Filling the Gaps in Research, Monitoring, Management and Social Connection

  • Chapter
  • First Online:
The Landscape of the Sierra Nevada
  • 918 Accesses

Abstract

Mountain ranges offer extraordinary opportunities to conduct research and monitor global change. Starting with a detailed analysis of the geographical setting, ecological dynamics and the history of human management, in this book, we focus on the uniqueness of the natural heritage of Sierra Nevada in both a historical and a global-change context. The 24 chapters of this book provide a full review of the diagnosis of the health status of Sierra Nevada ecosystems. All the evidence presented in this book reinforces our underlying idea of Sierra Nevada as a unique biophysical, historical and socio-economic laboratory and observatory of global change. This mountain is also of strategic importance as a provider of ecosystem services within the bounds of the National Park as well as for the surrounding region. This last chapter provides a critical review of what we have done so far, and what still needs to be done to improve research, monitoring, use of new technological tools (remote sensors, artificial intelligence, virtual research environments), user-oriented solutions and knowledge mobilization. The chapter ends with a final proposal: a mountain of all and for all, a joint journey of nature and people towards the mountain community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler C, Palazzi E, Kulonen A et al (2020) Monitoring mountains in a changing world: new horizons for the global network for observations and information on mountain environments (GEO-GNOME). Mt Res Dev 38:265–269

    Article  Google Scholar 

  • Allen CR, Fontaine JP, Kevin L et al (2011) Adaptive management for a turbulent future. J Environ Manage 92:1339–1345

    Article  Google Scholar 

  • Antonelli A, Kissling WD, Flantua SGA et al (2018) Geological and climatic influences on mountain biodiversity. Nat Geosci 718(11):718–725

    Article  Google Scholar 

  • Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (2014) Sierra nevada global-change observatory. Monitoring methodologies. Consejería de Medio Ambiente, Junta de Andalucía

    Google Scholar 

  • Bajracharya SB, Furley P, Newton AC (2005) Effectiveness of community involvement in delivering conservation benefits to the Annapurna Conservation Area, Nepal. Environ Conserv 32:239–247

    Article  Google Scholar 

  • Baron JS, Gunderson L, Allen CA et al (2009) Options for national parks and reserves for adapting to climate change. J Environ Manage 44:1033–1042

    Google Scholar 

  • Battaglin WA, Bradley PM, Iwanowicz L et al (2018) Pharmaceuticals, hormones, pesticides, and other bioactive contaminants in water, sediment, and tissue from Rocky Mountain National Park, 2012–2013. Sci Total Environ 643:651–673

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Variability Change High Elevation Reg: Past, Present Future 59:5–31

    Google Scholar 

  • Berkes F (2007) Community-based conservation in a globalized world. PNAS 104:15188–15193

    Article  Google Scholar 

  • Birgé HE, Allen CR, Garmestani AS et al (2016) Adaptive management for ecosystem services. J Environ Manage 183:343e352

    Google Scholar 

  • Bitsch J, Jurek M, Gjerdi L et al (2020) Policy brief: elevating mountains in the post-2020 global biodiversity framework 2.0.

    Google Scholar 

  • Bonet FJ, Pérez-Luque AJ, Moreno-Llorca R, Zamora R (2010) Observatorio de cambio global en Sierra Nevada. Consejería de Medio Ambiente, Junta de Andalucía - Universidad de Granada, Estructura y Contenidos Básicos

    Google Scholar 

  • Bonet-García FJ, Pérez-Luque AJ, Moreno-Llorca R et al (2015) Protected areas as elicitors of human well-being in a developed region: a new synthetic (socioeconomic) approach. Biol Conserv 187:221–229

    Article  Google Scholar 

  • Bradshaw GA, Borchers JG (2000) Uncertainty as information: narrowing the science–policy gap. Conserv Ecol 4(1):7

    Google Scholar 

  • Brondizio ES, Le Tourneau FM (2016) Environmental governance for all. Science 352:1272–1273

    Article  Google Scholar 

  • Carpenter SR (1998) The need for large-scale experiments to assess and predict the response of ecosystems to perturbation. In: Pace ML, Groffman PM (eds) Success, limitations and frontiers in ecosystem science. Springer. New York, USA, pp 287–312

    Chapter  Google Scholar 

  • Catalan J, Ninot JM, Aniz MM (2017). High mountain conservation in a changing world. Springer International Publishing, Cham, pp 385–413

    Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS 114:E6089–E6096

    Article  Google Scholar 

  • Dahlstrom MF (2014) Using narratives and storytelling to communicate science with non-expert audiences. PNAS 111(4):13614–13620

    Article  Google Scholar 

  • De Frenne P, Rodríguez-Sanchez F, Coomes DA et al (2013) Microclimate moderates plant responses to macroclimate warming. PNAS 110:18561–18565

    Article  Google Scholar 

  • Dee LE, Allesina S, Bonn A et al (2017) Operationalizing network theory for ecosystem service assessments. Trends Ecol Evol 32:118–130

    Article  Google Scholar 

  • Díaz S, Pascual U, Stenseke M et al (2018) Assessing nature’s contributions to people. Science 359:270–272

    Article  Google Scholar 

  • Dick J, Orenstein DE, Holzer J et al (2018) What is socio-ecological research delivering? A literature survey across 25 international LTSER platforms. Sci Total Environ 622–623:1225–1240

    Article  Google Scholar 

  • Dicks LV, Walsh JC, Sutherland WJ (2014) Organising evidence for environmental management decisions: a ‘4S’ hierarchy. Trends Ecol Evol 29(11):607–613

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M (2014) Defaunation in the anthropocene. Science 345:401–406

    Article  Google Scholar 

  • Doblas-Miranda E, Alonso R, Arnan X et al (2017) A review of the combination among global change factors in forests, shrublands and pastures of the mediterranean region: beyond drought effects. Glob Planet Change 148:42–54

    Article  Google Scholar 

  • Dobrowski SZ, Abatzoglou JT, Greenberg JA, Schladow SG (2009) How much influence does landscape-scale physiography have on air temperature in a mountain environment? Agric Meteorol 149:1751–1758

    Article  Google Scholar 

  • Draper D (2000) Toward sustainable mountain communities: Balancing tourism development and environmental protection in Banff and Banff National Park, Canada. J Hum Environ Stud 29:408–415

    Article  Google Scholar 

  • Enquist CAF, Jackson ST, Garfin GM et al (2017) Foundations of translational ecology. Front Ecol Environ 15:541–550

    Article  Google Scholar 

  • Enquist BJ, Feng, X, Boyle, B et al (2019). The commonness of rarity: global and future distribution of rarity across land plants. Sci Adv 5(11):eaaz0414

    Google Scholar 

  • Folke C, Polasky S, Rockström J et al (2021) Our future in the anthropocene biosphere. Ambio 50:834–869

    Article  Google Scholar 

  • Fridley JD (2009) Downscaling climate over complex terrain: high fine scale (<1000 m) spatial variation of near-ground temperatures in a mountain forested landscape (Great Smoky Mountains). J Appl Meteorol Climatol 48:1033–1049

    Article  Google Scholar 

  • García MB, Domingo D, Pizarro M (2020) Rocky habitats as microclimatic refuges for biodiversity. A close up thermal approach. Environ Exp Bot 170:103886

    Google Scholar 

  • Gonzalez A, Cardinale BJ, Allington GRH et al (2016) Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97:1949–1960

    Article  Google Scholar 

  • Grabherr G, Björnsen Gurung A, Dedieu J-P et al (2005) Long-term environmental observations in mountain biosphere reserves: recommendations from the EU GLOCHAMORE project. Mt Res Dev 25:376–382

    Article  Google Scholar 

  • Hallett LM, Morelli TL, Gerber LR et al (2017) Navigating translational ecology: creating opportunities for scientist participation. Front Ecol Environ 15:578–586

    Article  Google Scholar 

  • Hansen AJ, Piekielek N, Davis C et al (2014) Exposure of U.S. National Parks to land use and climate change 1900–2100. Ecol App 24:484–502

    Article  Google Scholar 

  • Hillebrand H, Blasius B, Borer ET et al (2018) Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J Appl Ecol 55:169–184

    Article  Google Scholar 

  • Holzer JM, Adamescu MC, Bonet-García FJ et al (2018) Negotiating local versus global needs in the international long term ecological research network’s socio-ecological research agenda. Environ Res Lett 13(10):105003

    Google Scholar 

  • Huber UM, Bugmann H, Reasoner MA (eds) (2005) Global change and mountain regions: an overview of current knowledge. Springer, New York

    Google Scholar 

  • Hughes BB, Beas-Luna R, Barner AK et al (2017) Long-term studies contribute disproportionately to ecology and policy. Bioscience 67:271–281

