Health Protection and Promotion for Disease Management in Free-Ranging Wildlife Populations

  • Chapter
  • First Online:
Wildlife Population Health
  • 508 Accesses

Abstract

The strategies of wildlife disease management are built on the goals of prevention, surveillance, and management of causes of disease found in, or diseases associated with, wildlife. However, many health protection and disease control options are not always available, affordable, feasible, or socially acceptable to use in wild animals. This chapter highlights successful actions and interventions, challenges, and limitations related to wildlife disease management and reviews important disease examples that highlight these concepts. Insights are discussed on methods to prevent disease proactively and preemptively through building population resilience or protecting the determinants of health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott RC, Osorio JE, Bunck CM, Rocke TE (2012) Sylvatic plague vaccine: a new tool for conservation of threatened and endangered species. Ecohealth 9:243–250. https://doi.org/10.1007/s10393-012-0783-5

    Article  PubMed  Google Scholar 

  • Allen AA (1924) The grouse disease. Bul Amer Game Prot Assoc 1924:12–14

    Google Scholar 

  • Angle TC, Thomas P, Waggoner PL, Fischer TD, Rogers BP, Galik PK, Maxwell HS (2016) Real-time detection of a virus using detection dogs. Front Veter Sci 2:79

    Google Scholar 

  • Bayn A, Nol P, Tisch U, Rhyan J, Ellis CK, Haick H (2013) Detection of volatile organic compounds in brucella abortus-seropositive bison. Anal Chem 85(22):11146–11152. https://doi.org/10.1021/ac403134f

    Article  CAS  PubMed  Google Scholar 

  • Bernard RF, Grant EHC (2019) Identifying common decision problem elements for the management of emerging fungal diseases. Soc Nat Resour 32:1040–1055

    Article  Google Scholar 

  • Bernard R F, Reichard JD, Coleman JTH, Blackwood JC, Verant ML, Segers JL, Lorch JM, White JP, Moore MS, Russell AL, Katz RA, Lindner, Toomey RS, Turner GG, Frick WF, Vonhof MJ, Willis CKR, Grant EHC. Identifying research needs to inform white-nose syndrome management decisions. Conservation Science and Practice. 2020; 2 8, e220. https://doi.org/10.1111/csp2.220

    Book  Google Scholar 

  • Carstensen M, DonCarlos MW (2011) Preventing the establishment of a wildlife disease reservoir: a case study of bovine tuberculosis in wild deer in Minnesota, USA. Veter Med Int 2011:413240. https://doi.org/10.4061/2011/413240

    Article  Google Scholar 

  • Carstensen M, O’Brien DJ, Schmitt SM (2011) Public acceptance as a determinant of management strategies for bovine tuberculosis in free-ranging U.S. wildlife. Vet Microbiol 151(1–2):200–204

    Article  Google Scholar 

  • Cieza AC, Oberhauser J, Bickenbach RN, Jones TB, Ustun N, Kostanjsek JN, Morris JN, Chatterji S (2006) Health is not just the absence of disease. Int J Epidemiol 45:586–587

    Article  Google Scholar 

  • Clegg SR, Mansfield KG, Newbrook K, Sullivan LE, Blowey RW, Carter SD, Evans NJ (2015) Isolation of digital dermatitis treponemes from hoof lesions in wild north American elk (Cervus elaphus) in Washington state, USA. J Clin Microbiol 53:88–94

    Article  CAS  Google Scholar 

  • Concha C, Yan Y, Arp A, Quilarque E, Sagel A, Pérez de León A, McMillan WO, Skoda S, Scott MJ (2020) An early female lethal system of the New World screwworm, Cochliomyia hominivorax, for biotechnology-enhanced SIT. BMC Genet 21:143. https://doi.org/10.1186/s12863-020-00948-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper SK, Hoover CE, Henderson DM, Haley NJ, Mathiason CK, Hoover EA (2019) Detection of CWD in cervids by RT-QuIC assay of third eyelids. PLoS One 14(8):e0221654. https://doi.org/10.1371/journal.pone.0221654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker DJ, Riley SJ, Siemer WF (2012) Human dimensions of wildlife management. John Hopkins Univ. Press, Baltimore, p 304

    Google Scholar 

  • Decker DJ, Wild MA, Riley SJ, Siemer WF, Miller MIM, Leong KM, Powers JG, Rhyan JC (2006) Wildlife disease management: a manager’s model. Hum Dimens Wildl 11(3):151–158. https://doi.org/10.1080/10871200600669908

    Article  Google Scholar 

  • Deem SL, Karesh WB, Weisman W (2001) Putting theory into practice: wildlife health in conservation. Conserv Biol 15:1224–1233

