The Untapped Potential of Fungi in Phenol Biodegradation

  • Chapter
  • First Online:
Applied Mycology

Part of the book series: Fungal Biology ((FUNGBIO))

  • 953 Accesses

Abstract

Phenolic compounds are potential pollutants to the environment, and their harmful effects are enormous. The antimicrobial nature of most of these compounds is making them invulnerable to the depuration process. Fungi can be successfully used for degradation as they are less prone to phenol toxicity and actively produce enzymes capable of degrading cyclic ring compounds. They have extraordinary capabilities of phenol removal when compared with other microbes such as bacteria. This chapter explores the applications of fungi in phenol biodegradation, phenol degradation pathways, commonly used fungal species, bioreactor models, immobilization techniques, and entrepreneurial aspects of fungal bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acevedo, F., Pizzul, L., Castillo, M. D., Cuevas, R., & Diez, M. C. (2011). Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. Journal of Hazardous Materials, 185, 212–219.

    Article  CAS  Google Scholar 

  • Anastasi, A., Tigini, V., & Varese, & G.C. (2013). The bioremediation potential of different ecophysiological groups of fungi. In Fungi as bioremediators (Soil biology) (Vol. 32, pp. 29–49). Springer.

    Chapter  Google Scholar 

  • Arisoy, M. (1998). Biodegradation of chlorinated organic compounds by white-rot fungi. Bulletin of Environmental Contamination and Toxicology, 60, 872–876.

    Article  CAS  Google Scholar 

  • Basha, K. M., Rajendran, A., & Thangavelu, V. (2010). Recent advances in the biodegradation of phenol: A review. Asian Journal of Experimental Biological Sciences, 1(2), 219–234.

    CAS  Google Scholar 

  • Bhalerao, T. S., & Puranik, P. (2007). Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. International Biodeterioration and Biodegradation, 59, 315–321.

    Article  CAS  Google Scholar 

  • Cassimjee, K. E., Kadow, M., Wikmark, Y., Humble, M. S., Rothstein, M. L., Rothstein, D. M., & Bäckvall, J. E. (2014). A general protein purification and immobilization method on controlled porosity glass: Biocatalytic applications. Chemical Communications, 50(65), 9134–9137.

    Article  Google Scholar 

  • Chhaya, U., & Gupte, A. (2013). Possible role of laccase from Fusarium incarnatum UC-14 In bioremediation of Bisphenol A using reverse micelles system. Journal of Hazardous Materials, 254–255, 149–156. https://doi.org/10.1016/j.jhazmat.2013.03.054

    Article  CAS  PubMed  Google Scholar 

  • Cobas, M., Ferreira, L., Tavares, T., Sanroman, M. A., & Pazos, M. (2013). Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere, 91, 711–716. https://doi.org/10.1016/j.chemosphere.2013.01.028

    Article  CAS  PubMed  Google Scholar 

  • Emergency Planning and Community Right-to-Know Act (EPCRA) Section 313 Chemical list for reporting year 2014. Available from: http://www.epa.gov/toxics-release-inventory-tri-program/tri-chemical-list-ry-2014-including-toxic-chemical-categories

  • Evans, W. C. (1947). Oxidation of phenol and benzoic acid by some soil bacteria. The Biochemical Journal, 41(3), 373.

    Article  CAS  Google Scholar 

  • Fernandez-Fernandez, M., Sanromán, M. Á., & Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology Advances, 31(8), 1808–1825.

    Google Scholar 

  • Gray, C. J., Weissenborn, M. J., Eyers, C. E., & Flitsch, S. L. (2013). Enzymatic reactions on immobilised substrates. Chemical Society Reviews, 42(15), 6378–6405.

    Article  CAS  Google Scholar 

  • Harris, G., & Ricketts, R. (1962). Metaboilsm of phenolic compounds by yeasts. Nature, 195, 473–474.

    Article  CAS  Google Scholar 

  • Harwood, C. S., & Parales, R. E. (1996). The β-ketoadipate pathway and the biology of self-identity. Annual Review of Microbiology, 50(1), 553–590.

    Article  CAS  Google Scholar 

  • Henderson, M. E. K. (1961). The metabolism of aromatic compounds related to lignin by some Hyphomycetes and yeast-like fungi of soil. Journal of General Microbiology, 26, 155–165.