    Article  Google Scholar 

  • Hussain S (2000) Protecting the snow leopard and enhancing farmers’ livelihoods. Mt Res Dev 20:226–231

    Article  Google Scholar 

  • Hussain A, Qamar FM (2020) Dual challenge of climate change and agrobiodiversity loss in mountain food systems in The Hindu-Kush Himalaya. One Earth 3:539–542

    Article  Google Scholar 

  • Joshi R, Dhyani PP (2009) Environmental sustainability and tourism–implications of trend synergies of tourism in Sikkim Himalaya Curr Sci 97(1):33–41

    Google Scholar 

  • Kim HR, Alkemade IMD, Leadley R et al (2018) A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geosci Model Dev 11:4537–4562

    Article  Google Scholar 

  • Kissling WD, Ahumada JA, Bowser A et al (2018) Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol Rev 93:600–625

    Article  Google Scholar 

  • Kohler T, Wehrli A, Jurek M (2014) Mountains and climate change: a global concern. Sustainable Mountain Development Series. Bern, Switzerland, Centre for Development and Environment (CDE), Swiss Agency for Development and Cooperation (SDC) and Geographica Bernensia, 136 pp

    Google Scholar 

  • Körner C (2021) Alpine plant life. Springer International Publishing, Cham

    Book  Google Scholar 

  • Körner C, Hiltbrunner E (2018) The 90 ways to describe plant temperature. Perspect Plant Ecol Evol Syst 30:16–21

    Article  Google Scholar 

  • Körner C, Ohsawa M (2005) Mountain systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends. Island Press

    Google Scholar 

  • Kulonen AL, Adler C, Palazzi E (2020) GEO-GNOME workshop “Identifying Essential Biodiversity Variables (EBVs) and Essential Societal Variables (ESVs) in Mountain Environments”

    Google Scholar 

  • Lawson DM, Hall KR, Yung L, Enquist CAF (2017) Building translational ecology communities of practice: insights from the field. Front Ecol Environ 15:569–577

    Article  Google Scholar 

  • Lembrechts J, Lenoir J, Roth N et al (2019) Comparing temperature data sources for use in species distribution models: from in-situ logging to remote sensing. Glob Ecol Biogeogr 28:1578–1596

    Article  Google Scholar 

  • Lembrechts J, Nijs I, Lenoir J (2019) Incorporating microclimate into species distribution models. Ecography 42:1267–1279

    Article  Google Scholar 

  • Likens GE (2013) The hubbard brook ecosystem study: celebrating 50 years. Bull Ecol Soc Am 94:336–337

    Article  Google Scholar 

  • Likens GE (1989) Long-term studies in ecology: approaches and alternatives. Springer

    Google Scholar 

  • Lindenmayer DB, Likens GE (2009) Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol Evol 24:482–486

    Article  Google Scholar 

  • Lovett GM, Burns DA, Driscoll CT et al (2007) Who needs environmental monitoring? Front Ecol Environ 5(5):253–260

    Article  Google Scholar 

  • Mace GM (2014) Whose conservation? Science 345(6204):1558–1560

    Article  Google Scholar 

  • Magliocca NR, Ellis EC, Allington GRH et al (2018) Closing global knowledge gaps: producing generalized knowledge from case studies of social-ecological systems. Glob Environ Change 50:1–14

    Article  Google Scholar 

  • Martinez-Conde S, Macknik SL (2017) Opinion: finding the plot in science storytelling in hopes of enhancing science communication. PNAS 114(31):8127–8129

    Google Scholar 

  • Mengist W, Soromessa T, Legese G (2020) Ecosystem services research in mountainous regions: a systematic literature review on current knowledge and research gaps. Sci Total Environ 702:134581

    Article  Google Scholar 

  • Millennium ecosystem assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Múgica M, Montes C, Mata Olmo R, Castell Puig C (2020) Las áreas protegidas como herramientas para reforzar las conexiones entre ciencia, gestión y sociedad. Ecosistemas 29(1):1904

    Article  Google Scholar 

  • Nepal SK (2002) Mountain ecotourism and sustainable development. Mt Res Dev 22(2):104–109

    Article  Google Scholar 

  • Nogués Bravo D, Araujo M, Lasanta T et al (2008) Climate change in mediterranean mountains during the 21st century. Ambio 37(4):28–285

    Article  Google Scholar 

  • Opedal ØH, Armbruster WS, Graae BJ (2015) Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecol Divers 8:305–315