    Article  Google Scholar 

  • DeVivo MT, Edmunds DR, Kauffman MJ, Schumaker BA, Binfet J, Kreeger TJ, Richards BJ, Schatzl HM, Cornish TE (2017) Endemic chronic wasting disease causes mule deer population decline in Wyoming. PLoS One 12(10):e0186512. https://doi.org/10.1371/journal.pone.0186512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorn ML, Mertig AG (2005) Bovine tuberculosis in Michigan: stakeholder attitudes and implications for eradication efforts. Wildl Soc Bull 33:539–552. https://doi.org/10.2193/0091-7648(2005)33[539:BTIMSA]2.0.CO;2

    Article  Google Scholar 

  • Drees KP, Lorch JM, Puechmaille SJ, Parise KL, Wibbelt G, Hoyt JR, Sun K, Jargalsaikhan A, Dalannast M, Palmer JM, Lindner DL, Kilpatrick AM, Pearson T, Keim PS, Blehert DS, Foster JT (2017) Phylogenetics of a fungal invasion: origins and widespread dispersal of white-nose syndrome. MBio 8:e01941. https://doi.org/10.1128/mBio.01941-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Edmunds DR, Kauffman MJ, Schumaker BA, Lindzey FG, Cook WE, Kreeger TJ, Googan RG, Cornish TE (2016) Chronic wasting disease drives population decline of white-tailed deer. PLoS One 11(8):e0161127. https://doi.org/10.1371/journal.pone.0161127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyles J, Furgal C (2002) Indicators in environmental health: identifying and selecting common sets. Can J Public Health 93:S62–S67

    Article  Google Scholar 

  • Felbab-Brown V (2021) Preventing pandemics through biodiversity conservation and smart wildlife trade regulation. Editorial brief in brookings blueprints for american renewal & prosperity. https://www.brookings.edu/research/preventing-pandemics-through-biodiversity-conservation-and-smart-wildlife-trade-regulation/

  • Fischer JR, Davidson WR (2005) Reducing risk factors for disease problems involving wildlife. In Proceedings, North American wildlife and natural resources conference, Washington, DC, pp 289–309

    Google Scholar 

  • Fischman RL (2003) The national wildlife refuges: coordinating a conservation system through law. Island Press, Washington, p 278

    Google Scholar 

  • Freyfogle ET, Goble DD, Wildermuth TA (2019) Wildlife law: a primer, 2nd edn. Island Press, Washington, p 339

    Book  Google Scholar 

  • Friend M, Franson JC, Ciganovich EA (1999) Field manual of wildlife diseases: general field procedures and diseases of birds. U.S. Department of the Interior, U.S. Geological Survey, p 426

    Google Scholar 

  • FWS US (2011) A national plan for assisting states, federal agencies, and tribes in managing white-nose syndrome in bats. https://pubs.er.usgs.gov/publication/70039214

  • Gillin CM, Fischer JR (2018) State management of wildlife disease. In: Ryder TR (ed) State wildlife conservation and management. John Hopkins University Press, New York, pp 176–193

    Google Scholar 

  • Gillin CM, Mawdsley JR (2018) AFWA technical report on best management practices for surveillance, management and control of chronic wasting disease. Association of Fish and Wildlife Agencies, Washington, p 111

    Google Scholar 

  • Gortázar C, Acevedo P, Ruiz-Fons F, Vicente J (2006) Disease risks and overabundance of game species. Eur J Wildl Res 52:81–87. https://doi.org/10.1007/s10344-005-0022-2

    Article  Google Scholar 

  • Gortázar C, Diez-Delgado I, Barasona JA, Vicente J, De La Fuente J, Boadella M (2015) The wild side of disease control at the wildlife-livestock-human interface: a review. Front Vet Sci 1:27. https://doi.org/10.3389/fvets.2014.00027

    Article  PubMed  PubMed Central  Google Scholar 

  • Grant EHC, Muths E, Katz RA, Canessa S, Adams MJ, Ballard JR, Berger L, Briggs CJ, Coleman JTH, Gray MJ, Harris MC, Harris RN, Hossack B, Huyvaert KP, Kolby J, Lips KR, Lovich RE, McCallum HI, Mendelson JR III, Nanjappa P, Olson DH, Powers JG, Richgels KLD, Russell RE, Schmidt BR, Spitzen-van der Sluijs A, Watry MK, Woodhams DC, White CL (2017) Using decision analysis to support proactive management of emerging infectious wildlife diseases. Front Ecol Environ 15(4):214–221

    Article  Google Scholar 

  • Gwizdz B (2004) NRC needs to have courage with bait ban. The Grand Rapids Press, Grand Rapids, Michigan

    Google Scholar 

  • Hayden E (2008) Biological tools revamp disease classification. Nature 453:709. https://doi.org/10.1038/453709a

