Physiology of the Pituitary Hormone Secretion

  • Chapter
  • First Online:
Pituitary Adenomas

Abstract

The pituitary is considered the master gland of the organism since it controls a multiplicity of biological processes, including growth, reproduction, whole-body metabolism, or stress. This gland is comprised by two main structurally and functionally distinct areas named adenohypophysis and neurohypophysis. These regions have different developmental origins and exert diverse functional roles in whole human physiology through the secretion of a variety of hormones, including growth hormone (GH), prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyrotropin-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), melanocyte-stimulating hormone (MSH), oxytocin, and vasopressin. In this context, the secretion of pituitary hormones is a complex physiological process finely regulated by a plethora of signals. Initially, it was thought that the synthesis and release of pituitary hormones was mainly controlled by central signals. However, it is now known that each pituitary cell type has a particular profile of receptors for a wide variety of central and peripheral neuroendocrine signals, which are intracellularly integrated to finely regulate the secretion of all the types of pituitary hormones. This chapter will comprehensively review the most relevant information regarding the physiology and regulation of the secretion of the different pituitary hormones.

The chapter has been endorsed by Dr Giampaolo Trivellin , , Istituto Clinico Humanitas IRCCS, Rozzano – Milan, Italy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ach:

Acetylcholine

AC:

Adenylate cyclase

ACTH:

Adrenocorticotropic hormone

AII:

Angiotensin II

ADH:

Antidiuretic hormone

AVP:

Arginine-vasopressin

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

CRH:

Corticotropin-releasing hormone

CST:

Cortistatin

cAMP:

Cyclic adenosine monophosphate

DRDs:

DA receptors

DA:

Dopamine

DRD2:

Dopamine receptor subtype-2

FST:

Follistatin

FSH:

Follicle-stimulating hormone

GHRH:

GH-releasing hormone

GHSR1a:

GH-secretagogue receptor 1a

GHRL:

Ghrelin

GABA:

γ-aminobutyric acid

GAP:

GNRH-associated peptide

GnIH:

Gonadotropin-inhibitory hormone

GNRH:

Gonadotropin-releasing hormone

GNRHR:

Gonadotropin-releasing hormone receptor

GH:

Growth hormone

GPCR:

Seven trans-membrane G protein-coupled receptor

GHRHR:

GH-releasing hormone Receptor

hCG:

Human chorionic gonadotropin

HPA:

Hypothalamic–pituitary–adrenal

IGF1:

Insulin-like growth factor 1

KISS1:

Kisspeptin

LH:

Luteinizing hormone

MNCS:

Magnocellular neurosecretory cells

mTOR:

Mammalian Target of Rapamycin

MC1R, MC3R, MC4Rand MC5R, excludingthe ACTH-specificreceptor MC2R:

Melanocortin receptor

MRGX2:

Mas-related G-protein coupled receptor member X2

MSH:

Melanocyte-stimulating hormone

MT:

Melatonin

MAPKs:

Mitogen-activated protein kinases

NST:

Neuronostatin

NPY:

Neuropeptide Y

NA:

Noradrenaline

NE:

Norepinephrine

NPY:

Thyrotropin Releasing Hormone

OT:

Oxytocin

PAC1R:

PACAP type 1 receptors

PLC:

Phospholipase C

PACAP:

Pituitary adenylate cyclase-activating polypeptide

POMC:

Precursor hormone proopiomelanocortin

PRL-R:

PRL receptor

PRL:

Prolactin

PKA:

Protein kinase A

PKC:

Protein kinase C

PitNETs:

Pituitary neuroendocrine tumors

RFRPs:

RF-related peptides

5-HT:

Serotonin

SST:

Somatostatin

SSTR:

Somatostatin Receptor

SRIF:

Somatotropin-release inhibitory factor

SF1:

Steroidogenic factor-1

TRH:

Thyrotropin-releasing hormone

T4:

Thyroxine

T3:

Triiodothyronine

TSH:

Thyrotropin-stimulating hormone

VIP:

Vasoactive intestinal peptide

VPAC1:

Vasoactive intestinal polypeptide receptor 1

References

  1. Vazquez-Borrego MC, et al. Multiple signaling pathways convey central and peripheral signals to regulate pituitary function: lessons from human and non-human primate models. Mol Cell Endocrinol. 2017;463:4.

    Article  PubMed  Google Scholar 

  2. Dores RM. The evolution of the pituitary☆, in Reference Module in Biomedical Sciences. 2017.

    Google Scholar 

  3. Baylis PH. Posterior pituitary function in health and disease. Clin Endocrinol Metab. 1983;12(3):747–70.

    Article  CAS  PubMed  Google Scholar 

  4. Le Roith D, et al. The somatomedin hypothesis: 2001. Endocr Rev. 2001;22(1):53–74.

    Article  PubMed  Google Scholar 

  5. Vijayakumar A, et al. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Hormon IGF Res. 2010;20(1):1–7.

    Article  CAS  Google Scholar 

  6. Goldenberg N, Barkan A. Factors regulating growth hormone secretion in humans. Endocrinol Metab Clin N Am. 2007;36(1):37–55.

    Article  CAS  Google Scholar 

  7. Gahete MD, et al. Understanding the multifactorial control of growth hormone release by somatotropes: lessons from comparative endocrinology. Ann N Y Acad Sci. 2009;1163:137–53.

    Article  CAS  PubMed  Google Scholar 

  8. Grossman A, Savage MO, Besser GM. Growth hormone releasing hormone. Clin Endocrinol Metab. 1986;15(3):607–27.

    Article  CAS  PubMed  Google Scholar 

  9. Aguiar-Oliveira MH, et al. Hypothalamic abnormalities: growth failure due to defects of the GHRH receptor. Growth Hormon IGF Res. 2018;38:14–8.

    Article  CAS  Google Scholar 

  10. Corazzini V, Salvatori R. Molecular and clinical aspects of GHRH receptor mutations. Endocr Dev. 2013;24:106–17.

    Article  CAS  PubMed  Google Scholar 

  11. Alatzoglou KS, Dattani MT. Genetic causes and treatment of isolated growth hormone deficiency-an update. Nat Rev Endocrinol. 2010;6(10):562–76.

    Article  CAS  PubMed  Google Scholar 

  12. Vitali E, et al. Cyclic adenosine 3′-5′-monophosphate (cAMP) exerts proliferative and anti-proliferative effects in pituitary cells of different types by activating both cAMP-dependent protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac). Mol Cell Endocrinol. 2014;383(1–2):193–202.

    Article  CAS  PubMed  Google Scholar 

  13. Kojima M, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.

    Article  CAS  PubMed  Google Scholar 

  14. Ueberberg B, et al. Expression of ghrelin and its receptor in human tissues. Horm Metab Res. 2009;41(11):814–21.

    Article  CAS  PubMed  Google Scholar 

  15. Ghigo E, et al. Ghrelin: more than a natural GH secretagogue and/or an orexigenic factor. Clin Endocrinol. 2005;62(1):1–17.

    Article  CAS  Google Scholar 

  16. Hataya Y, et al. A low dose of ghrelin stimulates growth hormone (GH) release synergistically with GH-releasing hormone in humans. J Clin Endocrinol Metab. 2001;86(9):4552.

    Article  CAS  PubMed  Google Scholar 

  17. Kineman RD, Luque RM. Evidence that ghrelin is as potent as growth hormone (GH)-releasing hormone (GHRH) in releasing GH from primary pituitary cell cultures of a nonhuman primate (Papio anubis), acting through intracellular signaling pathways distinct from GHRH. Endocrinology. 2007;148(9):4440–9.