    Article  CAS  Google Scholar 

  • Holladay, D. W., Hancher, C. W., Scott, C. D., & Chilcote, D. D. (1978). Biodegradation of phenolic waste liquors in stirred-tank, packed-bed, and fluidized-bed bioreactors. Journal – Water Pollution Control Federation, 2573–2589.

    Google Scholar 

  • Huang, Y., Zhang, S. Y., Lv, M. J., & **e, S. G. (2010). Biosorption characteristics of ectomycorrhizal fungal mycelium for anthracene. Biomedical and Environmental Sciences, 23, 378–383.

    Article  CAS  Google Scholar 

  • Jebapriya, G. R., & Gnanadoss, J. J. (2013). Bioremediation of textile dye using white-rot fungi: A review. International Journal of Current Research and Review, 5, 1–13.

    Google Scholar 

  • Karel, S. F., Libicki, S. B., & Robertson, C. R. (1985). The immobilization of whole cells: Engineering principles. Chemical Engineering Science, 40(8), 1321–1354.

    Article  CAS  Google Scholar 

  • Kilby, B. A. (1948). The bacterial oxidation of phenol to beta-ketoadipic acid. The Biochemical Journal, 43, 1.

    Article  Google Scholar 

  • Lamar, R. T., & Dietrich, D. M. (1990). In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Applied and Environmental Microbiology, 56(10), 3093–3100.

    Article  CAS  Google Scholar 

  • Lamar, R. T., & Dietrich, D. M. (1992). Use of lignin-degrading fungi in the disposal of pentachlorophenol-treated wood. Journal of Industrial Microbiology, 9, 181–191.

    Article  CAS  Google Scholar 

  • Lamar, R. T., Davis, M. W., Dietrich, D. M., & Glaser, J. A. (1994). Treatment of a pentachlorophenol- and creosote-contaminated soil using the lignin-degrading fungus Phanerochaetesordida: A field demonstration. Soil Biology and Biochemistry, 26(12), 1603–1616.

    Article  CAS  Google Scholar 

  • Lang, E., E’Uer, G., Kleeberg, I., Martens, R., & Zadrazil, F. (1995). Interaction of white rot fungi and soil microorganisms leading to biodegradation of soil pollutants. In Contaminated Soil’95 (Soil and environment) (Vol. 5, pp. 1277–1278). Springer.

    Chapter  Google Scholar 

  • León-Santiesteban, H. H., Wrobel, K., Revah, S., & Tomasini, A. (2016). Pentachlorophenol removal by Rhizopus oryzae CDBB-H-1877 using sorption and degradation mechanisms. Journal of Chemical Technology & Biotechnology, 91, 65–71.

    Article  Google Scholar 

  • Machado, K. M. G., Matheus, D. R., Monteiro, R. T. R., & Bononi, V. L. R. (2005). Biodegradation of pentachorophenol by tropical basidiomycetes in journal of environmental science and health, part B 153 soils contaminated with industrial residues. World Journal of Microbiology and Biotechnology, 21, 297–301.

    Article  CAS  Google Scholar 

  • Mahiudddin, M., & Fakhruddin, A. N. M. (2012). Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiology, 2012, 741820.

    PubMed  PubMed Central  Google Scholar 

  • Mansur, M., Arias, M. E., Copa-Patino, J. L., Flardh, M., & Gonzalez, A. E. (2017). The white-rot fungus Pleurotusostreatus secretes laccase isozymes with different substrate specificities. Mycologia, 95, 1013–1020.

    Article  Google Scholar 

  • Margot, J., Bennati-Granier, C., Maillard, J., Blanquez, P., Barry, D. A., & Holliger, C. (2013). Bacterial versus fungal laccase: Potential for micropollutant degradation. AMB Express, 3, 63. https://doi.org/10.1186/2191-0855-3-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meharg, A. A., Cairney, J. W. G., & Maguire, N. (1997). Mineralization of 2,4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere, 34(12), 2495–2504.

    Article  CAS  Google Scholar 

  • Mouhamadou, B., Faure, M., Sage, L., Marçais, J., Souard, F., & Geremia, R. A. (2013). Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biology, 117, 268–274. https://doi.org/10.1016/j.funbio.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  • Neujahr, H. Y., & Varga, J. M. (1970). Degradation of phenols by intake cells and cell-free preparations of Trichosporoncutaneum. European Journal of Biochemistry, 13, 37–44.