    Article  CAS  PubMed  Google Scholar 

  • Henderson DM, Davenport KA, Haley NJ, Denkers ND, Mathiason CK, Hoover EA (2015a) Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion. J Gen Virol 96(Pt 1):210–219. https://doi.org/10.1099/vir.0.069906-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson DM, Denkers ND, Hoover CE, Garbino N, Mathiason CK, Hoover EA (2015b) Longitudinal detection of prion shedding in saliva and urine by chronic wasting disease-infected deer by real-time quaking-induced conversion. J Virol 89(18):9338–9347

    Article  CAS  Google Scholar 

  • Huver JR, Koprivnikar J, Johnson PTJ, Whyard S (2015) Development and application of an eDNA method to detect and quantify a pathogenic parasite in aquatic ecosystems. Ecol Appl 25:991–1002. https://doi.org/10.1890/14-1530.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killian G, Fagerstone K, Kreeger T, Miller L, Rhyan J (2007) In: Nolte DL, Arjo WM, Stalman DH (eds) Management strategies for addressing wildlife disease transmission: the case for fertility control, pp 265–271

    Google Scholar 

  • Kilpatrick AM, Randolph SE (2012) Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380(9857):1946–1955

    Article  Google Scholar 

  • Kuiken T, Leighton FA, Fouchier RAM, LeDuc JW, Peiris JSM, Schudel A, Stohr K, Osterhaus ADME (2005) Pathogen surveillance in animals. Science 309:1680–1681

    Article  CAS  Google Scholar 

  • Langwig KE, Voyles J, Wilber MQ, Frick WF, Murray KA, Bolker BM, Kilpatrick AM (2015) Context-dependent conservation responses to emerging wildlife diseases. Front Ecol Environ 13:195–202

    Article  Google Scholar 

  • Makau DN, Vander Waal K, Kincheloe J, Wells SJ (2020) Implications of farmed-cervid movements on the transmission of chronic wasting disease. Prev Vet Med 182:105088

    Article  Google Scholar 

  • Miller MW, Fischer JR (2016) The first five (or more) decades of chronic wasting disease: lessons for the five decades to come. Trans N Am Wildl Nat Resour Conf 81:110–120

    Google Scholar 

  • Miller MW, Runge JP, Holland AA, Eckert MD (2020) Hunting pressure modulates prion infection risk in mule deer herds. J Wildl Dis 56(4):781–790. https://doi.org/10.7589/JWD-D-20-00054

    Article  PubMed  Google Scholar 

  • Miller MW, Williams ES (2004) Chronic wasting disease of cervids. In: Harris DA (ed) Mad cow disease and related spongiform encephalopathies. Current topics in microbiology and immunology. Springer, Berlin, Heidelberg, p 284. https://doi.org/10.1007/978-3-662-08441-0_8

    Chapter  Google Scholar 

  • Mohler JR (1926) Foot and mouth disease, with special reference to the outbreaks in California in 1924 and Texas in 1924 and 1925. US Dept of Agric Dept 400:82

    Google Scholar 

  • Needham MD, Vaske JJ, Manfredo MJ (2004) Hunters’ behavior and acceptance of management actions related to chronic wasting disease in eight states. Hum Dimens Wildl 9:211–231

    Article  Google Scholar 

  • Nishi JS, Elkin BT, Ellsworth TR (2002) The Hook Lake wood bison recovery project. Ann N Y Acad Sci 969:229–235. https://doi.org/10.1111/j.1749-6632.2002.tb04384.x

    Article  CAS  PubMed  Google Scholar 

  • O’Brien DJ, Schmitt SM, Fitzgerald SD, Berry DE (2011) Management of bovine tuberculosis in Michigan wildlife: current status and near-term prospects. Vet Microbiol 151:179–187

    Article  Google Scholar 

  • O’Brien DJ, Schmitt SM, Fitzgerald SD, Berry DE, Hickling GJ (2006) Managing the wildlife reservoir of Mycobacterium bovis: the Michigan, USA, experience. Vet Microbiol 112:313–323

    Article  Google Scholar 

  • O’Roke EC (1928) Intestinal parasites of wild ducks and geese. Calif Fish Game 14(4):286–296

    Google Scholar 

  • Salkeld DJ (2017) Vaccines for conservation: plague, prairie dogs and black-footed ferrets as a case study. Ecohealth 14:432–437. https://doi.org/10.1007/s10393-017-1273-6

    Article  PubMed  Google Scholar 

  • Schmitt S, O'Brien D, Bruning-Fann C, Fitzgerald S (2002) Bovine tuberculosis in Michigan wildlife and livestock. Ann N Y Acad Sci 969:262–268. https://doi.org/10.1111/j.1749-6632.2002.tb04390.x

    Article  PubMed  Google Scholar 

  • Schmitt SM, Fitzgerald SD, Cooley TM, Bruning-Fann CS, Sullivan L, Berry D, Carlson T, Minnis RB, Payeur JB, Sikarski J (1997) Bovine tuberculosis in free-ranging white-tailed deer from Michigan. J Wildl Dis 33:749–758

