Chitooligosaccharides: Preparation and Applications in Food and Nutraceuticals

  • Chapter
  • First Online:
Chitooligosaccharides

Abstract

Chitooligosaccharide (COS) is the hydrolyzed product of chitosan (CS). Various chemical, physical, and enzymatic methods have been employed to produce COS. COS has higher water solubility than the  CS, which is an aqueous acid soluble biopolymer. In general, COS has a molecular weight (MW) varied between 3 and 10 kDa with a degree of depolymerization (DP) ranging from 2 to 20. However, both DP and MW fluctuate, depending on sources as well as the method of preparation. COS possesses excellent antioxidant and antimicrobial activities and those activities have been exploited to inhibit oxidation of lipids/proteins and microbial growth in foods that are prone to deterioration such as fatty fish, etc. In recent times, consumers are more oriented towards health-related issues, leading to increased consumption of food with high nutraceutical values. Apart from preservative efficacy, COS has been widely studied for its anti-diabetic, anti-obesity, digestive enzyme inhibitory activities as well as other nutraceutical properties. COS shows positive results in controlling glucose levels, serum lipid levels, or weight gain as confirmed in both in vivo and in vitro studies. Overall, COS has tremendous potential to act as a nutraceutical, which can provide health-related benefits for the consumers and can improve the quality as well as extend shelf life of various foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Affes S, Maalej H, Aranaz I et al (2020) Enzymatic production of low-Mw chitosan-derivatives: characterization and biological activities evaluation. Int J Biol Macromol 144:279–288

    CAS  Google Scholar 

  • Attia MS, El-Sayyad GS, Abd Elkodous M et al (2021) Chitosan and EDTA conjugated graphene oxide antinematodes in Eggplant: toward improving plant immune response. Int J Biol Macromol 179:333–344

    CAS  Google Scholar 

  • Awosika TO, Aluko RE (2019) Inhibition of the in vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. Int J Food Sci Technol 54:2021–2034

    Google Scholar 

  • Bahar B, O’doherty JV, O’doherty AM et al (2013) Chito-oligosaccharide inhibits the de-methylation of a ‘CpG’island within the leptin (LEP) promoter during adipogenesis of 3T3-L1 cells. PloS One 8:e60011

    Google Scholar 

  • Benhabiles MS, Salah R, Lounici H et al (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29:48–56

    CAS  Google Scholar 

  • Bockuviene A, Sereikaite J (2020) New β-Carotene-Chitooligosaccharides complexes for food fortification: Stability study. Foods 9:765

    CAS  Google Scholar 

  • Bockuviene A, Zalneravicius R, Sereikaite J (2021) Preparation, characterization and stability investigation of lycopene-chitooligosaccharides complexes. Food Biosci 40:100854

    Google Scholar 

  • Boonviset P, Pirak T (2020) Physicochemical and sensory characteristics of reduced fat-low sugar Chinese pork sausage as produced by chitooligosaccharide using commercial pectinase hydrolysis. Int J Food Prop 23:22–33

    CAS  Google Scholar 

  • Chandika P, Kim M-S, Khan F et al (2021a) Wound healing properties of triple cross-linked poly (vinyl alcohol)/methacrylate kappa-carrageenan/chitooligosaccharide hydrogel. Carbohydr Polym 269:118272

    Google Scholar 

  • Chandika P, Oh G-W, Heo S-Y et al (2021b) Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. Mater Sci Eng C 121:111871

    Google Scholar 

  • Chantarasataporn P, Tepkasikul P, Kingcha Y et al (2014) Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf life extension of minced pork. Food Chem 159:463–470

    CAS  Google Scholar 

  • Charalampopoulos D, Rastall RA (2012) Prebiotics in foods. Curr Opin Biotechnol 23:187–191

    Google Scholar 

  • Cho E-J, Rahman A, Kim S-W et al (2008) Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. J Microbiol Biotechn 18:80–87

    CAS  Google Scholar 

  • Choi EH, Yang HP, Chun HS (2012) Chitooligosaccharide ameliorates diet-induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation. Nutr Res 32:218–228