    Article  CAS  PubMed  Google Scholar 

  18. Gahete MD, et al. A novel human ghrelin variant (In1-ghrelin) and ghrelin-O-acyltransferase are overexpressed in breast cancer: potential pathophysiological relevance. PLoS One. 2011;6(8):e23302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Motta G, et al. Ghrelin actions on somatotropic and gonadotropic function in humans. Prog Mol Biol Transl Sci. 2016;138:3–25.

    Article  PubMed  Google Scholar 

  20. O'Toole TJ and Sharma S. Physiology, somatostatin, in StatPearls. 2019: Treasure Island (FL).

    Google Scholar 

  21. Reisine T, Bell GI. Molecular biology of somatostatin receptors. Endocr Rev. 1995;16(4):427–42.

    CAS  PubMed  Google Scholar 

  22. Lamberts SW. The role of somatostatin in the regulation of anterior pituitary hormone secretion and the use of its analogs in the treatment of human pituitary tumors. Endocr Rev. 1988;9(4):417–36.

    Article  CAS  PubMed  Google Scholar 

  23. Dalm VA, et al. Distribution pattern of somatostatin and cortistatin mRNA in human central and peripheral tissues. Clin Endocrinol. 2004;60(5):625–9.

    Article  Google Scholar 

  24. Cordoba-Chacon J, et al. Cortistatin is a key factor regulating the sex-dependent response of the GH and stress axes to fasting in mice. Endocrinology. 2016;157(7):2810–23.

    Article  CAS  PubMed  Google Scholar 

  25. de Lecea L, et al. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature. 1996;381(6579):242–5.

    Article  PubMed  Google Scholar 

  26. Gahete MD, et al. Are somatostatin and cortistatin two siblings in regulating endocrine secretions? In vitro work ahead. Mol Cell Endocrinol. 2008;286(1–2):128–34.

    Article  CAS  PubMed  Google Scholar 

  27. Deghenghi R, et al. Cortistatin, but not somatostatin, binds to growth hormone secretagogue (GHS) receptors of human pituitary gland. J Endocrinol Investig. 2001;24(1):RC1-3.

    Google Scholar 

  28. Cordoba-Chacon J, et al. Cortistatin is not a somatostatin analogue but stimulates prolactin release and inhibits GH and ACTH in a gender-dependent fashion: potential role of ghrelin. Endocrinology. 2011;152(12):4800–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ibanez-Costa A, Luque RM, Castano JP. Cortistatin: a new link between the growth hormone/prolactin axis, stress, and metabolism. Growth Hormon IGF Res. 2017;33:23–7.

    Article  CAS  Google Scholar 

  30. Broglio F, et al. Endocrine activities of cortistatin-14 and its interaction with GHRH and ghrelin in humans. J Clin Endocrinol Metab. 2002;87(8):3783–90.

    Article  CAS  PubMed  Google Scholar 

  31. Prodam F, et al. Cortistatin-8, a synthetic cortistatin-derived ghrelin receptor ligand, does not modify the endocrine responses to acylated ghrelin or hexarelin in humans. Neuropeptides. 2008;42(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  32. Samson WK, et al. Neuronostatin encoded by the somatostatin gene regulates neuronal, cardiovascular, and metabolic functions. J Biol Chem. 2008;283(46):31949–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luque RM, Kineman RD. Neuronostatin exerts actions on pituitary that are unique from its sibling peptide somatostatin. J Endocrinol. 2018;237(3):217–27.

    Article  CAS  PubMed  Google Scholar 

  34. Elrick MM, et al. Neuronostatin acts via GPR107 to increase cAMP-independent PKA phosphorylation and proglucagon mRNA accumulation in pancreatic alpha-cells. Am J Physiol Regul Integr Comp Physiol. 2016;310(2):R143–55.

    Article  PubMed  Google Scholar 

  35. Ohtaki T, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411(6837):613–7.

    Article  CAS  PubMed  Google Scholar 

  36. Luque RM, et al. Kisspeptin regulates gonadotroph and somatotroph function in nonhuman primate pituitary via common and distinct signaling mechanisms. Endocrinology. 2011;152(3):957–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gahete MD, et al. Role of the Kiss1/Kiss1r system in the regulation of pituitary cell function. Mol Cell Endocrinol. 2016;438:100–6.

    Article  CAS  PubMed  Google Scholar 

  38. Murakami Y, et al. Roles and mechanisms of action of pituitary adenylate cyclase-activating polypeptide (PACAP) in growth hormone and prolactin secretion. Endocr J. 2001;48(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  39. Peeters K, et al. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cAMP formation and growth hormone release from chicken anterior pituitary cells. Ann N Y Acad Sci. 1998;865:471–4.

    Article  CAS  PubMed  Google Scholar 

  40. Moody TW, et al. VIP and PACAP: recent insights into their functions/roles in physiology and disease from molecular and genetic studies. Curr Opin Endocrinol Diabetes Obes. 2011;18(1):61–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee LT, et al. Discovery of growth hormone-releasing hormones and receptors in nonmammalian vertebrates. Proc Natl Acad Sci U S A. 2007;104(7):2133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zanos P, et al. Oxytocin and opioid addiction revisited: old drug, new applications. Br J Pharmacol. 2018;175(14):2809–24.

    Article  CAS  PubMed  Google Scholar 

  43. Forsling ML, Wheeler MJ, Williams AJ. The effect of melatonin administration on pituitary hormone secretion in man. Clin Endocrinol. 1999;51(5):637–42.

    Article  CAS  Google Scholar 

  44. Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  45. Ibáñez-Costa A, et al. Melatonin regulates somatotrope and lactotrope function through common and distinct signaling pathways in cultured primary pituitary cells from female primates. Endocrinology. 2015;156(3):1100–10.

    Article  PubMed  Google Scholar 

  46. Brandon DH, Holditch-Davis D, Belyea M. Preterm infants born at less than 31 weeks' gestation have improved growth in cycled light compared with continuous near darkness. J Pediatr. 2002;140(2):192–9.

    Article  PubMed  Google Scholar 

  47. Lisoni P, et al. Effect of an acute injection of melatonin on the basal secretion of hypophyseal hormones in prepubertal and pubertal healthy subjects. Acta Endocrinol. 1986;111(3):305–11.

    Article  CAS  Google Scholar 

  48. Wright J, et al. The effects of exogenous melatonin on endocrine function in man. Clin Endocrinol. 1986;24(4):375–82.

    Article  CAS  Google Scholar 

  49. Kostoglou-Athanassiou I, et al. Neurohypophysial hormone and melatonin secretion over the natural and suppressed menstrual cycle in premenopausal women. Clin Endocrinol. 1998;49(2):209–16.

    Article  CAS  Google Scholar 

  50. Smythe GA, Lazarus L. Growth hormone responses to melatonin in man. Science. 1974;184(4144):1373–4.

    Article  CAS  PubMed  Google Scholar 

  51. Valcavi R, et al. Effect of oral administration of melatonin on GH responses to GRF 1–44 in normal subjects. Clin Endocrinol. 1987;26(4):453–8.

    Article  CAS  Google Scholar 

  52. Okinaga H, et al. Mechanisms of TRH-induced GH release (paradoxical response) in human somatotroph adenoma cells. Endocr J. 2005;52(6):763–7.

