Solidification of Salt Hydrate Eutectics Using Multiple Nucleation Agents

  • Conference paper
  • First Online:
REWAS 2022: Energy Technologies and CO2 Management (Volume II)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Salt hydrates are a class of phase-change materials (PCMs) capable of storing thermal energy at a high volumetric energy density for a low cost (<$10/kWhth), making them of interest for improving the energy efficiency of buildings and displacing peak load associated with environmental control systems. However, select salt hydrates are susceptible to irreversible degradation associated with phase segregation, and to undercooling—the occurrence of a metastable liquid below the melting point due to a lack of nucleation sites for the crystalline solid. Here, we present a study of phase-specific epitaxial nucleation agents which mitigate undercooling in eutectic nitrate salt hydrate systems. While eutectics can depress melting temperatures into favorable ranges, metastable eutectics experience undercooling. We demonstrate that the nucleation of multiple phases in systems which are susceptible to undercooling can increase the potential for phase segregation and chemical stratification to occur. Furthermore, we illustrate the utility of multiple nucleation agents in these systems to co-crystallize multiple crystalline phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Bock HP et al (2020) A system to package perspective on transient thermal management of electronics. J Electr Pack 142(4). https://doi.org/10.1115/1.4047474

  2. Kim K-B, Choi K-W, Kim Y-J, Lee K-H, Lee K-S (2010) Feasibility study on a novel cooling technique using a phase change material in an automotive engine. Energy 35(1):478–484, 2010/01/01/. https://doi.org/10.1016/j.energy.2009.10.015

  3. Mulligan JC, Colvin DP, Bryant YG (1996) Microencapsulated phase-change material suspensions for heat transfer in spacecraft thermal systems. J Spacecr Rocket 33(2):278–284. https://doi.org/10.2514/3.26753

    Article  Google Scholar 

  4. Lorsch HG, Kauffman KW, Denton JC (1975) Thermal energy storage for solar heating and off-peak air conditioning. Energy Conv 15(1–2):1–8

    Article  Google Scholar 

  5. García-Romero A, Diarce G, Ibarretxe J, Urresti A, Sala JM (2012) Influence of the experimental conditions on the subcooling of Glauber's salt when used as PCM. Solar Energy Mater Solar Cells 102:189–195. 2012/07/01/ 2012. https://doi.org/10.1016/j.solmat.2012.03.003

  6. Royon L, Karim L, Bontemps A (2013) Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings. Energy Build 63:29–35, 2013/08/01/ 2013. https://doi.org/10.1016/j.enbuild.2013.03.042

  7. Lane GA, Shamsundar N (1983) Solar heat storage: Latent heat materials, vol. I: background and Scientific Principles. J SolEnergy Eng 105(4):467–467. https://doi.org/10.1115/1.3266412

    Article  Google Scholar 

  8. Vonnegut B (1947) The Nucleation of ICE formation by Silver Iodide. J Appl Phys 18(7):593–595. https://doi.org/10.1063/1.1697813

    Article  Google Scholar 

  9. Haubruge HG, Daussin R, Jonas AM, Legras R, Wittmann JC, Lotz B (2003) Epitaxial Nucleation of Poly(ethylene terephthalate) by Talc: Structure at the Lattice and Lamellar Scales. Macromolecules 36(12):4452–4456, 2003/06/01. https://doi.org/10.1021/ma0341723

  10. **ng LQ, Chen B (1995) Phase-seeded solidification of undercooled Ni-B-Si alloy. J Mater Sci Lett 14(7): 480–482, 1995/01/01. https://doi.org/10.1007/BF00665908

  11. Shamberger PJ, Reid T (2012) Thermophysical properties of Lithium Nitrate Trihydrate from (253 to 353) K. J Chem Eng Data 57(5): 1404–1411, 2012/05/10 2012. https://doi.org/10.1021/je3000469

  12. Tamraparni A, Shamberger PJ, Felts JR (2020) Cyclic stability of lithium nitrate trihydrate in plate fin heat exchangers. Appl Therm Eng 179:115476, 2020/10/01/ 2020. https://doi.org/10.1016/j.applthermaleng.2020.115476

  13. Sieverts A, Petzold W (1933) Binäre Systeme: Nitrate von Metallen der zweiten Gruppe des periodischen Systems und Wasser. II. Be(NO3)2–H2O, Zn(NO3)2–H2O und Cd(NO3)2–H2O. Z Anorg Allg Chem 212(1):49–60. https://doi.org/10.1002/zaac.19332120108

    Article  Google Scholar 

  14. Sieverts A, Petzold W (1932) Binäre Systeme: Nitrate von Metallen der zweiten Gruppe des periodischen Systems und Wasser. I. Mg(NO3)2–H2O. Z Anorg Allg Chem 205(1–2):113–126. https://doi.org/10.1002/zaac.19322050110

    Article  Google Scholar 

  15. Carlsson B, Stymne H, Wettermark G (1979) An incongruent heat-of-fusion system—CaCl2·6H2O—Made congruent through modification of the chemical composition of the system. Solar Energy 23(4), 343–350, 1979/01/01/ 1979. https://doi.org/10.1016/0038-092X(79)90129-4

  16. Lovera-Copa JA, Ushak S, Reinaga N, Villalobos I, Martínez FR (2020) Design of phase change materials based on salt hydrates for thermal energy storage in a range of 4–40 °C. J Thermal Anal Calorim 139(6):3701–3710, 2020/03/01 2020. https://doi.org/10.1007/s10973-019-08655-1

  17. Zeng D, Voigt W (2003) Phase diagram calculation of molten salt hydrates using the modified BET equation. Calphad-Comput Coupl Phase Diag Thermochem 27:243–251

    Article  Google Scholar 

  18. Stokes RH, Robinson RA (1948) Ionic hydration and activity in electrolyte solutions. J Am Chem Soc 70(5):1870–1878

    Article  Google Scholar 

  19. Shamberger PJ, O’Malley MJ (2015) Heterogeneous nucleation of thermal storage material LiNO3·3H2O from stable lattice-matched nucleation catalysts. Acta Mater 84: 265–274, 2015/02/01/ 2015. https://doi.org/10.1016/j.actamat.2014.10.051

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, S., Mach, R., Jones, H., Alamo, F., Shamberger, P.J. (2022). Solidification of Salt Hydrate Eutectics Using Multiple Nucleation Agents. In: Tesfaye, F., et al. REWAS 2022: Energy Technologies and CO2 Management (Volume II). The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92559-8_14

Download citation

Publish with us

Policies and ethics

Navigation