Analysis of Stress Development Mechanisms in the Coating/Substrate System

  • Conference paper
  • First Online:
Integrated Computer Technologies in Mechanical Engineering - 2021 (ICTM 2021)

Abstract

The development of nanotechnologies and the general tendency to increase the areas of use of thin coatings with the simultaneous high cost of high-tech materials makes us pay attention to the possibility of predicting the properties of the obtained coatings. This paper presents an analysis of the mechanisms of stress development of thin coatings for a deeper understanding of the possibilities of modeling the stress state of the obtained coatings with subsequent prediction of the required properties. The magnitude and sign of the internal stress in the coatings depend on many factors related to the conditions and method of coating the substrate, as well as the nature of their growth. Thermal stresses make an important contribution to the overall level of stresses in thin coatings, as well as the development of stresses in current-carrying coatings is significantly influenced by electromigration processes. No less significant contribution to the development of stresses in thin coatings can have the effects associated with the influence of the electromagnetic field: the piezoelectric effect, electro- and magnetostriction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 259.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Freund, L.B., Suresh, S.: Thin Film Materials: Stress. Cambridge University Press, Cambridge, Defect Formation and Surface Evolution (2003)

    MATH  Google Scholar 

  2. Frank, F.C., van der Merwe, J.H.: One-dimensional dislocations. I. Static theory, Proc. R. Soc. London 198 (1053), 205–216 (1949)

    Google Scholar 

  3. Frank, F.C., van der Merwe, J.H.: One-dimensional dislocations. II. misfitting monolayers and oriented overgrowth. Proc. R. Soc. London, 198 (1053), 216–225 (1949)

    Google Scholar 

  4. Shugurov, A.R., Panin, A.V.: Mechanisms of stress generation in thin films and coatings. Tech. Phys. 65(12), 1881–1904 (2020). https://doi.org/10.1134/S1063784220120257

    Article  Google Scholar 

  5. Pang, Y., Huang, R.: Nonlinear effect of stress and wetting on surface evolution of epitaxial thin films. Phys. Rev. B., 74, 075413–1–11 (2006)

    Google Scholar 

  6. Tekalign, W., Atena, A.: Thin film evolution equation for a strained anisotropic solid film on a deformable isotropic substrate. J. Appl. Math. Phys. 6(4), 864–879 (2018)

    Article  Google Scholar 

  7. Chason, E., Guduru, P.R.: Tutorial: Understanding residual stress in polycrystalline thin films through real-time measurements and physical models. J. Appl. Phys. 119 (19), 191101 (2016)

    Google Scholar 

  8. Laugier, M.: Intrinsic stress in thin films of vacuum evaporated LiF and ZnS using an improved cantilevered plate technique. Vacuum 31(3), 155–157 (1981)

    Article  Google Scholar 

  9. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1–38 (1994)

    Article  Google Scholar 

  10. Friesen, C., Thompson, C.V.: Reversible stress relaxation during precoalescence interruptions of volmer-weber thin film growth, Phys. Rev. Lett. 89(12), 126103–1–4 (2002)

    Google Scholar 

  11. Floro, J.A., Hearne, S.J., Hunter, J.A., et al.: The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer-Weber thin films. J. Appl. Phys. 89(9), 4886–4897 (2001)

    Article  Google Scholar 

  12. Thompson, C.V., Carel, R.: Stress and grain growth in thin films. J. Mech. Phys. Solids. 44(5), 657–673 (1996)

    Article  Google Scholar 

  13. Abadias, G., Chason, E., Keckes, J., et al.: Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. J. Vac. Sci. Technol. 36, 020801 (2018)

    Google Scholar 

  14. Freund, L.B., Chason, E.: Model for stress generated upon contact of neighboring islands on the surface of a substrate. J. Appl. Phys. 89(9), 4866–4873 (2001)

    Article  Google Scholar 

  15. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. 324(1558), 301–313 (1971)

    Google Scholar 

  16. Koch, R.: The intrinsic stress of polycrystalline and epitaxial thin metal films. J. Phys.: Condens. Matter. 6, 9519–9550 (1994)

    Google Scholar 

  17. Doerner, M.F., Nix, W.D.: Stresses and deformation processes in thin films on substrates. Crit. Rev. Solid State Mater. Sci. 14(3), 225–268 (1988)