    Article  CAS  PubMed  Google Scholar 

  53. Adams EF, et al. Neuropeptide Y directly inhibits growth hormone secretion by human pituitary somatotropic tumours. Acta Endocrinol. 1987;115(1):149–54.

    Article  CAS  Google Scholar 

  54. Pedrazzini T, Pralong F, Grouzmann E. Neuropeptide Y: the universal soldier. Cell Mol Life Sci. 2003;60(2):350–77.

    Article  CAS  PubMed  Google Scholar 

  55. Lim CT, Grossman A, Khoo B. Normal physiology of ACTH and GH release in the hypothalamus and anterior pituitary in man. South Dartmouth, MA: MDText.com, Inc.; 2000.

    Google Scholar 

  56. Wilson ME, et al. Leptin administration increases nocturnal concentrations of luteinizing hormone and growth hormone in juvenile female rhesus monkeys. J Clin Endocrinol Metab. 2003;88(10):4874–83.

    Article  CAS  PubMed  Google Scholar 

  57. Sarmento-Cabral A, et al. Adipokines (leptin, adiponectin, resistin) differentially regulate all hormonal cell types in primary anterior pituitary cell cultures from two primate species. Sci Rep. 2017;7:43537.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Copeland KC, et al. Estrogen stimulates growth hormone and somatomedin-C in castrate and intact female baboons. J Clin Endocrinol Metab. 1984;58(4):698–703.

    Article  CAS  PubMed  Google Scholar 

  59. Burguera B, et al. Dual and selective actions of glucocorticoids upon basal and stimulated growth hormone release in man. Neuroendocrinology. 1990;51(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  60. Luque RM, et al. Cortistatin mimics somatostatin by inducing a dual, dose-dependent stimulatory and inhibitory effect on growth hormone secretion in somatotropes. J Mol Endocrinol. 2006;36(3):547–56.

    Article  CAS  PubMed  Google Scholar 

  61. Tomasi PA, et al. Opioid-receptor blockade blunts growth hormone (GH) secretion induced by GH-releasing hormone in the human male. Horm Metab Res. 1998;30(1):34–6.

    Article  CAS  PubMed  Google Scholar 

  62. Hartman ML, et al. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans. J Clin Invest. 1993;91(6):2453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gahete MD, et al. Elevated GH/IGF-I, due to somatotrope-specific loss of both IGF-I and insulin receptors, alters glucose homeostasis and insulin sensitivity in a diet-dependent manner. Endocrinology. 2011;152(12):4825–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev. 1998;19(6):717–97.

    CAS  PubMed  Google Scholar 

  65. Luque RM, et al. Obestatin plays an opposite role in the regulation of pituitary somatotrope and corticotrope function in female primates and male/female mice. Endocrinology. 2014;155(4):1407–17.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pombo M, et al. Regulation of growth hormone secretion by signals produced by the adipose tissue. J Endocrinol Investig. 1999;22(5 Suppl):22–6.

    CAS  Google Scholar 

  67. Luque RM, et al. Examination of the direct effects of metabolic factors on somatotrope function in a non-human primate model, Papio anubis. J Mol Endocrinol. 2006;37(1):25–38.

    Article  CAS  PubMed  Google Scholar 

  68. Freeman ME, et al. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000;80(4):1523–631.

    Article  CAS  PubMed  Google Scholar 

  69. Gadelha MR, et al. Genetics of pituitary adenomas. Front Horm Res. 2013;41:111–40.

    Article  CAS  PubMed  Google Scholar 

  70. Lamberts SW, Macleod RM. Regulation of prolactin secretion at the level of the lactotroph. Physiol Rev. 1990;70(2):279–318.

    Article  CAS  PubMed  Google Scholar 

  71. Liu C, Kaeser PS. Mechanisms and regulation of dopamine release. Curr Opin Neurobiol. 2019;57:46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mansour A, et al. Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiographic analysis. J Neurosci. 1990;10(8):2587–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ishibashi M, Yamaji T. Mechanism of the inhibitory action of dopamine and somatostatin on prolactin secretion from human lactotrophs in culture. J Clin Endocrinol Metab. 1985;60(3):599–606.

    Article  CAS  PubMed  Google Scholar 

  74. Denef C, Manet D, Dewals R. Dopaminergic stimulation of prolactin release. Nature. 1980;285(5762):243–6.

    Article  CAS  PubMed  Google Scholar 

  75. Chang A, Shin SH. Dopamine agonists both stimulate and inhibit prolactin release in GH4ZR7 cells. Eur J Endocrinol. 1999;141(4):387–95.

    Article  CAS  PubMed  Google Scholar 

  76. Kineman RD, Gettys TW, Frawley LS. Paradoxical effects of dopamine (DA): Gi alpha 3 mediates DA inhibition of PRL release while masking its PRL-releasing activity. Endocrinology. 1994;135(2):790–3.

    Article  CAS  PubMed  Google Scholar 

  77. Kanasaki H, et al. Role of thyrotropin-releasing hormone in prolactin-producing cell models. Neuropeptides. 2015;54:73–7.

    Article  CAS  PubMed  Google Scholar 

  78. Ansari MS, Almalki MH. Primary hypothyroidism with markedly high prolactin. Front Endocrinol (Lausanne). 2016;7:35.

    Article  Google Scholar 

  79. Bahar A, et al. Hyperprolactinemia in association with subclinical hypothyroidism. Caspian J Intern Med. 2011;2(2):229–33.

    PubMed  PubMed Central  Google Scholar 

  80. Vazquez-Borrego MC, et al. Multiple signaling pathways convey central and peripheral signals to regulate pituitary function: lessons from human and non-human primate models. Mol Cell Endocrinol. 2018;463:4–22.

    Article  CAS  PubMed  Google Scholar 

  81. Ray KP, Wallis M. Studies of TRH-induced prolactin secretion and its inhibition by dopamine, using ovine pituitary cells. Mol Cell Endocrinol. 1984;36(1–2):131–9.

    Article  CAS  PubMed  Google Scholar 

  82. Muller TD, et al. Ghrelin. Mol Metab. 2015;4(6):437–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Messini CI, et al. Effect of ghrelin and metoclopramide on prolactin secretion in normal women. J Endocrinol Investig. 2011;34(4):276–9.

    Article  CAS  Google Scholar 

  84. Messini CI, et al. Growth hormone and prolactin response to ghrelin during the normal menstrual cycle. Clin Endocrinol. 2009;71(3):383–7.

    Article  CAS  Google Scholar 

  85. Messini CI, et al. Effect of ghrelin and thyrotropin-releasing hormone on prolactin secretion in normal women. Horm Metab Res. 2010;42(3):204–8.

    Article  CAS  PubMed  Google Scholar 

  86. Mijiddorj T, et al. Stimulatory effect of pituitary adenylate-cyclase activating polypeptide (PACAP) and its PACAP type I receptor (PAC1R) on prolactin synthesis in rat pituitary somatolactotroph GH3 cells. Mol Cell Endocrinol. 2011;339(1–2):172–9.

    Article  CAS  PubMed  Google Scholar 

  87. Isaac ER, Sherwood NM. Pituitary adenylate cyclase-activating polypeptide (PACAP) is important for embryo implantation in mice. Mol Cell Endocrinol. 2008;280(1–2):13–9.

    Article  CAS  PubMed  Google Scholar 

  88. Oride A, Kanasaki H, Kyo S. Role of pituitary adenylate cyclase-activating polypeptide in modulating hypothalamic-pituitary system. Reprod Med Biol. 2018;17(3):234–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lincoln GA, Andersson H, Hazlerigg D. Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol. 2003;15(4):390–7.