    Article  Google Scholar 

  • Padha S, Kumar R, Dhar A, Sharma P (2021) Microplastic pollution in mountain terrains and foothills: a review on source, extraction, and distribution of microplastics in remote areas. Environ Res

    Article  Google Scholar 

  • Pascual U, Balvanera P, Díaz S et al (2017) Valuing nature’s contributions to people: the IPBES approach. Curr Opin Environ Sustain 26:7–16

    Article  Google Scholar 

  • Pascual U, Adams WM, Díaz S et al (2021) Biodiversity and the challenge of pluralism. Nat Sustain 4:567–572

    Article  Google Scholar 

  • Pauchard A, Kueffer C, Dietz H et al (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7(9):479–486

    Article  Google Scholar 

  • Payne D, Spehn EM, Snethlage M, Fischer M (2017) Opportunities for research on mountain biodiversity under global change. Curr Opin Environ Sustain 29:40–47

    Article  Google Scholar 

  • Perales OM (2010) Problemas epistemológicos de la comunicación pública de la ciencia. Doctoral dissertation, Universidad de Salamanca

    Google Scholar 

  • Pérez-Luque AJ, Peinó-Calero E, Rodríguez-Brito A et al (2021) ClimaNevada: Base de datos climática del Observatorio de Cambio Global de Sierra Nevada. Ecosistemas 30(1):2155

    Article  Google Scholar 

  • Perrigo A, Hoorn C, Antonelli A (2019) Why mountains matter for biodiversity. J Biogeogr 00:1–11

    Article  Google Scholar 

  • Peters DP, Groffman PM, Nadelhoffer KJ et al (2008) Living in an increasingly connected world: a framework for continental-scale environmental science. Front Ecol Environ 6:229–237

    Article  Google Scholar 

  • Pielke RA Jr (2007) The honest broker. Making sense of science in policy and politics. University Press, Cambridge

    Google Scholar 

  • Quintanilla MA (2011) La ciencia y la cultura científica. ArtefaCToS, Revista De Estudios Sobre La Ciencia y La Tecnología 3(1):31–48

    Google Scholar 

  • Rahbek C, Borregaard MK, Antonelli A et al (2019) Building mountain biodiversity: geological and evolutionary processes. Science 365:1114–1119

    Article  Google Scholar 

  • Randin CHF, Ashcroftd MB, Bolligere J et al (2020) Monitoring biodiversity in the anthropocene using remote sensing in species distribution models. Remote Sens Environ 239:111626

    Article  Google Scholar 

  • Rogora M, Frate L, Carranza ML et al (2018) Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci Total Environ 624:1429–1442

    Article  Google Scholar 

  • Rosen T, Hussain S, Mohammad G et al (2012) Reconciling sustainable development of mountain communities with large carnivore conservation. Mt Res Dev 32:286–293

    Article  Google Scholar 

  • Scherrer D, Körner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Change Biol 16:2602–2613

    Article  Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  • Shahgedanova M, Adler C, Gebrekirstos A et al (2021) Mountain observatories: status and prospects for enhancing and connecting a global community. Mt Res Dev 41:A1–A15

    Article  Google Scholar 

  • Sharma E, Chettri N, Oli KP (2010) Mountain biodiversity conservation and management: a paradigm shift in policies and practices in the Hindu Kush-Himalayas. Ecol Res 25:909–923

    Article  Google Scholar 

  • Sharma P (ed) (2000) Tourism as development: case studies from the Himalaya, vol 4. Himal Books

    Google Scholar 

  • Sherbinin A, Bowser A, Chuang TR et al (2021) The critical importance of citizen science data. Front Clim 3:20

    Article  Google Scholar 

  • Soranno PA, Cheruvelil KS, Bissell EG et al (2014) Cross-scale interactions: quantifying multi-scaled cause–effect relationships in macrosystems. Front Ecol Environ 12:65–73

    Google Scholar 

  • Steffen W, Persson A, Deutsch L et al (2011) The anthropocene: from global change to planetary stewardship. AMBIO 40:739–761

    Google Scholar 

  • Stevens CJ, David TI, Storkey J (2018) Atmospheric nitrogen deposition in terrestrial ecosystems: its impact on plant communities and consequences across trophic levels. Func Ecol 32:1757–1769

    Article  Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. P Roy Soc B 277:661–671