    Article  CAS  Google Scholar 

  • Pointing, S. B. (2001). Feasibility of bioremediation by white-rot fungi. The Applied Microbiology and Biotechnology, 51, 20–33.

    Google Scholar 

  • Rahman, R. A., Molla, A. H., & Fakhru’l-Razi, A. (2014). Assessment of sewage sludge bioremediation at different hydraulic retention times using mixed fungal inoculation by liquid-state bioconversion. Environmental Science and Pollution Research, 21, 1178–1187. https://doi.org/10.1007/s11356-013-1974-5

    Article  CAS  PubMed  Google Scholar 

  • Reddy, C. A., & Mathew, Z. (2001). Bioremediation potential of white rot fungi. In British mycological society symposium series (Vol. 23, pp. 52–78).

    Google Scholar 

  • Rodríguez-Rodríguez, C. E., Castro-Gutiérrez, V., Chin-Pampillo, J. S., & Ruiz-Hidalgo, K. (2013). On-farm biopurificationsystems: Role of white-rot fungi in depuration of pesticide-containing wastewaters. FEMS Microbiology Letters, 345, 1–12. https://doi.org/10.1111/1574-6968.12161

    Article  CAS  PubMed  Google Scholar 

  • Sack, U., Heinze, T. M., Deck, J., Cerniglia, C. E., Martens, R., Zadrazil, F., & Fritsche, W. (1997). Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Applied and Environmental Biology, 63(10), 3919–3925.

    Article  CAS  Google Scholar 

  • Santos, V. L., & Linardi, V. R. (2001). Phenol degradation by yeasts isolated from industrial effluents. Journal of General and Applied Microbiology, 47(4), 213–221.

    Article  CAS  Google Scholar 

  • Singh, L., & Singh, V. P. (2011). Microbial decolourization of textile dyes by the fungus Trichoderma harzianum. Journal of Pure and Applied Microbiology, 6, 1829–1833.

    Google Scholar 

  • Stainer, R. Y., & Ornston, L. N. (1973). The β-ketoadipate pathway. In Advances in microbial physiology (Vol. 9, pp. 89–151). Academic.

    Google Scholar 

  • Teramura, Y., Kaneda, Y., Totani, T., & Iwata, H. (2008). Behavior of synthetic polymers immobilized on a cell membrane. Biomaterials, 29(10), 1345–1355.

    Article  CAS  Google Scholar 

  • Tigini, V., Prigione, V., Di, T., Fava, F., & Varese, G. C. (2009). Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microbial Cell Factories, 8(1), 1–14.

    Google Scholar 

  • Tortella, G. R., Rubilar, O., Gianfreda, L., Valenzuela, E., & Diez, M. C. (2008). Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World Journal of Microbiology and Biotechnology, 24, 2805–2818.

    Article  CAS  Google Scholar 

  • Valentín, L., Oesch-Kuisma, H., Steffen, K. T., Kähkönen, M. A., Hatakka, A., & Tuomela, M. (2013). Mycoremediation of wood and soil from an old sawmill area contaminated for decades. Journal of Hazardous Materials, 260, 668–675.

    Article  Google Scholar 

  • Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2(3), 157–167.

    Article  CAS  Google Scholar 

  • Yordanova, G., Godjevargova, T., Nenkova, R., & Ivanova, D. (2013). Biodegradation of phenol and phenolic derivatives by a mixture of immobilized cells of Aspergillus awamori and Trichosporoncutaneum. Biotechnology & Biotechnological Equipment, 27(2), 3681–3688.

    Article  CAS  Google Scholar 

  • Zaushitsyna, O., Berillo, D., Kirsebom, H., & Mattiasson, B. (2014). Cryostructured and cross-linked viable cells forming monoliths suitable for bioreactor applications. Topics in Catalysis, 57(5), 339–348.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Suchithra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasi, R., Zachariah, S., Suchithra, T.V. (2022). The Untapped Potential of Fungi in Phenol Biodegradation. In: Shukla, A.C. (eds) Applied Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-90649-8_19

Download citation

Publish with us

Policies and ethics

Navigation