    Article  CAS  PubMed  Google Scholar 

  90. Johnston JD, Skene DJ. 60 Years of neuroendocrinology: regulation of mammalian neuroendocrine physiology and rhythms by melatonin. J Endocrinol. 2015;226(2):T187–98.

    Article  CAS  PubMed  Google Scholar 

  91. Bispink G, et al. Influence of melatonin on the sleep-independent component of prolactin secretion. J Pineal Res. 1990;8(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  92. Ibanez-Costa A, et al. Melatonin regulates somatotrope and lactotrope function through common and distinct signaling pathways in cultured primary pituitary cells from female primates. Endocrinology. 2015;156(3):1100–10.

    Article  CAS  PubMed  Google Scholar 

  93. Forsling ML, Wheeler MJ, Williams AJ. The effect of melatonin administration on pituitary hormone secretion in man. Clin Endocrinol. 1999;51(5):637–42.

    Article  CAS  Google Scholar 

  94. Ninomiya T, et al. Effects of exogenous melatonin on pituitary hormones in humans. Clin Physiol. 2001;21(3):292–9.

    Article  CAS  PubMed  Google Scholar 

  95. Vale W, et al. Effects of somatostatin on the secretion of thyrotropin and prolactin. Endocrinology. 1974;95(4):968–77.

    Article  CAS  PubMed  Google Scholar 

  96. Drouin J, et al. Characteristics of the interaction between thyrotropin-releasing hormone and somatostatin for thyrotropin and prolactin release. Endocrinology. 1976;98(2):514–21.

    Article  CAS  PubMed  Google Scholar 

  97. Gooren LJ, Harmsen-Louman W, van Kessel H. Somatostatin inhibits prolactin release from the lactotroph primed with oestrogen and cyproterone acetate in man. J Endocrinol. 1984;103(3):333–5.

    Article  CAS  PubMed  Google Scholar 

  98. Borski RJ, Hyde GN, Fruchtman S. Signal transduction mechanisms mediating rapid, nongenomic effects of cortisol on prolactin release. Steroids. 2002;67(6):539–48.

    Article  CAS  PubMed  Google Scholar 

  99. Jaquet P, et al. Quantitative and functional expression of somatostatin receptor subtypes in human prolactinomas. J Clin Endocrinol Metab. 1999;84(9):3268–76.

    CAS  PubMed  Google Scholar 

  100. Fusco A, et al. Somatostatinergic ligands in dopamine-sensitive and -resistant prolactinomas. Eur J Endocrinol. 2008;158(5):595–603.

    Article  CAS  PubMed  Google Scholar 

  101. Gruszka A, Culler MD, Melmed S. Somatostatin analogs and chimeric somatostatin-dopamine molecules differentially regulate human growth hormone and prolactin gene expression and secretion in vitro. Mol Cell Endocrinol. 2012;362(1–2):104–9.

    Article  CAS  PubMed  Google Scholar 

  102. Hofland LJ, et al. The novel somatostatin analog SOM230 is a potent inhibitor of hormone release by growth hormone- and prolactin-secreting pituitary adenomas in vitro. J Clin Endocrinol Metab. 2004;89(4):1577–85.

    Article  CAS  PubMed  Google Scholar 

  103. Rivas RJ, Nishioka RS, Bern HA. In vitro effects of somatostatin and urotensin II on prolactin and growth hormone secretion in tilapia, Oreochromis mossambicus. Gen Comp Endocrinol. 1986;63(2):245–51.

    Article  CAS  PubMed  Google Scholar 

  104. Rubinfeld H, et al. Cortistatin inhibits growth hormone release from human fetal and adenoma pituitary cells and prolactin secretion from cultured prolactinomas. J Clin Endocrinol Metab. 2006;91(6):2257–63.

    Article  CAS  PubMed  Google Scholar 

  105. Grottoli S, et al. Cortistatin-17 and somatostatin-14 display the same effects on growth hormone, prolactin, and insulin secretion in patients with acromegaly or prolactinoma. J Clin Endocrinol Metab. 2006;91(4):1595–9.

    Article  CAS  PubMed  Google Scholar 

  106. Baranowska B, et al. Cortistatin and pituitary hormone secretion in rat. J Physiol Pharmacol. 2009;60(1):151–6.

    CAS  PubMed  Google Scholar 

  107. Bethea CL, et al. The effect of simultaneous versus sequential estradiol and progesterone treatments on prolactin production in monkey pituitary cell cultures. Endocrinology. 1988;122(5):1786–800.

    Article  CAS  PubMed  Google Scholar 

  108. Kiefer F, et al. Comparison of the effects of endothelin-1 and -3 on secretion of pituitary hormones in healthy male volunteers. Exp Clin Endocrinol Diabetes. 2000;108(5):378–81.

    Article  CAS  PubMed  Google Scholar 

  109. Vierhapper H, et al. Effect of endothelin-1 in man—impact on basal and stimulated concentrations of luteinizing hormone, follicle-stimulating hormone, thyrotropin, growth hormone, corticotropin, and prolactin. Metabolism. 1993;42(7):902–6.

    Article  CAS  PubMed  Google Scholar 

  110. Goodyer CG, et al. Effect of insulin-like growth factors on human foetal, adult normal and tumour pituitary function in tissue culture. Acta Endocrinol. 1986;112(1):49–57.

    Article  CAS  Google Scholar 

  111. Nikolics K, et al. A prolactin-inhibiting factor within the precursor for human gonadotropin-releasing hormone. Nature. 1985;316(6028):511–7.

    Article  CAS  PubMed  Google Scholar 

  112. Musumeci G, et al. A journey through the pituitary gland: development, structure and function, with emphasis on embryo-foetal and later development. Acta Histochem. 2015;117(4–5):355–66.

    Article  CAS  PubMed  Google Scholar 

  113. Asa SL, Ezzat S. The pathogenesis of pituitary tumors. Annu Rev Pathol. 2009;4:97–126.

    Article  CAS  PubMed  Google Scholar 

  114. Ulloa-Aguirre A, Lira-Albarrán S. Clinical applications of gonadotropins in the male. Prog Mol Biol Transl Sci. 2016;143:121–74.

    Article  CAS  PubMed  Google Scholar 

  115. Stamatiades GA, Kaiser UB. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol. 2018;463:131–41.

    Article  CAS  PubMed  Google Scholar 

  116. Ieda N, et al. GnRH(1-5), a metabolite of gonadotropin-releasing hormone, enhances luteinizing hormone release via activation of kisspeptin neurons in female rats. Endocr J. 2020;67(4):409–18.

    Article  CAS  PubMed  Google Scholar 

  117. Rudolph LM, et al. Peripheral and central mechanisms involved in the hormonal control of male and female reproduction. J Neuroendocrinol. 2016;28:7.

    Article  Google Scholar 

  118. Krsmanovic LZ, et al. The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol Metab. 2009;20(8):402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jayasena CN, et al. Direct comparison of the effects of intravenous kisspeptin-10, kisspeptin-54 and GnRH on gonadotrophin secretion in healthy men. Hum Reprod. 2015;30(8):1934–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Weinbauer GF, Hankel P, Nieschlag E. Exogenous gonadotrophin-releasing hormone (GnRH) stimulates LH secretion in male monkeys (Macaca fascicularis) treated chronically with high doses of a GnRH antagonist. J Endocrinol. 1992;133(3):439–45.

    Article  CAS  PubMed  Google Scholar 

  121. Vulliemoz NR, et al. Decrease in luteinizing hormone pulse frequency during a five-hour peripheral ghrelin infusion in the ovariectomized rhesus monkey. J Clin Endocrinol Metab. 2004;89(11):5718–23.

    Article  CAS  PubMed  Google Scholar 

  122. Lanfranco F, et al. Acylated ghrelin inhibits spontaneous luteinizing hormone pulsatility and responsiveness to naloxone but not that to gonadotropin-releasing hormone in young men: evidence for a central inhibitory action of ghrelin on the gonadal axis. J Clin Endocrinol Metab. 2008;93(9):3633–9.

    Article  CAS  PubMed  Google Scholar 

  123. Kluge M, et al. Ghrelin suppresses secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in women. J Clin Endocrinol Metab. 2012;97(3):E448–51.

    Article  CAS  PubMed  Google Scholar 

  124. Hadjidakis DJ, et al. Differences between somatostatin-28 and somatostatin-14 with respect to their biological effects in healthy humans and acromegalics. Clin Physiol Biochem. 1986;4(6):372–83.

    CAS  PubMed  Google Scholar 

  125. Chiodera P, et al. Inhibition by somatostatin of LH-RH-induced LH release in normal menstruating women. Gynecol Obstet Investig. 1986;22(1):17–21.

    Article  CAS  Google Scholar 

  126. Narayanaswamy S, et al. Subcutaneous infusion of kisspeptin-54 stimulates gonadotrophin release in women and the response correlates with basal oestradiol levels. Clin Endocrinol. 2016;84(6):939–45.

    Article  CAS  Google Scholar 

  127. Jayasena CN, et al. The effects of kisspeptin-10 on reproductive hormone release show sexual dimorphism in humans. J Clin Endocrinol Metab. 2011;96(12):E1963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ramaswamy S, Gibbs RB, Plant TM. Studies of the localisation of kisspeptin within the pituitary of the rhesus monkey (Macaca mulatta) and the effect of kisspeptin on the release of non-gonadotropic pituitary hormones. J Neuroendocrinol. 2009;21(10):795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cagnacci A, Elliott JA, Yen SS. Amplification of pulsatile LH secretion by exogenous melatonin in women. J Clin Endocrinol Metab. 1991;73(1):210–2.

    Article  CAS  PubMed  Google Scholar 

  130. Nordlund JJ, Lerner AB. The effects of oral melatonin on skin color and on the release of pituitary hormones. J Clin Endocrinol Metab. 1977;45(4):768–74.

    Article  CAS  PubMed  Google Scholar 

  131. Lisoni P, et al. Effect of an acute injection of melatonin on the basal secretion of hypophyseal hormones in prepubertal and pubertal healthy subjects. Acta Endocrinol. 1986;111(3):305–11.

    Article  CAS  Google Scholar 

  132. Luboshitzky R, et al. Long-term melatonin administration does not alter pituitary-gonadal hormone secretion in normal men. Hum Reprod. 2000;15(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  133. Chrousos GP, Brown T, Bercu BB. Pharmacologic effects of melatonin on hypothalamic-adenohypophyseal function in the nonhuman primate. Neuroendocrinology. 1982;34(5):343–6.

    Article  CAS  PubMed  Google Scholar 

  134. Tsutsui K, et al. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun. 2000;275(2):661–7.

    Article  CAS  PubMed  Google Scholar 

  135. George JT, et al. Effect of gonadotropin-inhibitory hormone on luteinizing hormone secretion in humans. Clin Endocrinol. 2017;86(5):731–8.

    Article  CAS  Google Scholar 

  136. Clarke IJ, et al. Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology. 2008;149(11):5811–21.

    Article  CAS  PubMed  Google Scholar 

  137. Kadokawa H, et al. Bovine C-terminal octapeptide of RFamide-related peptide-3 suppresses luteinizing hormone (LH) secretion from the pituitary as well as pulsatile LH secretion in bovines. Domest Anim Endocrinol. 2009;36(4):219–24.

    Article  CAS  PubMed  Google Scholar 

  138. Son YL, et al. Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LbetaT2 cells. Endocrinology. 2012;153(5):2332–43.

    Article  CAS  PubMed  Google Scholar 

  139. Kalra SP, Crowley WR. Neuropeptide Y: a novel neuroendocrine peptide in the control of pituitary hormone secretion, and its relation to luteinizing hormone. Front Neuroendocrinol. 1992;13(1):1–46.

    CAS  PubMed  Google Scholar 

  140. Watanobe H, et al. Neuropeptide Y potentiates the luteinizing hormone (LH) response to LH-releasing hormone in men. Biochem Biophys Res Commun. 1994;200(2):1111–7.

    Article  CAS  PubMed  Google Scholar 

  141. Kaynard AH, et al. Third-ventricular infusion of neuropeptide Y suppresses luteinizing hormone secretion in ovariectomized rhesus macaques. Endocrinology. 1990;127(5):2437–44.

    Article  CAS  PubMed  Google Scholar 

  142. Sowers JR, Rice BF, Blanchard S. Effect of dexamethsone on luteinizing hormone and follicle stimulating hormone responses to LHRH and to clomiphene in the follicular phase of women with normal menstrual cycles. Horm Metab Res. 1979;11(8):478–80.

    Article  CAS  PubMed  Google Scholar 

  143. Veldhuis JD, Lizarralde G, Iranmanesh A. Divergent effects of short term glucocorticoid excess on the gonadotropic and somatotropic axes in normal men. J Clin Endocrinol Metab. 1992;74(1):96–102.

    CAS  PubMed  Google Scholar 

  144. Ying SY. Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr Rev. 1988;9(2):267–93.

    Article  CAS  PubMed  Google Scholar 

  145. Blumenfeld Z, Ritter M. Inhibin, activin, and follistatin in human fetal pituitary and gonadal physiology. Ann N Y Acad Sci. 2001;943:34–48.

    Article  CAS  PubMed  Google Scholar 

  146. Hayes FJ, et al. Importance of inhibin B in the regulation of FSH secretion in the human male. J Clin Endocrinol Metab. 2001;86(11):5541–6.

    Article  CAS  PubMed  Google Scholar 

  147. Stouffer RL, et al. Human recombinant activin-A alters pituitary luteinizing hormone and follicle-stimulating hormone secretion, follicular development, and steroidogenesis, during the menstrual cycle in rhesus monkeys. J Clin Endocrinol Metab. 1993;77(1):241–8.

    CAS  PubMed  Google Scholar 

  148. Gregory SJ, Kaiser UB. Regulation of gonadotropins by inhibin and activin. Semin Reprod Med. 2004;22(3):253–67.

    Article  CAS  PubMed  Google Scholar 

  149. Bilezikjian LM, et al. Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin. Mol Cell Endocrinol. 2012;359(1–2):43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Welt CK, Crowley WF Jr. Activin: an endocrine or paracrine agent? Eur J Endocrinol. 1998;139(5):469–71.

    Article  CAS  PubMed  Google Scholar 

  151. Fingscheidt U, et al. Regulation of gonadotrophin secretion by inhibin, testosterone and gonadotrophin-releasing hormone in pituitary cell cultures of male monkeys. J Endocrinol. 1998;159(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  152. Matsumoto AM, Bremner WJ. Modulation of pulsatile gonadotropin secretion by testosterone in man. J Clin Endocrinol Metab. 1984;58(4):609–14.