    Google Scholar 

  • De Medeiros Dantas JM, Da Silva NS, De Araújo Padilha CE et al (2020) Enhancing chitosan hydrolysis aiming chitooligosaccharides production by using immobilized chitosanolytic enzymes. Biocatal Agric Biotechnol 28:101759

    Google Scholar 

  • Deng J-J, Li Z-Q, Mo Z-Q et al (2020) Immunomodulatory effects of N-acetyl chitooligosaccharides on RAW264.7 macrophages. Mar Drugs 18:421

    Google Scholar 

  • Einbu A, Grasdalen H, Vårum KM (2007) Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid. Carbohydr Res 342:1055–1062

    Google Scholar 

  • Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411

    Google Scholar 

  • El-Sayed ST, Ali AM, Omar NI (2019) A comparative evaluation of antimicrobial activity of chitooligosaccharides with broad spectrum antibiotics on growth of some pathogenic microorganisms. Biocatal Agric Biotechnol 22:101382

    Google Scholar 

  • Eom T-K, Senevirathne M, Kim S-K (2012) Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity. Environ Toxicol Pharmacol 34:519–527

    Google Scholar 

  • Fernandes JC, Eaton P, Franco I et al (2012) Evaluation of chitoligosaccharides effect upon probiotic bacteria. Int J Biol Macromol 50:148–152

    CAS  Google Scholar 

  • Fernandes JC, Tavaria FK, Fonseca SC et al (2010) In vitro screening for anti-microbial activity of chitosans and chitooligosaccharides, aiming at potential uses in functional textiles. J Microbiol Biotechnol 20:311–318

    CAS  Google Scholar 

  • Fukamizo T, Honda Y, Goto S et al (1995) Reaction mechanism of chitosanase from Streptomyces sp. N174. Biochem J 311:377–383

    CAS  Google Scholar 

  • Gohi BFCA, Zeng H-Y, Pan AD et al (2017) pH dependence of chitosan enzymolysis. Polym 9:174

    Google Scholar 

  • Hai L, Diep TB, Nagasawa N et al (2003) Radiation depolymerization of chitosan to prepare oligomers. Nucl Instrum Methods Phys Res B 208:466–470

    CAS  Google Scholar 

  • Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50

    Google Scholar 

  • Harti AS, Haryati DS, Setyaningsih W et al (2015) The potential chito-oligosaccharide (COS) as natural prebiotic and preservatives on synbiotic tofu in Indonesia. Int J Pharma Med Biol Sci 4:204

    CAS  Google Scholar 

  • Hong S, Ngo D-N, Kim M-M (2016) Inhibitory effect of aminoethyl-chitooligosaccharides on invasion of human fibrosarcoma cells. Environ Toxicol Pharmacol 45:309–314

    Google Scholar 

  • Huang R, Mendis E, Rajapakse N et al (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78:2399–2408

    CAS  Google Scholar 

  • Huang L, Chen J, Cao P et al (2015) Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats. Mar Drugs 13:2732–2756

    CAS  Google Scholar 

  • Hui A, Yan R, Wang W et al (2020) Incorporation of quaternary ammonium chitooligosaccharides on ZnO/palygorskite nanocomposites for enhancing antibacterial activities. Carbohydr Polym 247:116685

    Google Scholar 

  • Ichikawa S, Takano K, Kuroiwa T et al (2002) Immobilization and stabilization of chitosanase by multipoint attachment to agar gel support. J Biosci Bioeng 93:201–206

    CAS  Google Scholar 

  • Il'ina AV, Varlamov VP (2004) Hydrolysis of chitosan in lactic acid. Appl Biochem Microbiol 40:300–303

    Google Scholar 

  • Ismail SA, El-Sayed HS, Fayed B (2020) Production of prebiotic chitooligosaccharide and its nano/microencapsulation for the production of functional yoghurt. Carbohydr Polym 234:115941

    Google Scholar 

  • Jafari H, Bernaerts KV, Dodi G et al (2020) Chitooligosaccharides for wound healing biomaterials engineering. Mater Sci Eng C 111266

    Google Scholar 

  • Jeon Y-J, Park P-J, Kim S-K (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr Polym 44:71–76

    Google Scholar 

  • Jung W-K, Moon S-H, Kim S-K (2006) Effect of chitooligosaccharides on calcium bioavailability and bone strength in ovariectomized rats. Life Sci 78:970–976

    Google Scholar 

  • Kang N-H, Lee WK, Yi B-R et al (2012) Modulation of lipid metabolism by mixtures of protamine and chitooligosaccharide through pancreatic lipase inhibitory activity in a rat model. Lab Anim Res 28:31

    Google Scholar 

  • Kao C-H, Hsiang C-Y Ho T-Y (2012) Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis. PloS One 7:e34969

    Google Scholar 

  • Karadeniz F, Kim S-K (2014) Antidiabetic activities of chitosan and its derivatives: a mini review. Adv Food Nutr Res 73:33–44

    Google Scholar 

  • Karadeniz F, Artan M, Kong C-S et al (2010) Chitooligosaccharides protect pancreatic β-cells from hydrogen peroxide-induced deterioration. Carbohydr Polym 82:143–147

    CAS  Google Scholar 

  • Kidibule PE, Santos-Moriano P, Plou FJ et al (2020) Endo-chitinase Chit33 specificity on different chitinolytic materials allows the production of unexplored chitooligosaccharides with antioxidant activity. Biotechnol Rep 27:e00500

    Google Scholar 

  • Kidibule PE, Costa J, Atrei A et al (2021) Production and characterization of chitooligosaccharides by the fungal chitinase Chit42 immobilized on magnetic nanoparticles and chitosan beads: selectivity, specificity and improved operational utility. RSC Adv 11:5529–5536

    CAS  Google Scholar 

  • Kim KW, Thomas RL (2007) Antioxidative activity of chitosans with varying molecular weights. Food Chem 101:308–313

    Google Scholar 

  • Klokkevold PR, Vandemark L, Kenney EB et al (1996) Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol 67:1170–1175

    CAS  Google Scholar 

  • Kö**-Höggård M, Mel’nikova YS, Vårum KM et al (2003) Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J Gene Med 5:130–141

    Google Scholar 

  • Kö**-Höggård M, Vårum K, Issa M et al (2004) Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther 11:1441–1452

    Google Scholar 

  • Kumirska J, Weinhold MX, Thöming J et al (2011) Biomedical activity of chitin/chitosan based materials influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polym 3:1875–1901

    CAS  Google Scholar 

  • Kuroiwa T, Ichikawa S, Hiruta O et al (2002) Factors affecting the composition of oligosaccharides produced in chitosan hydrolysis using immobilized chitosanases. Biotechnol Prog 18:969–974

    CAS  Google Scholar 

  • Laokuldilok T, Potivas T, Kanha N et al (2017) Physicochemical, antioxidant, and antimicrobial properties of chitooligosaccharides produced using three different enzyme treatments. Food Biosci 18:28–33

    CAS  Google Scholar 

  • Lavie CJ, Milani RV, Ventura HO (2009) Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 53:1925–1932

    Google Scholar 

  • Lee D-X, **a W-S, Zhang J-L (2008) Enzymatic preparation of chitooligosaccharides by commercial lipase. Food Chem 111:291–295

    Google Scholar 

  • Li X, Wang J, Chen X et al (2011) Effect of chitooligosaccharides on cyclin D1, bcl-xl and bcl-2 mRNA expression in A549 cells using quantitative PCR. Sci Bull 56:1629

    CAS  Google Scholar 

  • Li M, Han J, Xue Y et al (2019) Hydrogen peroxide pretreatment efficiently assisting enzymatic hydrolysis of chitosan at high concentration for chitooligosaccharides. Polym Degrad Stab 164:177–186

    CAS  Google Scholar 

  • Li R, Lyu Y, Luo S et al (2021) Fabrication of a multi-level drug release platform with liposomes, chitooligosaccharides, phospholipids and injectable chitosan hydrogel to enhance anti-tumor effectiveness. Carbohydr Polym 269:118322

    Google Scholar 

  • Liang T-W, Liu C-P, Wu C et al (2013) Applied development of crude enzyme from Bacillus cereus in prebiotics and microbial community changes in soil. Carbohydr Polym 92:2141–2148

    CAS  Google Scholar 

  • Liang S, Sun Y, Dai X (2018) A review of the preparation, analysis and biological functions of chitooligosaccharide. Int J Mol Sci 19:2197

    Google Scholar 

  • Liu B, Liu W-S, Han B-Q et al (2007) Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J Gastroenterol 13:725

    CAS  Google Scholar 

  • Liu W, Li XQ, Zhao ZL et al (2020) Effect of chitooligosaccharides on human gut microbiota and antiglycation. Carbohydr Polym 242:116413

    Google Scholar 

  • Lodhi G, Kim Y-S, Hwang J-W et al (2014) Chitooligosaccharide and its derivatives: preparation and biological applications. BioMed Res Int 2014:1–14

    Google Scholar 

  • Long T, Yu J, Wang J et al (2018) Orally administered chitooligosaccharides modulate colon microbiota in normal and colitis mice. Int J Pharmacol 14:291–300

    CAS  Google Scholar 

  • Mallakuntla MK, Penugurti V, Manavathi B et al (2021) Chitooligosaccharides induce apoptosis in human breast cancer cells. Carbohydr Polym Technol Appl 2:100077

    Google Scholar 

  • Mao L, Wu T (2007) Gelling properties and lipid oxidation of kamaboko gels from grass carp (Ctenopharyngodon idellus) influenced by chitosan. J Food Eng 82:128–134

    CAS  Google Scholar 

  • Mao SF, Wang B, Yue L et al (2021) Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity. Carbohydr Polym 262:117972

    Google Scholar 

  • Mei YX, Chen HX, Zhang J et al (2013) Protective effect of chitooligosaccharides against cyclophosphamide-induced immunosuppression in mice. Int J Biol Macromol 62:330–335

    CAS  Google Scholar 

  • Mei Y-X, Dai X-Y, Yang W et al (2015) Antifungal activity of chitooligosaccharides against the dermatophyte Trichophyton rubrum. Int J Biol Macromol 77:330–335

    CAS  Google Scholar 

  • Miguez N, Kidibule P, Santos-Moriano P et al (2021) Enzymatic synthesis and characterization of different families of chitooligosaccharides and their bioactive properties. Appl Sci 11:3212

    CAS  Google Scholar 

  • Mittal A, Singh A, Aluko RE et al (2020a) Pacific white shrimp (Litopenaeus vannamei) shell chitosan and the conjugate with epigallocatechin gallate: Antioxidative and antimicrobial activities. J Food Biochem 45:e13569

    Google Scholar 

  • Mittal A, Singh A, Benjakul S et al (2020b) Composite films based on chitosan and epigallocatechin gallate grafted chitosan: characterization, antioxidant and antimicrobial activities. Food Hydrocoll 111:106384

    Google Scholar 

  • Moon C, Seo D-J, Song Y-S et al (2017) Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1. Microb Pathog 113:218–224

    CAS  Google Scholar 

  • Mourya V, Inamdar N, Choudhari YM (2011) Chitooligosaccharides: synthesis, characterization and applications. Polym Sci Ser A 53:583–612

    Google Scholar 

  • Muanprasat C, Chatsudthipong V (2017) Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol Ther 170:80–97

    CAS  Google Scholar 

  • Nam K, Kim M, Shon Y (2007) Inhibition of proinflammatory cytokine-induced invasiveness of HT-29 cells by chitosan oligosaccharide. J Microbiol Biotechnol 17:2042

    Google Scholar 

  • Ngo DH, Qian ZJ, Vo TS et al (2011) Antioxidant activity of gallate-chitooligosaccharides in mouse macrophage RAW264.7 cells. Carbohydr Polym 84:1282–1288

    CAS  Google Scholar 

  • Nguyen ND, Van Dang P, Le AQ et al (2017) Effect of oligochitosan and oligo-β-glucan supplementation on growth, innate immunity, and disease resistance of striped catfish (Pangasianodon hypophthalmus). Biotechnol Appl Biochem 64:564–571

    CAS  Google Scholar 

  • No H, Meyers S, Prinyawiwatkul W et al (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72:R87–R100

    CAS  Google Scholar 

  • Oh G-W, Kim S-C, Kim T-H et al (2021) Characterization of an oxidized alginate-gelatin hydrogel incorporating a COS-salicylic acid conjugate for wound healing. Carbohydr Polym 252:117145

    Google Scholar 

  • Omari KW, Besaw JE, Kerton FM (2012) Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chem 14:1480–1487

    Google Scholar 

  • Pan Z, Cheng DD, Wei X J et al (2021) Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma. Carbohydr Polym 258:117596

    Google Scholar 

  • Pilantanapak A, Waiprib Y, Eadtem P et al (2017) Production of chitooligosaccharides with antibacterial potential via crude chitinase enzymes from marine fungi. Chiang Mai J Sci 44:1224–1230

    Google Scholar 

  • Popa-Nita S, Lucas J-M, LadavièRe C et al (2009) Mechanisms involved during the ultrasonically induced depolymerization of chitosan: characterization and control. Biomacromol 10:1203–1211

    CAS  Google Scholar 

  • Rakkhumkaew N, Pengsuk C (2018) Chitosan and chitooligosaccharides from shrimp shell waste: characterization, antimicrobial and shelf life extension in bread. Food Sci Biotechnol 27:1201–1208

    CAS  Google Scholar 

  • Ratanavaraporn J, Kanokpanont S, Tabata Y et al (2009) Growth and osteogenic differentiation of adipose-derived and bone marrow-derived stem cells on chitosan and chitooligosaccharide films. Carbohydr Polym 78:873–878

    CAS  Google Scholar 

  • Rhoades J, Gibson G, Formentin K et al (2006) Inhibition of the adhesion of enteropathogenic Escherichia coli strains to HT-29 cells in culture by chito-oligosaccharides. Carbohydr Polym 64:57–59

    CAS  Google Scholar 

  • Rokhati N, Widjajanti P, Pramudono B et al (2013) Performance comparison of α-and β-amylases on chitosan hydrolysis. Int Sch Res Notices. https://doi.org/10.1155/2013/186159

    Article  Google Scholar 

  • Roncal T, Oviedo A, De Armentia IL et al (2007) High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydr Res 342:2750–2756

    CAS  Google Scholar 

  • Rúnarsson ÖV, Holappa J, Nevalainen T et al (2007) Antibacterial activity of methylated chitosan and chitooligomer derivatives: synthesis and structure activity relationships. Eur Polym J 43:2660–2671

    Google Scholar 

  • Rúnarsson ÖV, Holappa J, Malainer C et al (2010) Antibacterial activity of N-quaternary chitosan derivatives: Synthesis, characterization and structure activity relationship (SAR) investigations. Eur Polym J 46:1251–1267

    Google Scholar 

  • Sakai K, Katsumi R, Isobe A et al (1991) Purification and hydrolytic action of a chitosanase from Nocardia orientalis. Biochimica ET Biophysica Acta-Protein Struct Mol Enzymol 1079:65–72

    CAS  Google Scholar 

  • Salah R, Michaud P, Mati F et al (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52:333–339

    CAS  Google Scholar 

  • Salamone JC, Salamone AB, Swindle-Reilly K et al (2016) Grand challenge in biomaterials-wound healing. Regen Biomater 3:127–128

    CAS  Google Scholar 

  • Sanchez A, Mengibar M, Fernandez M et al (2018) Influence of preparation methods of chitooligosaccharides on their physicochemical properties and their anti-inflammatory effects in mice and in RAW264.7 macrophages. Mar Drugs 16

    Google Scholar 

  • Santos-Moriano P, Fernandez-Arrojo L, Mengibar M et al (2018) Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal Biotransfor 36:57–67