    Article  Google Scholar 

  18. Abermann, R., Koch, R., Kramer, R.: Electron microscope structure and internal stress in thin silver and gold films deposited onto MgF2 and SiO substrates. Thin Solid Films 58(2), 365–370 (1979)

    Google Scholar 

  19. Spaepen, F.: Interfaces and stresses in thin films. Acta Mater. 48, 31–42 (2000)

    Article  Google Scholar 

  20. Gonzalez-Gonzalez, A., Polop, C., Vasco, E.: Postcoalescence evolution of growth stress in polycrystalline films, Phys. Rev. Lett., 110 (5), 056101–1–5 (2013)

    Google Scholar 

  21. Floro, J.A., Chason, E., Cammarata, R.C., Srolovitz, D.J.: Physical origins of intrinsic stresses in Volmer-Weber thin films. MRS Bull. 27, 19–25 (2002)

    Article  Google Scholar 

  22. Chason, E.: A kinetic analysis of residual stress evolution in polycrystalline thin films. Thin Solid Films 526, 1–14 (2012)

    Article  Google Scholar 

  23. Chason, E., Shin, J.W., Hearne, S.J., Freund, L.B.: Kinetic model for dependence of thin film stress on growth rate, temperature, and microstructure, J. Appl. Phys., 111 (8), 083520 (2012)

    Google Scholar 

  24. Mwema, F.M., Akinlabi, E.T., Oladijo, O.P.: Micromorphology of sputtered aluminum thin films: a fractal analysis. Mater. Today Proc. 18 (7), 2430–2439 (2019)

    Google Scholar 

  25. Mbam, S.O., Nwonu, S.E., Orelaja, O.A., et al.: Thin-film coating; historical evolution, conventional deposition technologies, stress-state micro/nano-level measurement/models and prospects projection: a critical review. Mater. Res. Expr. 6 (12), 122001 (2019)

    Google Scholar 

  26. Koch, R.: Stress in evaporated and sputtered thin films – a comparison. Surf. Coat. Technol. 204, 1973–1982 (2010)

    Article  Google Scholar 

  27. Al-masha’al, A., Bunting, A., Cheung, R.: Evaluation of residual stress in sputtered tantalum thin-film. Appl. Surf. Sci. 371, 571–575 (2016)

    Google Scholar 

  28. Wang, P.-C., Cargill, G.S., III., Noyan, I.C., Hu, C.-K.: Electromigration-induced stress in aluminum conductor lines measured by x-ray microdiffraction. Appl. Phys. Lett. 72(11), 1296–1298 (1998)

    Article  Google Scholar 

  29. Vanhumbeeck, J.-F., Proost, J.: On the contribution of electrostriction to charge- induced stresses in anodic oxide films. Electrochim. Acta. 53, 6165–6172 (2008)

    Article  Google Scholar 

  30. Heuer, A.H., Kahn, H., Natishan, P.M., et al.: Electrostrictive stresses and breakdown of thin passive films on stainless steel. Electrochim. Acta. 58, 157–160 (2011)

    Article  Google Scholar 

  31. McMeeking, R.M., Landis, C.M.: Electrostatic forces and stored energy for deformable dielectric materials. J. Appl. Mech. 72(4), 581–590 (2005)

    Article  Google Scholar 

  32. Jay, J.-P., Le Berre, F., Pogossian, S.P., Indenbom, M.V.: Direct and inverse measurement of thin film magnetostriction. J. Magn. Mag. Mater. 322, 2203–2214 (2010)

    Article  Google Scholar 

  33. Varghese, R., Viswan, R., Joshi, K., et al.: Magnetostriction measurement in thin films using laser doppler vibrometry. J. Magn. Mag. Mater. 383, 179–187 (2014)

    Article  Google Scholar 

  34. Fan, Z., Ho, J.C., Takahashi, T., et al.: Toward the development of printable nanowire electronics and sensors. Adv. Mater. 21(37), 3730–3743 (2009)

    Article  Google Scholar 

  35. Rogers, J.A., Someya, T., Huang, Y.: Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Volkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Volkov, A. (2022). Analysis of Stress Development Mechanisms in the Coating/Substrate System. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2021. ICTM 2021. Lecture Notes in Networks and Systems, vol 367. Springer, Cham. https://doi.org/10.1007/978-3-030-94259-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94259-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94258-8

  • Online ISBN: 978-3-030-94259-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation