Social Contagion on Higher-Order Structures

  • Chapter
  • First Online:
Higher-Order Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this Chapter, we discuss the effects of higher-order structures on SIS-like processes of social contagion. After a brief motivational introduction where we illustrate the standard SIS process on networks and the difference between simple and complex contagions, we introduce spreading processes on higher-order structures starting from the most general formulation on hypergraphs and then moving to several mean-field and heterogeneous mean-field approaches. The results highlight the rich phenomenology brought by taking into account higher-order contagion effects: both continuous and discontinuous transitions are observed, and critical mass effects emerge. We conclude with a short discussion on the theoretical results regarding the nature of the epidemic transition and the general need for data to validate these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.sociopatterns.org/datasets/.

  2. 2.

    For instance, the authors of [31] study the case in which \(\lambda _3 <0\), i.e., an individual is less likely to adopt a trend if this trend is popular in the group, and call this ingredient the "hipster effect"; this effect also can lead to a region of bi-stability in the phase diagram [31]. Note that heterogeneous recovery rates [43, 44] and “complex recovery” rates depending on the state of the surrounding individuals have also been considered in the literature [45].

References

  1. R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, 1992)

    Google Scholar 

  2. M.J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals (Princeton University Press, 2011)

    Google Scholar 

  3. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86(14), 3200 (2001)

    Google Scholar 

  4. A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, 2008)

    Google Scholar 

  5. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Rev. Mod. Phys. 87(3), 925 (2015)

    Article  ADS  Google Scholar 

  6. I.Z. Kiss, J.C. Miller, P.L. Simon, et al., (Springer, Cham, 2017)

    Google Scholar 

  7. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74(1), 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Google Scholar 

  9. D. Centola, M. Macy, Am. J. Sociol. 113(3), 702 (2007)

    Article  Google Scholar 

  10. D. Centola, Science 329(5996), 1194 (2010)

    Article  ADS  Google Scholar 

  11. J. Ugander, L. Backstrom, C. Marlow, J. Kleinberg, Pro. Natl. Acad Sci. U.S.A. 201116502 (2012)

    Google Scholar 

  12. L. Weng, A. Flammini, A. Vespignani, F. Menczer, Sci. Rep. 2, 335 (2012)

    Article  ADS  Google Scholar 

  13. M. Karsai, G. Iniguez, K. Kaski, J. Kertész, J.R. Soc, Interface 11(101), 20140694 (2014)

    Google Scholar 

  14. B. Mønsted, P. Sapieżyński, E. Ferrara, S. Lehmann, PLoS One 12(9), e0184148 (2017)

    Google Scholar 

  15. D. Guilbeault, J. Becker, D. Centola, in Complex Spreading Phenomena in Social Systems (Springer, 2018), pp. 3–25

    Google Scholar 

  16. D.J. Watts, Proc. Natl. Acad. Sci. U.S.A. 99(9), 5766 (2002)

    Article  ADS  Google Scholar 

  17. S. Melnik, J.A. Ward, J.P. Gleeson, M.A. Porter, Chaos 23(1), 013124 (2013)

    Google Scholar 

  18. Z. Ruan, G. Iniguez, M. Karsai, J. Kertész, Phys. Rev. Lett. 115(21), 218702 (2015)

    Google Scholar 

  19. A. Czaplicka, R. Toral, M. San Miguel, Phys. Rev. E 94(6), 062301 (2016)

    Google Scholar 

  20. E. Cozzo, R.A. Banos, S. Meloni, Y. Moreno, Phys. Rev. E 88(5), 050801 (2013)

    Google Scholar 

  21. N.O. Hodas, K. Lerman, Sci. Rep. 4, 4343 (2014)

    Google Scholar 

  22. M. Herrera, G. Armelini, E. Salvaj, PLoS One 10(10), e0140891 (2015)

    Google Scholar 

  23. D.J. O’Sullivan, G.J. O’Keeffe, P.G. Fennell, J.P. Gleeson, Front. Phys. 3, 71 (2015)

    Google Scholar 

  24. P. Tuzón, J. Fernández-Gracia, V.M. Eguíluz, Front. Phys. 6, 21 (2018)

    Article  Google Scholar 

  25. F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.G. Young, G. Petri, Phys. Rep. 874, 1 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. I. Iacopini, G. Petri, A. Barrat, V. Latora, Nat. Commun. 10(1), 2485 (2019)

    Article  ADS  Google Scholar 

  27. G.F. de Arruda, G. Petri, Y. Moreno, Phys. Rev. Res. 2(2), 023032 (2020)

    Google Scholar 

  28. B. Jhun, M. Jo, B. Kahng, J. Stat. Mech. Theory Exp. 2019(12), 123207 (2019)

    Google Scholar 

  29. J.T. Matamalas, S. Gómez, A. Arenas, Phys. Rev. Res. 2(1), 012049 (2020)

    Google Scholar 

  30. G.F. de Arruda, M. Tizzani, Y. Moreno, Commun. Phys. 4, 24 (2021)

    Article  Google Scholar 

  31. N.W. Landry, J.G. Restrepo, Chaos 30(10), 103117 (2020)

    Google Scholar 

  32. D. Centola, J. Becker, D. Brackbill, A. Baronchelli, Science 360(6393), 1116 (2018)

    Article  ADS  Google Scholar 

  33. A. Hatcherr, (2002)

    Google Scholar 

  34. M. Fernández, S. Williams, IEEE Trans. Aerosp. Electron. Syst. 46(2), 803 (2010)

    Article  ADS  Google Scholar 

  35. G.F. de Arruda, F.A. Rodrigues, Y. Moreno, Phys. Rep. 756, 1 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. O.T. Courtney, G. Bianconi, Phys. Rev. E 93(6), 062311 (2016)

    Google Scholar 

  37. J.G. Young, G. Petri, T.P. Peixoto, Commun. Phys. 4(1), 1 (2021)

    Google Scholar 

  38. M. Génois, C.L. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin, A. Barrat, Netw. Sci. 3(3), 326 (2015)

    Article  Google Scholar 

  39. L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.F. Pinton, W. Van den Broeck, J. Theor. Biol. 271(1), 166 (2011)

    Article  ADS  Google Scholar 

  40. P. Vanhems, A. Barrat, C. Cattuto, J.F. Pinton, N. Khanafer, C. Régis, B.a. Kim, B. Comte, N. Voirin, PLoS One 8(9), e73970 (2013)

    Google Scholar 

  41. R. Mastrandrea, J. Fournet, A. Barrat, PLoS One 10(9), e0136497 (2015)

    Google Scholar 

  42. S. Battiston, J.B. Glattfelder, D. Garlaschelli, F. Lillo, G. Caldarelli, in Network Science (Springer, 2010), pp. 131–163

    Google Scholar 

  43. A. Darbon, D. Colombi, E. Valdano, L. Savini, A. Giovannini, V. Colizza, R. Soc. Open Sci. 6, 181404 (2019)

    Google Scholar 

  44. G.F. de Arruda, G. Petri, F.A. Rodrigues, Y. Moreno, Phys. Rev. Res. 2(1), 013046 (2020)

    Google Scholar 

  45. I. Iacopini, B. Schäfer, E. Arcaute, C. Beck, V. Latora, Chaos 30(1), 013153 (2020)

    Google Scholar 

  46. G. Petri, A. Barrat, Phys. Rev. Lett. 121(22), 228301 (2018)

    Google Scholar 

  47. L. Hébert-Dufresne, S.V. Scarpino, J.G. Young, Nat. Phys. 16, 426 (2020)

    Article  Google Scholar 

  48. P. Sah, M. Otterstatter, S.T. Leu, S. Leviyang, S. Bansal, BioRxiv p. 169573 (2018)

    Google Scholar 

  49. D. Centola, A. Baronchelli, Proc. Natl. Acad. Sci. U.S.A. 112(7), 1989 (2015). https://doi.org/10.1073/pnas.1418838112

    Article  ADS  Google Scholar 

  50. C. Gracia-Lázaro, A. Ferrer, G. Ruiz, A. Tarancón, J.A. Cuesta, A. Sánchez, Y. Moreno, Proc. Natl. Acad. Sci. U.S.A. 109(32), 12922 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Barrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barrat, A., Ferraz de Arruda, G., Iacopini, I., Moreno, Y. (2022). Social Contagion on Higher-Order Structures. In: Battiston, F., Petri, G. (eds) Higher-Order Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-91374-8_13

Download citation

Publish with us

Policies and ethics

Navigation