    CAS  Google Scholar 

  • Senphan T, Benjakul S (2014) Antioxidative activities of hydrolysates from seabass skin prepared using protease from hepatopancreas of Pacific white shrimp. J Funct Foods 6:147–156

    CAS  Google Scholar 

  • Shen K-T, Chen M-H, Chan H-Y et al (2009) Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol 47:1864–1871

    CAS  Google Scholar 

  • Singh A, Benjakul S (2020) The combined effect of squid pen chitooligosaccharides and high voltage cold atmospheric plasma on the shelf life extension of Asian sea bass slices stored at 4 °C. Innov Food Sci Emerg Technol 64:102339

    Google Scholar 

  • Singh A, Benjakul S, Prodpran T (2019a) Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. Food Prod Process Nutr 1:1–10

    Google Scholar 

  • Singh A, Benjakul S, Prodpran T (2019b) Effect of chitooligosaccharide from squid pen on gel properties of sardine surimi gel and its stability during refrigerated storage. Int J Food Sci Technol 54:2831–2838

    CAS  Google Scholar 

  • Singh A, Benjakul S, Huda N et al (2020a) Preparation and characterization of squid pen chitooligosaccharide–epigallocatechin gallate conjugates and their antioxidant and antimicrobial activities. RSC Adv 10:33196–33204

    CAS  Google Scholar 

  • Singh A, Mittal A, Benjakul S (2020b) Full utilization of squid meat and its processing by-products: revisit. Food Rev Int. https://doi.org/10.1080/87559129.2020.1734611

    Article  Google Scholar 

  • Singh A, Benjakul S, Olatunde OO et al (2021a) The combined effect of squid pen chitooligosaccharide and high voltage cold atmospheric plasma on the quality of Asian sea bass slices inoculated with Pseudomonas aeruginosa. Turk J Fish Aquat Sci 21:41–50

    Google Scholar 

  • Singh A, Benjakul S, Peng Z et al (2021b) Effect of squid pen chitooligosaccharide and epigallocatechin gallate on discoloration and shelf life of yellowfin tuna slices during refrigerated storage. Food Chem 351:129296

    Google Scholar 

  • Singh A, Benjakul S, Zhang B et al (2021c) Effect of squid pen chitooligosaccharide on discoloration and shelf life of yellowfin tuna slices packed under different modified atmospheric packaging during refrigerated storage. Food Cont 125:108013

    Google Scholar 

  • Singh A, Benjakul S, Odunayo O, Ahmet O, Yesilsu F (2021d) The combined effect of squid pen chitooligosaccharide and high voltage cold atmospheric plasma on the quality of Asian sea bass slices inoculated with Pseudomonas aeruginosa. Turk J Fish Aquat Sci 21(01) 41–50. https://doi.org/10.4194/1303-2712-v21_1_05

  • Singh A, Mittal A, Benjakul S (2021e) Chitosan, chitooligosaccharides and their polyphenol conjugates: preparation bioactivities functionalities and applications in food systems. Food Rev Int 1–23. https://doi.org/10.1080/87559129.2021.1950176

  • Singh A, Mittal A, Benjakul S (2021f) Chitosan nanoparticles: preparation food applications and health benefits. Sci Asia 47(1). https://doi.org/10.2306/scienceasia1513-1874.2021.020

  • Singh A, Mittal A, Benjakul S Undesirable discoloration in edible fish muscle: Impact of indigenous pigments chemical reactions processing and its prevention. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12866

  • Srinivasan K, Viswanad B, Asrat L et al (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    CAS  Google Scholar 

  • Struszczyk M, Peter M Loth F (1999) Progress on chemistry and application of chitin and its derivatives. In: Struszczyk H (ed). Lodz, Poland, p 168

    Google Scholar 

  • Ulański P, Rosiak J (1992) Preliminary studies on radiation-induced changes in chitosan. Int J Radiat Appl Instrum Part C Radiat Phys Chem 39:53–57

    Google Scholar 

  • Vo TS, Ngo DH, Bach LG et al (2017) The free radical scavenging and anti-inflammatory activities of gallate-chitooligosaccharides in human lung epithelial A549 cells. Process Biochem 54:188–194