    Article  CAS  Google Scholar 

  • Schreiner CL, Nuismer SL, Basinski AJ (2020) When to vaccinate a fluctuating wildlife population: is timing everything? J Appl Ecol 57:307–319. https://doi.org/10.1111/1365-2664.13539

    Article  PubMed  Google Scholar 

  • Sieber N, Hartikainen H, Vorburger C (2020) Validation of an eDNA-based method for the detection of wildlife pathogens in water. Dis Aquat Organ 141:171. https://doi.org/10.3354/dao03524

    Article  PubMed  Google Scholar 

  • Skoda SR, Phillips PL, Welch JB (2018) Screwworm (Diptera: Calliphoridae) in the United States: response to and elimination of the 2016–2017 outbreak in Florida. J Med Entomol 55(4):777–786. https://doi.org/10.1093/jme/tjy049

    Article  PubMed  Google Scholar 

  • Slate D, Algeo TP, Nelson KM, Chipman RB, Donovan D, Blanton JD, Niezgoda M, Rupprecht CE (2009) Oral rabies vaccination in North America: opportunities, complexities, and challenges. PLoS Negl Trop Dis 3:e549. https://doi.org/10.1371/journal.pntd.0000549

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephen C (2013) Toward a new definition of animal health: lessons from the Cohen commission and the SPS agreement. J Public Sector Manage 43:1

    Google Scholar 

  • Stephen C (2014) Toward a modernized definition of wildlife health. J Wildl Dis 50(3):427–430

    Article  Google Scholar 

  • Sutmoller P (2002) The fencing issue relative to the control of foot-and-mouth disease. In: Gibbs EPJ, Bokma BH (eds) Domestic animal/wildlife interface: issue for disease control, conservation, sustainable food production, and emerging diseases, vol 969. Annals of the New York Academy of Sciences, New York, pp 191–200

    Google Scholar 

  • Turner W, Kausrud K, Beyer W, Easterday WR, Barandongo ZR, Blaschke E, Cloete CC, Lazak J, Van Ert MN, Ganz HH, Turnbull PCB, Chr N (2016) Lethal exposure: an integrated approach to pathogen transmission via environmental reservoirs. Sci Rep 6:27311. https://doi.org/10.1038/srep27311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaske JJ, Timmons NR, Beaman J, Petchenik J (2004) Chronic wasting disease in Wisconsin: hunter behavior, perceived risk and agency trust. Hum Dimens Wildl 9:193–209

    Article  Google Scholar 

  • Voyles J, Kilpatrick AM, Collins JP, Fisher MC, Frick WF, McCallum H, Willis CKR, Blehert DS, Murray KA, Puschendorf R, Rosenblum EB, Bolker BM, Cheng TL, Langwig KE, Lindner DL, Toothman M, Wilber MQ, Briggs CJ (2014) Moving beyond too little, too late: managing emerging infectious diseases in wild populations requires international policy and partnerships. Ecohealth 12:404–407

    Article  Google Scholar 

  • Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, Wibbelt G, Blehert DS, Willis CKR (2012) Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc Natl Acad Sci USA 109:6999–7003

    Article  CAS  Google Scholar 

  • Westmore A (1918) Duck sickness in Utah. U. S. Dept. Agr., Bul. No. 672. Biol. Survey, Washington

    Google Scholar 

  • Whitworth T (2006) Keys to the genera and species of blow flies (Diptera: Calliphoridae) of America north of Mexico. Proc Entomol Soc Wash 108(3):689–725

    Google Scholar 

  • Wild M, Hobbs NT, Graham MS, Miller MW (2011) The role of predation in disease control: a comparison of selective and nonselective removal on prion disease dynamics in deer. J Wildl Dis 47(1):78–93. https://doi.org/10.7589/0090-3558-47.1.78

    Article  PubMed  Google Scholar 

  • Williams ES, Young S (1980) Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J Wildl Dis 16:89–98

    Article  CAS  Google Scholar 

  • Wittrock J, Duncan C, Stephen C (2019) A determinants of health conceptual model for fish and wildlife health. J Wildl Dis 55(2):285–297

    Article  Google Scholar 

  • Wobeser G (2002) Disease management strategies for wildlife. Revue Scientifique et Technique de l’Office Int des Epizooties 21:159–178

    Article  CAS  Google Scholar 

  • Wobeser GA (2006) Essentials of disease in wild animals. Blackwell, Ames, p 243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin M. Gillin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gillin, C.M. (2022). Health Protection and Promotion for Disease Management in Free-Ranging Wildlife Populations. In: Stephen, C. (eds) Wildlife Population Health. Springer, Cham. https://doi.org/10.1007/978-3-030-90510-1_10

Download citation

Publish with us

Policies and ethics

Navigation