A Global Optimization and Adaptivity-Based Algorithm for Automated Edge Grid Generation

  • Chapter
  • First Online:
Mesh Generation and Adaptation

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 30))

  • 911 Accesses

Abstract

Meshes are commonly generated as a successor to geometric models in computational design and analysis. Computational analyses are performed in industry and academia for use in research, development, and manufacturing. The accuracy of these analyses depends on the fidelity of the geometric models and meshes. Element quality also plays an important role. Whereas most mesh generation strategies focus on element quality, this should be secondary to accurate representation of the real-world object. In McLaurin and Shontz (Automated edge grid generation based on arc-length optimization. In: Proceedings of the 22nd International Meshing Roundtable, pp. 385–403, Springer, Berlin, 2014), we recently proposed an automated method for generation of optimal edge grids via minimization of the arc-length deficit via a local optimization technique. In this paper, we explore the use of several different global optimization and adaptivity strategies for generation of optimal edge grids. Our results demonstrate the robustness and accuracy of our global optimization and adaptivity method for edge grid generation. We also discuss potential extensions of our method which incorporate a computational budget, achieve greater efficiency through development of a hybrid method based on local and global optimization and adaptivity, and incorporate symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hickey, A., **ao, S.: Finite element modeling and simulation of car crash. Int. J. Mod. Stud. Mech. Eng. 3, 1–5 (2017)

    Google Scholar 

  2. Villemin, R., Herv, C., Konishi, S., Tejima, T., Villemin, R., Yu, D.: Art and technology at Pixar, from toy story to today. In: SA ’15: SIGGRAPH Asia 2015 Courses, pp. 1–89 (2015)

    Google Scholar 

  3. Aycock, K., Campbell, R., Manning, K., Sastry, S., Shontz, S., Lynch, F., Craven, B.: A computational model for predicting inferior vena cava filter performance on a patient-specific basis. J. Biomech. Eng. 136, 081003 (2014)

    Article  Google Scholar 

  4. Bischoff, S., Kobbelt, L.: Structure preserving CAD model repair. Comput. Graph. Forum 24(3), 527–536 (2005)

    Article  Google Scholar 

  5. Cheng, S., Dey, T., Shewchuk, J.: Delaunay Mesh Generation. CRC Press, New York (2012)

    MATH  Google Scholar 

  6. Marcum, D.: Advancing-front/local-reconnection (AFLR) unstructured grid generation. In: Computational Fluid Dynamics Review, p. 140. World Scienific, Singapore (1998)

    Google Scholar 

  7. CUBIT: Geometry and Mesh Generation Toolkit. http://cubit.sandia.gov

  8. Löhner, R., Parikh, P.: Generation of three-dimensional unstructured grids by the advancing-front method. Int. J. Numer. Meth. Fl. 8(10), 1135–1149 (1988)

    Article  Google Scholar 

  9. Shewchuk, J.: Tetrahedral mesh generation by Delaunay refinement. In: Proceedings of the 14th Annual Symposium on Computational Geometry, pp. 86–95 (1998)

    Google Scholar 

  10. Shewchuk, J.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory Appl. 22, 21–74 (2002)

    Article  MathSciNet  Google Scholar 

  11. Freitag, L., Knupp, P.: Tetrahedral mesh improvement via optimization of the element condition number. Int. J. Numer. Meth. Eng. 53, 1377–1391 (2001)

    Article  MathSciNet  Google Scholar 

  12. Munson, T.: Mesh shape-quality optimization using the inverse mean-ratio metric. Math. Program. 110, 561–690 (2007)

    Article  MathSciNet  Google Scholar 

  13. Kim, J., Panitanarak, T., Shontz, S.: A multiobjective mesh optimization framework for mesh quality improvement and mesh untangling. Int. J. Numer. Meth. Eng. 94, 20–42 (2013)

    Article  MathSciNet  Google Scholar 

  14. Sastry, S., Shontz, S., Vavasis, S.: A log-barrier method for mesh quality improvement and untangling. Eng. Comput. 30, 315–329 (2014)

    Article  Google Scholar 

  15. Laug, P., Borouchaki, H.: Curve linearization and discretization for meshing composite surfaces. Commun. Numer. Meth. Eng. 20, 869–876 (2004)