    CAS  Google Scholar 

  • Wu T, Zivanovic S, Hayes DG et al (2008) Efficient reduction of chitosan molecular weight by high-intensity ultrasound: underlying mechanism and effect of process parameters. J Agric Food Chem 56:5112–5119

    CAS  Google Scholar 

  • **ng R, Liu S, Yu H et al (2005) Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation. Carbohydr Res 340:2150–2153

    CAS  Google Scholar 

  • Yang D, Hu CJ, Deng XY et al (2019a) Therapeutic effect of chitooligosaccharide tablets on lipids in high-fat diets induced hyperlipidemic rats. Molecules 24:514

    Google Scholar 

  • Yang Y, **ng R, Liu S et al (2019b) Immunostimulatory effects of chitooligosaccharides on RAW 264.7 mouse macrophages via regulation of the MAPK and PI3K/Akt signaling pathways. Mar Drugs 17:36

    Google Scholar 

  • Yi J, Huang H, Wen Z et al (2021) Fabrication of chitosan-gallic acid conjugate for improvement of physicochemical stability of β-carotene nanoemulsion: Impact of Mw of chitosan. Food Chem 362:130218

    Google Scholar 

  • Yoksan R, Akashi M, Miyata M et al (2004) Optimal γ-ray dose and irradiation conditions for producing low-molecular-weight chitosan that retains its chemical structure. Radiat Res 161:471–480

    CAS  Google Scholar 

  • Yu DW, Zhao WY, Yang F et al (2021a) A strategy of ultrasound-assisted processing to improve the performance of bio-based coating preservation for refrigerated carp fillets (Ctenopharyngodon idellus). Food Chem 345:128862

    Google Scholar 

  • Yu J, Wang Q, Zhang H et al (2021b) Increased stability of curcumin-loaded pickering emulsions based on glycated proteins and chitooligosaccharides for functional food application. LWT-Food Sci Technol 148:111742

    Google Scholar 

  • Zhai X, Li C, Ren D et al (2021) The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: a comprehensive review. Carbohydr Polym 266:118132

    Google Scholar 

  • Zhao MY, Gu LM, Li Y et al (2019a) Chitooligosaccharides display anti-tumor effects against human cervical cancer cells via the apoptotic and autophagic pathways. Carbohydr Polym 224:115171

    Google Scholar 

  • Zhao MY, Shen X, Li XD et al (2019b) Chitooligosaccharide supplementation prevents the development of high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in mice via the inhibition of cluster of differentiation 36 (CD36). J Funct Foods 57:7–18

    CAS  Google Scholar 

  • Zhong X, Yu L, Zhao W et al (1993) Estimation of the radiation induced damage in PTFE by depression of the melting and crystallization temperatures. Polym Degrad Stab 41:223–227

    CAS  Google Scholar 

  • Zhou Y, Li SY, Li DD et al (2020) Enzymatic preparation of chitooligosaccharides and their anti-obesity application. Biosci Biotech Bioch 84:1460–1466

    CAS  Google Scholar 

  • Zhu J, Zhang Y, Wu G et al (2015) Inhibitory effects of oligochitosan on TNF-α, IL-1β and nitric oxide production in lipopolysaccharide-induced RAW264.7 cells. Mol Med Rep 11:729–733

    CAS  Google Scholar 

  • Zoldners J, Kiseleva T, Kaiminsh I (2005) Influence of ascorbic acid on the stability of chitosan solutions. Carbohydr Polym 60:215–218

    Google Scholar 

  • Zou P, Yuan S, Yang X et al (2019) Structural characterization and antitumor effects of chitosan oligosaccharides against orthotopic liver tumor via NF-κB signaling pathway. J Funct Foods 57:157–165

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soottawat Benjakul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benjakul, S., Singh, A., Mittal, A. (2022). Chitooligosaccharides: Preparation and Applications in Food and Nutraceuticals. In: Kim, SK. (eds) Chitooligosaccharides. Springer, Cham. https://doi.org/10.1007/978-3-030-92806-3_13

Download citation

Publish with us

Policies and ethics

Navigation