    Article  Google Scholar 

  • Tapia ME (2000) Mountain agrobiodiversity in Peru. Mt Res Dev 20:220–225

    Article  Google Scholar 

  • Thornton JM, Palazzi E, Pepin NC et al (2021) Toward a definition of essential mountain climate variables. One Earth 4:805–827

    Article  Google Scholar 

  • Treise D, Weigold MF (2002) Advancing science communication: a survey of science communicators. Sci Commun 23(3):310–322

    Article  Google Scholar 

  • Vargas R, Alcaraz-Segura D, Birdsey R et al (2017) Enhancing interoperability to facilitate implementation of REDDC: case study of Mexico. Carbon Manag 8(1):57–65

    Google Scholar 

  • Wall TU, McNie E, Garfin GM (2017) Use-inspired science: making science usable by and useful to decision makers. Front Ecol Environ 15:551–559

    Article  Google Scholar 

  • Watson RT (2005) Turning science into policy: challenges and experiences from the science-policy interface. Phil Trans R Soc B 360:471–477

    Article  Google Scholar 

  • Williams BK, Szaro, RC, Shapiro CD (2009) Adaptive management: the U.S. Department of the interior technical guide. Adaptive Management Working Group, U.S. Department of the Interior, Washington, DC

    Google Scholar 

  • Young JC, Waylen KA, Sarkki S et al (2014) Improving the science-policy dialogue to meet the challenges of biodiversity conservation: having conversations rather than talking at one-another. Biodivers Conserv 23:387–404

    Article  Google Scholar 

  • Zamora R, Pérez-Luque AJ, Bonet FJ (2017) Monitoring global change in high mountains. In: Catalan J, Ninot JM, Aniz MM (eds) High mountain conservation in a changing world. Springer International Publishing, Cham, pp 385–413

    Chapter  Google Scholar 

  • Zamora R, Pérez-Luque AJ, Bonet FJ et al (2017) Global change impacts in the sierra nevada LTER-site (southern Spain). Bull Ecol Soc Am 98(2):157–164

    Article  Google Scholar 

  • Zamora R, Pérez-Luque AJ, Guerrero-Alonso PD et al (2021) Uniendo macro y microclima en paisajes de montaña: una aproximación conceptual e instrumental. Ecosistemas 30(1):2166

    Article  Google Scholar 

  • Zamora R, Pérez-Luque AJ, Bonet FJ, Barea-Azcón JM, Aspizua R (2016) Global change impacts in sierra nevada: challenges for conservation. Consejería de Medio Ambiente y Ordenación del Territorio. Junta de Andalucía

    Google Scholar 

  • Zellweger F, De Frenne P, Lenoir J et al (2019) Advances in microclimate ecology arising from remote sensing. Trends Ecol Evol 34:327–341

    Article  Google Scholar 

  • Zellweger F, De Frenne P, Lenoir J et al (2020) Forest microclimate dynamics drive plant responses to warming. Science 368:772–775

    Article  Google Scholar 

Download references

Acknowledgements

This research work was conducted in the collaborative framework of the “Sierra Nevada Global Change Observatory” monitoring program http://obsnev.es, promoted by the Environmental and Regional Planning Council of the Regional Government of Andalusia and the University of Granada. We can highlight the following projects for partial funding: the LIFE-ADAPTAMED (LIFE14 CCA/ES/000612): Protection of key ecosystem services by adaptive management of Climate Change endangered Mediterranean socioecosystems, the H2020 project European Long-Term Ecosystem and socio-ecological Research Infrastructure (eLTER) and the Thematic Center on Mountain Ecosystem & Remote sensing, Deep learning-AI e-Services University of Granada-Sierra Nevada (Smart EcoMountains LifeWatch-2019-10-UGR-01). Ricardo Moreno, Pablo Guerrero, Andrea Ros and Manolo Merino have provided very valuable information and have contributed to maintaining an atmosphere of permanent collaboration in our research group. We thank the managers of the Sierra Nevada National Park for their determined support of our work in Sierra Nevada and their continued collaboration within the framework of the joint activities that we develop at the Global Change Observatory. We want to give special thanks to Blanca Ramos Losada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regino Zamora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zamora, R., Mellado, A. (2022). Filling the Gaps in Research, Monitoring, Management and Social Connection. In: Zamora, R., Oliva, M. (eds) The Landscape of the Sierra Nevada. Springer, Cham. https://doi.org/10.1007/978-3-030-94219-9_24

Download citation

Publish with us

Policies and ethics

Navigation