    Article  CAS  PubMed  Google Scholar 

  153. Abs R, et al. Endocrine consequences of long-term intrathecal administration of opioids. J Clin Endocrinol Metab. 2000;85(6):2215–22.

    Article  CAS  PubMed  Google Scholar 

  154. Pende A, et al. Evaluation of the effects induced by four opiate drugs, with different affinities to opioid receptor subtypes, on anterior pituitary LH, TSH, PRL and GH secretion and on cortisol secretion in normal men. Biomed Pharmacother. 1986;40(5):178–82.

    CAS  PubMed  Google Scholar 

  155. Mauras N, Rogol AD, Veldhuis JD. Appraising the instantaneous secretory rates of luteinizing hormone and testosterone in response to selective mu opiate receptor blockade in late pubertal boys. J Androl. 1987;8(4):203–9.

    Article  CAS  PubMed  Google Scholar 

  156. Pirahanchi YJI. Physiology, thyroid stimulating hormone (TSH). StatPearls, 2019.

    Google Scholar 

  157. Hinkle PM, Gehret AU, Jones BW. Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci. 2012;6:180.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bargi-Souza P, Kucka M, Bjelobaba I, Tomić M, Janjic MM, Nunes MT, Stojilkovic SS. Loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells. Endocrinology. 2015;156(1):242–54.

    Article  PubMed  Google Scholar 

  159. Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ. International Union of Basic and Clinical Pharmacology. CV. Somatostatin receptors: structure, function, ligands, and new nomenclature. Pharmacol Rev. 2018;70(4):763–835.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Spoudeas HA, Matthews DR, Brook CG, Hindmarsh PC. The effect of changing somatostatin tone on the pituitary growth hormone and thyroid-stimulating hormone responses to their respective releasing factor stimuli. J Clin Endocrinol Metabol. 1992;75(2):453–8.

    CAS  Google Scholar 

  161. Samuels MHRE. Central hypothyroidism. Endocrinol Metab Clin N Am. 1992;21:903–19.

    Article  CAS  Google Scholar 

  162. Reichlin S. Somatostatin. N Engl J Med. 1983;309:1495–501.

    Article  CAS  PubMed  Google Scholar 

  163. Gancel A, Vuillermet P, Legrand A, Catus F, Thomas F, Kuhn JM. Effects of a slow-release formulation of the new somatostatin analogue lanreotide in TSH-secreting pituitary adenomas. Clin Endocrinol. 1994;40:3.

    Google Scholar 

  164. Beck-Peccoz PPL. Medical management of thyrotropin-secreting pituitary adenomas. Pituitary. 2002;5(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  165. Theodoropoulou M, Stalla GK. Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol. 2013;34(3):228–52.

    Article  CAS  PubMed  Google Scholar 

  166. Diego Ferone FG, Arvigo M, Resmini E, Boschetti M, Teti C, Esposito D, Minuto F. The clinical–molecular interface of somatostatin, dopamine and their receptors in pituitary pathophysiology. J Mol Endocrinol. 2009;42(5):361–70.

    Article  PubMed  Google Scholar 

  167. Burrow GN, May PB, Spaulding SW, Donabedian RK. TRH and dopamine interactions affecting pituitary hormones secretion. J Clin Endocrinol Metab. 1977;45(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  168. Scanlon MF, Weightman DR, Shale DJ, Mora B, Heath M, Snow MH, Lewis M, Hall R. Dopamine is a physiological regulator of thyrotrophin (TSH) secretion in normal man. Clin Endocrinol. 1979;10(1):7–15.

    Article  CAS  Google Scholar 

  169. Rodriguez F, Jolin T. The role of somatostatin and/or dopamine in basal and TRH-stimulated TSH release in food-restricted rats. Eur J Endocrinol. 1991;125(2):186–91.

    Article  CAS  Google Scholar 

  170. Spaulding SW, Burrow GN, Donabedian R, van Woert M. L-DOPA suppression of thyrotropin-releasing hormone response in man. J Clin Endocrinol Metab. 1972;35:182–5.

    Article  CAS  PubMed  Google Scholar 

  171. Besses GS, Burrow GN, Spaulding SW, Donabedian RK. Dopamine infusion acutely inhibits the TSH and prolactin response to TRH. J Clin Endocrinol Metab. 1975;41:985–8.

    Article  CAS  PubMed  Google Scholar 

  172. Leebaw WF, Lee LA, Woolf PD. Dopamine affects basal and augmented pituitary hormone secretion. J Clin Endocrinol Metab. 1978;47:480–7.

    Article  CAS  PubMed  Google Scholar 

  173. Refetoff SFV, Rapoport B, Friesen HG. Interrelationships in the regulation of TSH and pro-lactin secretion in man: effects of L-dopa, TRH and thyroid hormone in various combinations. J Clin Endocrinol Metab. 1974;38:450–7.

    Article  CAS  PubMed  Google Scholar 

  174. Felt VNJ. Effect of bromocryptine on the secretion of thyrotropic hormone TSH, prolactin Pr, human growth hormone HGH, thyroxine T4 and triiodothyroxine T3 in hypothyroidism. Horm Metab Res. 1977;9:274–7.

    Article  CAS  PubMed  Google Scholar 

  175. Lee ECP, Rao H, et al. Effect of acute high dose dobutamine administration on serum thyrotrophin TSH. Clin Endocrinol Oxf. 1999;50:487–92.

    Article  CAS  PubMed  Google Scholar 

  176. Melnikov M, et al. Dopaminergic therapeutics in multiple sclerosis: focus on Th17-cell functions. J Neuroimmune Pharmacol. 2019;15:37.

    Article  PubMed  Google Scholar 

  177. Savvidou OMM, Goumenos S, Flevas D, Papagelopoulos P, Moutsatsou P. Glucocorticoid signaling and osteoarthritis. Mol Cell Endocrinol. 2019;480:153–66.

    Article  CAS  PubMed  Google Scholar 

  178. Vazquez-Borrego MC, Gahete MD, Martínez-Fuentes AJ, Fuentes-Fayos AC, Castaño JP, Kineman RD, Luque RM. Multiple signaling pathways convey central and peripheral signals to regulate pituitary function: lessons from human and non-human primate models. Mol Cell Endocrinol. 2018;463:4–22.

    Article  CAS  PubMed  Google Scholar 

  179. Trainer PJ, Holly J, Medbak S, Rees LH, Besser GM. The effect of recombinant IGF-I on anterior pituitary function in healthy volunteers. Clin Endocrinol. 1994;41(6):801–7.

    Article  CAS  Google Scholar 

  180. Delitala G, Grossman A, Besser GM. The participation of hypothalamic dopamine in morphine-induced prolactin release in man. Clin Endocrinol. 1983;19(4):437–44.

    Article  CAS  Google Scholar 

  181. Pende A. e.a., Evaluation of the effects induced by four opiate drugs, with different affinities to opioid receptor subtypes, on anterior pituitary LH, TSH, PRL and GH secretion and on cortisol secretion in normal men. Biomed Pharmacother. 1986;40(5):178–82.

    CAS  PubMed  Google Scholar 

  182. Roti E. e.a., Dermorphin, A new opioid peptide, stimulates thyrotropin secretion in normal subjects. J Endocrinol Investig. 1984;7(3):211–4.

    Article  CAS  Google Scholar 

  183. Drouin J. 60 Years of POMC: transcriptional and epigenetic regulation of POMC gene expression. J Mol Endocrinol. 2016;56(4):T99–T112.