    Article  Google Scholar 

  16. Macklin, P., Lowengrub, J.: An improved geometry-aware curvature discretization for level set method: Applications to tumor growth. J. Comput. Phys. 215, 392–401 (2006)

    Article  MathSciNet  Google Scholar 

  17. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifold. In: ACM Transactions on Graphics (TOG)—Proceedings of the ACM SIGGRAPH 2004, vol. 23, pp. 284–293 (2004)

    Google Scholar 

  18. El-Zehiry, N., Grady, L.: Fast global optimization of curvature. In: Computer Vision and Pattern Recognition (Princeton, NJ), pp. 3257–3264. IEEE, New York (2010)

    Google Scholar 

  19. Ebeida, M., Davis, R., Freund, R.: A new fast hybrid adaptive grid generation technique for arbitrary dimensional domains. Int. J. Numer. Meth. Eng. 84, 305–329 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Horng, J., Li, J.: An automatic and efficient dynamic programming algorithm for polygonal approximation of digital curves. Pattern Recogn. Lett 23, 171–182 (2002)

    Article  Google Scholar 

  21. Quadros, W., Owen, S., Brewer, M., Shimada, K.: Finite element mesh sizing for surfaces using skeleton. In: Proceedings of the 13th International Meshing Roundtable (2004)

    Google Scholar 

  22. Cabello, J.: Towards quality surface meshing. In: Proceedings of the 12th International Meshing Roundtable (2003)

    Google Scholar 

  23. Cunha, A., Canann, S., Saigal, S.: Automatic boundary sizing for 2D and 3D meshes. In: Proceedings of the 6th International Meshing Roundtable (1997)

    Google Scholar 

  24. Cuilliere, J.: A direct method for the automatic discretization of 3D parametric curves. Comput.-Aided Des. 29, 639–647 (1997)

    Article  Google Scholar 

  25. McLaurin, D., Shontz, S., Automated edge grid generation based on arc-length optimization. In: Proceedings of the 22nd International Meshing Roundtable, pp. 385–403. Springer, Berlin (2014)

    Google Scholar 

  26. McLaurin, D.: Automated, curvature based edge-grid generation. In: Proceedings of AlaSim 2012 (Huntsville, AL), Alabama Modeling and Simulation Council (2012)

    Google Scholar 

  27. Sarfraz, M.: Interactive Curve Modeling: With Applications to Computer Graphics, Vision, and Image Processing. Springer, Berlin (2008)

    Book  Google Scholar 

  28. Hughes, T., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  29. Bazilevs, Y., Calo, V., Cottrell, J., Evans, J., Hughes, T., Lipton, S., Scott, M., Sederberg, T.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229–263 (2010)

    Article  MathSciNet  Google Scholar 

  30. Nemhauser, G., Savelsbergh, M., Sigismondi, G.: MINTO, a Mixed INTeger Optimizer. Oper. Res. Letters 15, 47–58 (1994)

    Article  MathSciNet  Google Scholar 

  31. MOSEKhomepage. www.mosek.com/index.php

  32. Ralphs, T., Güzelsoy, M.: The Symphony callable library for mixed integer programming. In: The Next Wave in Computing, Optimization, and Decision Technologies, Operations Research/Computer Science Interfaces Series, vol. 29, pp. 61–76 (2005)

    Google Scholar 

  33. Hooke, R., Jeeves, T.: “Direct search” solution of numerical and statistical problems. J. ACM 8, 212–229 (1961)

    Article  Google Scholar 

  34. Audet, C., Dennis, J.: Analysis of generalized pattern searches. SIAM J. Optim. 13, 889–903 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of the first author was funded in part by NSF CAREER Award ACI-1500487 (formerly ACI-1330056 and OCI-1054459) and NSF grants OAC-1808553 and CCF-1717894. The authors would like to thank the anonymous referee for his/her careful reading of the paper and for his/her helpful suggestions which strengthened it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne M. Shontz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shontz, S.M., McLaurin, D. (2022). A Global Optimization and Adaptivity-Based Algorithm for Automated Edge Grid Generation. In: Sevilla, R., Perotto, S., Morgan, K. (eds) Mesh Generation and Adaptation. SEMA SIMAI Springer Series, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-92540-6_14

Download citation

Publish with us

Policies and ethics

Navigation