ, Holst B, Mandrup-Poulsen T (2019) The lysine demethylase KDM5B regulates islet function and glucose homeostasis. J Diabetes Res 2019:5451038. https://doi.org/10.1155/2019/5451038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Larsen L, Tonnesen M, Ronn SG, Storling J, Jorgensen S, Mascagni P, Dinarello CA, Billestrup N, Mandrup-Poulsen T (2007) Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 50(4):779–789. https://doi.org/10.1007/s00125-006-0562-3

    Article  CAS  PubMed  Google Scholar 

  107. Lewis EC, Blaabjerg L, Storling J, Ronn SG, Mascagni P, Dinarello CA, Mandrup-Poulsen T (2011) The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet beta cells in vivo and in vitro. Mol Med 17(5-6):369–377. https://doi.org/10.2119/molmed.2010.00152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Christensen DP, Dahllof M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, Grunnet LG, Mandrup-Poulsen T (2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 17(5–6):378–390. https://doi.org/10.2119/molmed.2011.00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lundh M, Galbo T, Poulsen SS, Mandrup-Poulsen T (2015) Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats. Diabetes Obes Metab 17(7):703–707. https://doi.org/10.1111/dom.12470

    Article  CAS  PubMed  Google Scholar 

  110. Wagner FF, Lundh M, Kaya T, McCarren P, Zhang YL, Chattopadhyay S, Gale JP, Galbo T, Fisher SL, Meier BC, Vetere A, Richardson S, Morgan NG, Christensen DP, Gilbert TJ, Hooker JM, Leroy M, Walpita D, Mandrup-Poulsen T, Wagner BK, Holson EB (2016) An isochemogenic set of inhibitors to define the therapeutic potential of histone deacetylases in beta-cell protection. ACS Chem Biol 11(2):363–374. https://doi.org/10.1021/acschembio.5b00640

    Article  CAS  PubMed  Google Scholar 

  111. Lee SJ, Choi SE, Lee HB, Song MW, Kim YH, Jeong JY, Kang Y, Kim HJ, Kim TH, Jeon JY, Lee KW (2020) A class I histone deacetylase inhibitor attenuates insulin resistance and inflammation in palmitate-treated C2C12 myotubes and muscle of HF/HFr diet mice. Front Pharmacol 11:601448. https://doi.org/10.3389/fphar.2020.601448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ferrari A, Longo R, Peri C, Coppi L, Caruso D, Mai A, Mitro N, De Fabiani E, Crestani M (2020) Inhibition of class I HDACs imprints adipogenesis toward oxidative and brown-like phenotype. Biochim Biophys Acta Mol Cell Biol Lipids 1865(4):158594. https://doi.org/10.1016/j.bbalip.2019.158594

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Ling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ling, C., Ruhrmann, S., Säll, J., Bacos, K., Rönn, T. (2022). Epigenetic Epidemiology of Obesity and Type 2 Diabetes. In: Michels, K.B. (eds) Epigenetic Epidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-94475-9_19

Download citation

Publish with us

Policies and ethics

Navigation