    Article  CAS  PubMed  Google Scholar 

  184. Grammatopoulos DK. Insights into mechanisms of corticotropin-releasing hormone receptor signal transduction. Br J Pharmacol. 2012;166(1):85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nezi M, Mastorakos G, Mouslech Z. Corticotropin releasing hormone and the immune/inflammatory response. In: Feingold KR, et al., editors. Endotext. South Dartmouth (MA): Editors; 2000.

    Google Scholar 

  186. Aguilera G, et al. Corticotropin releasing hormone receptors: two decades later. Peptides. 2004;25(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  187. Luque RM, et al. Evidence that endogenous SST inhibits ACTH and ghrelin expression by independent pathways. Am J Physiol Endocrinol Metab. 2006;291(2):E395–403.

    Article  CAS  PubMed  Google Scholar 

  188. Lanfranco F, et al. Ghrelin and anterior pituitary function. Front Horm Res. 2010;38:206–11.

    Article  CAS  PubMed  Google Scholar 

  189. Ibáñez-Costa A, et al. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features. Sci Rep. 2015;5:8714.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Chuang JC, et al. Ghrelin mediates stress-induced food-reward behavior in mice. J Clin Invest. 2011;121(7):2684–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Maruna P, Gurlich R, Rosicka M. Ghrelin as an acute-phase reactant during postoperative stress response. Horm Metab Res. 2008;40(6):404–9.

    Article  CAS  PubMed  Google Scholar 

  192. Brzozowski T, et al. Exogenous and endogenous ghrelin in gastroprotection against stress-induced gastric damage. Regul Pept. 2004;120(1–3):39–51.

    Article  CAS  PubMed  Google Scholar 

  193. Schmid DA, et al. Ghrelin stimulates appetite, imagination of food, GH, ACTH, and cortisol, but does not affect leptin in normal controls. Neuropsychopharmacology. 2005;30(6):1187–92.

    Article  CAS  PubMed  Google Scholar 

  194. Lengyel AM. Novel mechanisms of growth hormone regulation: growth hormone-releasing peptides and ghrelin. Braz J Med Biol Res. 2006;39(8):1003–11.

    Article  CAS  PubMed  Google Scholar 

  195. Kanasaki H, et al. Interactions between two different G protein-coupled receptors in reproductive hormone-producing cells: the role of PACAP and its receptor PAC1R. Int J Mol Sci. 2016;17:10.

    Article  Google Scholar 

  196. Propato-Mussafiri R, et al. Pituitary adenylate cyclase-activating polypeptide releases 7B2, adrenocorticotrophin, growth hormone and prolactin from the mouse and rat clonal pituitary cell lines AtT-20 and GH3. J Endocrinol. 1992;132(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  197. Hensen J, et al. Effects of incremental infusions of arginine vasopressin on adrenocorticotropin and cortisol secretion in man. J Clin Endocrinol Metab. 1988;66(4):668–71.

    Article  CAS  PubMed  Google Scholar 

  198. Antoni FA. Novel ligand specificity of pituitary vasopressin receptors in the rat. Neuroendocrinology. 1984;39(2):186–8.

    Article  CAS  PubMed  Google Scholar 

  199. Bankir L, Bichet DG, Morgenthaler NG. Vasopressin: physiology, assessment and osmosensation. J Intern Med. 2017;282(4):284–97.

    Article  CAS  PubMed  Google Scholar 

  200. Kovacs KJ, Sawchenko PE. Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J Neurosci. 1996;16(1):262–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Stafford PJ, et al. The pituitary-adrenal response to CRF-41 is unaltered by intravenous somatostatin in normal subjects. Clin Endocrinol. 1989;30(6):661–6.

    Article  CAS  Google Scholar 

  202. Broglio F, et al. Ghrelin secretion is inhibited by either somatostatin or cortistatin in humans. J Clin Endocrinol Metab. 2002;87(10):4829–32.

    Article  CAS  PubMed  Google Scholar 

  203. Hofland LJ. Somatostatin and somatostatin receptors in Cushing's disease. Mol Cell Endocrinol. 2008;286(1–2):199–205.

    Article  CAS  PubMed  Google Scholar 

  204. Brown TJ, Blaustein JD. 1-(o-Chlorophenyl)-1 (p-chlorophenyl)2,2,2-trichloroethane induces functional progestin receptors in the rat hypothalamus and pituitary gland. Endocrinology. 1984;115(6):2052–8.

    Article  CAS  PubMed  Google Scholar 

  205. Kraicer J, Gajewski TC, Moor BC. Release of pro-opiomelanocortin-derived peptides from the pars intermedia and pars distalis of the rat pituitary: effect of corticotrophin-releasing factor and somatostatin. Neuroendocrinology. 1985;41(5):363–73.

    Article  CAS  PubMed  Google Scholar 

  206. Shimon I, et al. Somatostatin receptor (SSTR) subtype-selective analogues differentially suppress in vitro growth hormone and prolactin in human pituitary adenomas. Novel potential therapy for functional pituitary tumors. J Clin Invest. 1997;100(9):2386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Weeke J, Hansen AP, Lundaek K. Inhibition by somatostatin of basal levels of serum thyrotropin (TSH) in normal men. J Clin Endocrinol Metab. 1975;41(1):168–71.

    Article  CAS  PubMed  Google Scholar 

  208. van der Hoek J, et al. Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am J Physiol Endocrinol Metab. 2005;289(2):E278–87.

    Article  PubMed  Google Scholar 

  209. Allolio B, et al. Effect of oral morphine and naloxone on pituitary-adrenal response in man induced by human corticotropin-releasing hormone. Acta Endocrinol. 1987;114(4):509–14.

    Article  CAS  Google Scholar 

  210. Naber D, et al. Naloxone effects on beta-endorphin, cortisol, prolactin, growth hormone, HVA and MHPG in plasma of normal volunteers. Psychopharmacology. 1981;74(2):125–8.

    Article  CAS  PubMed  Google Scholar 

  211. Geer EB, et al. Stimulation of the hypothalamic-pituitary-adrenal axis with the opioid antagonist nalmefene. Pituitary. 2005;8(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  212. Pfeiffer A, et al. Effects of a kappa-opioid agonist on adrenocorticotropic and diuretic function in man. Horm Metab Res. 1986;18(12):842–8.

    Article  CAS  PubMed  Google Scholar 

  213. Waltman C, et al. Spontaneous and glucocorticoid-inhibited adrenocorticotropic hormone and cortisol secretion are similar in healthy young and old men. J Clin Endocrinol Metab. 1991;73(3):495–502.

    Article  CAS  PubMed  Google Scholar 

  214. Arvat E, et al. Effects of dexamethasone and alprazolam, a benzodiazepine, on the stimulatory effect of hexarelin, a synthetic GHRP, on ACTH, cortisol and GH secretion in humans. Neuroendocrinology. 1998;67(5):310–6.

    Article  CAS  PubMed  Google Scholar 

  215. Roelfsema F, Aoun P, Veldhuis JD. Pulsatile cortisol feedback on ACTH secretion is mediated by the glucocorticoid receptor and modulated by gender. J Clin Endocrinol Metab. 2016;101(11):4094–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Brown CH. Magnocellular neurons and posterior pituitary function. Compr Physiol. 2016;6(4):1701–41.

    Article  PubMed  Google Scholar 

  217. Larkin S, Ansorge O. Development and microscopic anatomy of the pituitary gland. In: Feingold KR, et al., editors. Endotext. South Dartmouth, MA: Editors; 2000.

    Google Scholar 

  218. Brown CH, et al. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol. 2013;25(8):678–710.

    Article  CAS  PubMed  Google Scholar 

  219. Kimura T, et al. Structure and expression of a human oxytocin receptor. Nature. 1992;356(6369):526–9.

    Article  CAS  PubMed  Google Scholar 

  220. Russell JA, Leng G. Sex, parturition and motherhood without oxytocin? J Endocrinol. 1998;157(3):343–59.

    Article  CAS  PubMed  Google Scholar 

  221. Dale HH. On some physiological actions of ergot. J Physiol. 1906;34(3):163–206.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Jones C, et al. Oxytocin and social functioning. Dialogues Clin Neurosci. 2017;19(2):193–201.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Mohr E, et al. Expression of the vasopressin and oxytocin genes in rats occurs in mutually exclusive sets of hypothalamic neurons. FEBS Lett. 1988;242(1):144–8.

    Article  CAS  PubMed  Google Scholar 

  224. Lozic M, et al. Vasopressin, central autonomic control and blood pressure regulation. Curr Hypertens Rep. 2018;20(2):11.

    Article  PubMed  Google Scholar 

  225. Robertson GL. The regulation of vasopressin function in health and disease. Recent Prog Horm Res. 1976;33:333–85.

    CAS  PubMed  Google Scholar 

  226. Cesselin F. Opioid and anti-opioid peptides. Fundam Clin Pharmacol. 1995;9(5):409–33.

    Article  CAS  PubMed  Google Scholar 

  227. Martin R, Voigt KH. Enkephalins co-exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis. Nature. 1981;289(5797):502–4.

    Article  CAS  PubMed  Google Scholar 

  228. Opioids, in LiverTox: Clinical and research information on drug-induced liver injury. 2012: Bethesda (MD).

    Google Scholar 

  229. Wood CE, Silbiger J. Does cortisol inhibit vasopressin secretion in sheep? Domest Anim Endocrinol. 1988;5(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  230. Travis RH, Share L. Vasopressin-renin-cortisol interrelations. Endocrinology. 1971;89(1):246–53.

    Article  CAS  PubMed  Google Scholar 

  231. Livesey JH, et al. The effects of cortisol, vasopressin (AVP), and corticotropin-releasing factor administration on pulsatile adrenocorticotropin, alpha-melanocyte-stimulating hormone, and AVP secretion in the pituitary venous effluent of the horse. Endocrinology. 1988;123(2):713–20.

    Article  CAS  PubMed  Google Scholar 

  232. Phillips PA, et al. Angiotensin II-induced thirst and vasopressin release in man. Clin Sci (Lond). 1985;68(6):669–74.

    Article  CAS  Google Scholar 

  233. Kilcoyne MM, Hoffman DL, Zimmerman EA. Immunocytochemical localization of angiotensin II and vasopressin in rat hypothalamus: evidence for production in the same neuron. Clin Sci (Lond). 1980;59(Suppl 6):57s–60s.

    Article  CAS  Google Scholar 

  234. Brooks VL, Keil LC, Reid IA. Role of the renin-angiotensin system in the control of vasopressin secretion in conscious dogs. Circ Res. 1986;58(6):829–38.

    Article  CAS  PubMed  Google Scholar 

  235. Morton JJ, et al. The role of plasma osmolality, angiotensin II and dopamine in vasopressin release in man. Clin Endocrinol. 1985;23(2):129–38.

    Article  CAS  Google Scholar 

  236. Dluzen DE, Muraoka S, Landgraf R. Olfactory bulb norepinephrine depletion abolishes vasopressin and oxytocin preservation of social recognition responses in rats. Neurosci Lett. 1998;254(3):161–4.

    Article  CAS  PubMed  Google Scholar 

  237. Ottesen B, et al. Vasoactive intestinal peptide (VIP) stimulates oxytocin and vasopressin release from the neurohypophyis. Endocrinology. 1984;115(4):1648–50.

    Article  CAS  PubMed  Google Scholar 

  238. Koenig JI, et al. Potential involvement of galanin in the regulation of fluid homeostasis in the rat. Regul Pept. 1989;24(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  239. Dayanithi G, Cazalis M, Nordmann JJ. Relaxin affects the release of oxytocin and vasopressin from the neurohypophysis. Nature. 1987;325(6107):813–6.

    Article  CAS  PubMed  Google Scholar 

  240. Christensen JD, Hansen EW, Fjalland B. Interleukin-1 beta stimulates the release of vasopressin from rat neurohypophysis. Eur J Pharmacol. 1989;171(2–3):233–5.

    Article  CAS  PubMed  Google Scholar 

  241. Mains RE, Eipper BA. Synthesis and secretion of corticotropins, melanotropins, and endorphins by rat intermediate pituitary cells. J Biol Chem. 1979;16(254):7885–94.

    Article  Google Scholar 

  242. Takahashi A. Melanocyte-stimulating hormone. In: Handbook of hormones; 2016. p. 120-e16B-7.

    Google Scholar 

  243. Ellacott KL, Cone RD. The role of the central melanocortin system in the regulation of food intake and energy homeostasis: lessons from mouse models. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361(1471):1265–74.

    Article  CAS  Google Scholar 

  244. Begriche K, et al. Genetic dissection of the functions of the melanocortin-3 receptor, a seven-transmembrane G-protein-coupled receptor, suggests roles for central and peripheral receptors in energy homeostasis. J Biol Chem. 2011;286(47):40771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol. 2019;241(1):R1–R33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Saporiti F, et al. Melanocortin-1 receptor positively regulates human artery endothelial cell migration. Cell Physiol Biochem. 2019;52(6):1339–60.

    Article  CAS  PubMed  Google Scholar 

  247. Stojilkovic SS, Tabak J, Bertram R. Ion channels and signaling in the pituitary gland. Endocr Rev. 2010;31(6):845–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. R Vázquez-Martínez R, Malagón MM, Castaño JP, Tonon MC,Vaudry H, Gracia-Navarro F. Amphibian melanotrope subpopulations respond differentially to hypothalamic Secreto-inhibitors. Neuroendocrinology. 2001;73:426–34.

    Google Scholar 

  249. Roubos EW, Scheenen WJ, Jenks BG. Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity. Ann N Y Acad Sci. 2005;1040:172–83.

    Article  CAS  PubMed  Google Scholar 

  250. Kuribara M, et al. BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression. Gen Comp Endocrinol. 2010;169(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  251. van den Hurk MJ, et al. Expression and characterization of the extracellular ca(2+)-sensing receptor in melanotrope cells of Xenopus laevis. Endocrinology. 2003;144(6):2524–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl M. Luque .

Editor information

Editors and Affiliations

Ethics declarations

 This work was funded by the Junta de Andalucía (BIO-0139, P20_00442), MINECO/MECD (FPU16/05059, FPU16/06190, FPU17/00263, PID2019-105564RB-100), and CIBERobn. CIBER is an initiative of Instituto de Salud Carlos III, Ministerio de Sanidad, Servicios Sociales e Igualdad, Spain.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fuentes-Fayos, A.C. et al. (2022). Physiology of the Pituitary Hormone Secretion. In: Tamagno, G., Gahete, M.D. (eds) Pituitary Adenomas. Springer, Cham. https://doi.org/10.1007/978-3-030-90475-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90475-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90474-6

  • Online ISBN: 978-3-030-90475-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation