Optomechanical Sensing

  • Chapter
  • First Online:
Single Molecule Sensing Beyond Fluorescence

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1065 Accesses

Abstract

In this chapter, we present a cavity optomechanical sensor. Utilizing the rigidity of the optical spring in a quivering whispering gallery microcavity, single protein molecules can be detected at high signal-to-noise ratio. In addition to its high sensitivity, such a sensor also offers an effective detection area that is many orders of magnitude larger than plasmonic counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Most of this section is reproduced/adapted with permission from Ref. [53]. Copyright 2016 ©Springer Nature.

  2. 2.

    Most of this section is reproduced/adapted with permission from Ref. [35]. Copyright 2014 ©The Optical Society.

  3. 3.

    The absorption coefficients are available from https://refractiveindex.info.

  4. 4.

    Most of this section is reproduced/adapted with permission from Ref. [53]. Copyright 2016 ©Springer Nature.

References

  1. M. S. Hanay, S. Kelber, A. K. Naik, D. Chi, S. Hentz, E. C. Bullard, E. Colinet, L. Duraffourg, and M. L. Roukes. Single-protein nanomechanical mass spectrometry in real time. Nature Nanotech., 7:602–608, 2012.

    Article  CAS  Google Scholar 

  2. Marek Piliarik and Vahid Sandoghdar. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nature Communications, 5:4495, 2013.

    Article  Google Scholar 

  3. A. Serpengüzel, G. Griffel, and S. Arnold. Excitation of resonances of microspheres on an optical fiber. Opt. Lett., 20(7):654–656, Apr. 1995.

    Google Scholar 

  4. F. Vollmer, S. Arnold, and D. Keng. Single virus detection from the reactive shift of a whispering-gallery mode. Proceedings of the National Academy of Sciences, 105(52):20701–20704, 2008.

    Article  CAS  Google Scholar 

  5. Tao Lu, Hansuek Lee, Tong Chen, Steven Herchak, Ji-Hun Kim, Scott E. Fraser, Richard C. Flagan, and Kerry Vahala. High sensitivity nanoparticle detection using optical microcavities. Proceedings of the National Academy of Sciences, 108(15):5976–5979, 2011.

    Article  Google Scholar 

  6. JG Zhu, SK Ozdemir, YF **ao, L Li, LN He, DR Chen, and L Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nature Photonics, 4(1):46–49, January 2010.

    Google Scholar 

  7. Robert W. Boyd and John E. Heebner. Sensitive disk resonator photonic biosensor. Appl. Opt., 40(31):5742–5747, Nov. 2001.

    Google Scholar 

  8. Joachim Knittel, Jon D. Swaim, David L. McAuslan, George A. Brawley, and Warwick P. Bowen. Back-scatter based whispering gallery mode sensing. Scientific Reports, 3:2974, Aug. 2013.

    Google Scholar 

  9. Saverio Avino, Anika Krause, Rosa Zullo, Antonio Giorgini, Pietro Malara, Paolo De Natale, Hans Peter Loock, and Gianluca Gagliardi. Direct sensing in liquids using whispering-gallery-mode droplet resonators. Advanced Optical Materials, 2(12):1155–1159, 2014.

    Google Scholar 

  10. KJ Vahala. Optical microcavities. Nature, 424(6950):839–846, 8 2003.

    Google Scholar 

  11. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko. Ultimate Q of optical microsphere resonators. Optics Letters, 21(7):453–455, Apr. 1996.

    Google Scholar 

  12. DK Armani, TJ Kippenberg, SM Spillane, and KJ Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421(6926):925–928, Feb. 27 2003.

    Google Scholar 

  13. Hansuek Lee, Tong Chen, Jiang Li, Ki Youl Yang, Seokmin Jeon, Oskar Painter, and Kerry J. Vahala. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 6(6):369–373, June 2012.

    Google Scholar 

  14. Lue Wu, Heming Wang, Qifan Yang, Qingxin Ji, Boqiang Shen, Chengying Bao, Maodong Gao, and Kerry Vahala. Greater than one billion Q factor for on-chip microresonators. Optics Letters, 45(18):5129–5131, 2020.

    Article  Google Scholar 

  15. Xudong Fan, Ian M. White, Siyka I. Shopova, Hongying Zhu, Jonathan D. Suter, and Yuze Sun. Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2):8 – 26, 2008.

    Article  CAS  Google Scholar 

  16. Tao Lu, Tsu-Te Judith Su, Kerry J. Vahala, and Scott Fraser. Split frequency sensing methods and systems. US Patent, pages US 8,593,638 B2, November 2013. preliminary filing in Oct. 2008.

    Google Scholar 

  17. Po Dong, Long Chen, Qianfan Xu, and Michal Lipson. On-chip generation of high-intensity short optical pulses using dynamic microcavities. Opt. Lett., 34(15):2315–2317, Aug. 2009.

    Google Scholar 

  18. Jiang Li, Hansuek Lee, and Kerry J. Vahala. Low-noise Brillouin laser on a chip at 1064 nm. Opt. Lett., 39(2):287–290, Jan. 2014.

    Google Scholar 

  19. Eric P. Ostby and Kerry J. Vahala. Yb-doped glass microcavity laser operation in water. Optics Letters, 34(8):1153–1155, 2009.

    Article  Google Scholar 

  20. Ivan S. Grudinin, Andrey B. Matsko, and Lute Maleki. Brillouin lasing with a CaF\(_2\) whispering gallery mode resonator. Phys. Rev. Lett., 102:043902, Jan. 2009.

    Google Scholar 

  21. H. Rokhsari, T. Kippenberg, T. Carmon, and K.J. Vahala. Radiation-pressure-driven micro-mechanical oscillator. Opt. Express, 13(14):5293–5301, Jul. 2005.

    Google Scholar 

  22. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Physical Review Letters, 95:033901, Jul. 2005.

    Google Scholar 

  23. Tal Carmon, Hossein Rokhsari, Lan Yang, Tobias J. Kippenberg, and Kerry J. Vahala. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Physical Review Letters, 94:223902, June 2005.

    Google Scholar 

  24. Matt Eichenfield, Ryan Camacho, Jasper Chan, Kerry J. Vahala, and Oskar Painter. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 459:550–555, May 2009.

    Google Scholar 

  25. Siddharth Tallur, Suresh Sridaran, and Sunil A. Bhave. A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator. Opt. Express, 19(24):24522–24529, Nov. 2011.

    Google Scholar 

  26. Michael A. Taylor, Alex Szorkovszky, Joachim Knittel, Kwan H. Lee, Terry G. McRae, and Warwick P. Bowen. Cavity optoelectromechanical regenerative amplification. Opt. Express, 20(12):12742–12751, June 2012.

    Google Scholar 

  27. Wei C. Jiang, **yuan Lu, Jidong Zhang, and Qiang Lin. High-frequency silicon optomechanical oscillator with an ultra low threshold. Opt. Express, 20(14):15991–15996, July 2012.

    Google Scholar 

  28. **ankai Sun, King Y. Fong, Chi **ong, Wolfram H. P. Pernice, and Hong X. Tang. Ghz optomechanical resonators with high mechanical Q factor in air. Opt. Express, 19(22):22316–22321, Oct. 2011.

    Google Scholar 

  29. Yang Deng, Fenfei Liu, Zayd C. Leseman, and Mani Hossein-Zadeh. Thermo-optomechanical oscillator for sensing applications. Opt. Express, 21(4):4653–4664, Feb. 2013.

    Google Scholar 

  30. Kyu Hyun Kim, Gaurav Bahl, Wonsuk Lee, **g Liu, Matthew Tomes, Xudong Fan, and Tal Carmon. Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light: Science & Applications, 2, 2013.

    Google Scholar 

  31. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett., 98(24):243104, 2011.

    Google Scholar 

  32. Venkata R. Dantham, Stephen Holler, Curtis Barbre, David Keng, Vasily Kolchenko, and Stephen Arnold. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Letters, 13(7):3347–3351, 2013.

    Article  CAS  Google Scholar 

  33. Martin D. Baaske, Matthew R. Foreman, and Frank Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nature Nanotechnology, 9:933–939, 2014.

    Article  CAS  Google Scholar 

  34. Bumki Min, Eric Ostby, Volker Sorger, Erick Ulin-Avila, Lan Yang, **ang Zhang, and Kerry Vahala. High-Q surface plasmon polariton whispering gallery microcavity. Nature, 457(7228):455–458, January 2009.

    Google Scholar 

  35. Wenyan Yu, Wei C. Jiang, Qiang Lin, and Tao Lu. Coherent optomechanical oscillation of a silica microsphere in an aqueous environment. Opt. Express, 22(18):21421–21426, Sept. 2014.

    Google Scholar 

  36. T Bagci, A Simonsen, S Schmid, L G Villanueva, E Zeuthen, J Appel, J M Taylor, A S\(\oslash \)rensen, K Usami, A Schliesser, and E S Polzik. Optical detection of radio waves through a nanomechanical transducer. Nature, 507(7490):81–5, 3 2014.

    Google Scholar 

  37. Yuma Okazaki, Imran Mahboob, Koji Onomitsu, Satoshi Sasaki, Shuji Nakamura, Nobu-Hisa Kaneko, and Hiroshi Yamaguchi. Dynamical coupling between a nuclear spin ensemble and electromechanical phonons. Nature Communications, 9:2993, 2018.

    Article  Google Scholar 

  38. Bei-Bei Li, George Brawley, Hamish Greenall, Stefan Forstner, Eoin Sheridan, Halina Rubinsztein-Dunlop, and Warwick P. Bowen. Ultrabroadband and sensitive cavity optomechanical magnetometry. Photon. Res., 8(7):1064–1071, Jul. 2020.

    Google Scholar 

  39. S. Forstner, S. Prams, J. Knittel, E.D. van Ooijen, J.D. Swaim, G.I. Harris, A. Szorkovszky, W.P. Bowen, and J. Rubinsztein-Dunlop. Cavity Optomechanical Magnetometer. Phys. Rev. Lett.108, 120801, 2012.

    Article  CAS  Google Scholar 

  40. Alexander G. Krause, Martin Winger, Tim D. Blasius, Qiang Lin, and Oskar Painter. A high-resolution microchip optomechanical accelerometer. Nature Photonics, 6:768–772, 2012.

    Article  CAS  Google Scholar 

  41. F. Zhou, Y. Bao, R. Madugani, D.A. Long, J.J. Gorman, and T.W. LeBrun. Broadband thermomechanically limited sensing with an optomechanical accelerometer. Optica, 8:350–356, 2021.

    Article  Google Scholar 

  42. F. Guzman Cervantes, L. Kumanchik, J. Pratt, and J.M. Taylor. High sensitivity optomechanical reference accelerometer over 10 kHz. Applied Physics Letters104, 221111, 2014.

    Google Scholar 

  43. O. Gerberding, F.G. Cervantes, J. Melcher, J.R. Pratt, and J.M. Taylor. Optomechanical reference accelerometer. Metrologia52, 654, 2015.

    Article  Google Scholar 

  44. Sahar Basiri-Esfahani, Ardalan Armin, Stefan Forstner, and Warwick P. Bowen. Precision ultrasound sensing on a chip. Nature Communications, 10:132, 2019.

    Article  Google Scholar 

  45. W.J. Westerveld, M. Mahmud-Ul-Hasan, R. Shnaiderman, V. Ntziachristos, X. Rottenberg, S. Severi, and V. Rochus. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nature Photonics, 15, 341–345 2021

    Article  CAS  Google Scholar 

  46. E. Gavartin, P. Verlot, and T.J. Kippenberg. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nature Nanotechnology7, 509–514, 2012.

    Article  CAS  Google Scholar 

  47. G.I. Harris, D.L. McAuslan, T.M. Stace, A.C. Doherty, and W.P. Bowen. Minimum requirements for feedback enhanced force sensing. Physical Review Letters111, 103603, 2013.

    Article  Google Scholar 

  48. T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor. Quantum correlations from a room-temperature optomechanical cavity. Science, 356(6344):1265–1268, 2017.

    Article  CAS  Google Scholar 

  49. T. Purdy, P.L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and C. Regal. Optomechanical Raman-ratio thermometry. Physical Review A92 031802, 2015.

    Google Scholar 

  50. R. Singh, and T.P. Purdy. Detecting Acoustic Blackbody Radiation with an Optomechanical Antenna. Physical Review Letters125, 120603, 2020.

    Article  CAS  Google Scholar 

  51. Fenfei Liu, Seyedhamidreza Alaie, Zayd C. Leseman, and Mani Hossein-Zadeh. Sub-pg mass sensing and measurement with an optomechanical oscillator. Opt. Express, 21(17):19555–19567, Aug. 2013.

    Google Scholar 

  52. G. Bahl, Kyu H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon. Brillouin cavity optomechanics with microfluiuidic devices. Nature Communications, 4:1994, 2013.

    Google Scholar 

  53. Wenyan Yu, Wei C. Jiang, Qiang Lin, and Tao Lu. Cavity optomechanical spring sensing of single molecules. Nature Communications, 7:12311, 2016.

    Article  Google Scholar 

  54. Markus Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86:1391–1452, Dec. 2014.

    Google Scholar 

  55. Ivan Favero and Khaled Karrai. Optomechanics of deformable optical cavities. Nature Photon., 3:201–205, Mar. 2009.

    Article  CAS  Google Scholar 

  56. Dries Van Thourhout and Joris Roels. Optomechanical device actuation through the optical gradient force. Nature Photonics, 4(4):211–217, Apr. 2010.

    Article  Google Scholar 

  57. F. Marquardt and S. M. Girvin. Optomechanics. Physics, 2:40, 2009.

    Article  Google Scholar 

  58. V.B. Braginsky, S.E. Strigin, and S.P. Vyatchanin. Parametric oscillatory instability in Fabry-Perot interferometer. Physics Letters A, 287:331–338, September 2001.

    Google Scholar 

  59. Vladimir B Braginsky, Sergey E Strigin, and Sergey P Vyatchanin. Analysis of parametric oscillatory instability in power recycled LIGO interferometer. Physics Letters A, 305:111 – 124, 2002.

    Google Scholar 

  60. H. A. Haus, Waves and fields in optoelectronics, Prentice Hall, Inc., 1984.

    Google Scholar 

  61. Qiang Lin, Jessie Rosenberg, **aoshun Jiang, Kerry J. Vahala, and Oskar Painter. Mechanical oscillation and cooling actuated by the optical gradient force. Phys. Rev. Lett., 103:103601, Aug. 2009.

    Google Scholar 

  62. W. Coffey, Y.P. Kalmykov, and J.T. Waldron. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry, and Electrical Engineering. Series in contemporary chemical physics. World Scientific, 2004.

    Google Scholar 

  63. Tobias J. Kippenberg and Kerry J. Vahala. Cavity opto-mechanics. Optics Express, 15(25):17172–17205, Dec 2007.

    Article  Google Scholar 

  64. Mani Hossein-Zadeh and Kerry J. Vahala. Observation of optical spring effect in a microtoroidal optomechanical resonator. Optics Letters, 32(12):1611–1613, June 2007.

    Google Scholar 

  65. T. J. Kippenberg and K. J. Vahala. Cavity optomechanics: Back-action at the mesoscale. Science, 321(5893):1172–1176, 2008.

    Article  CAS  Google Scholar 

  66. P. S. Waggoner and H. G. Craighead. Micro- and nanomechanical sensors for envinronmental, chemical, and biological detection. Lab on a Chip, 7:1238, 2007.

    Article  CAS  Google Scholar 

  67. J. L. Arlett, E. B. Myers, and M. L. Roukes. Comparative advantages of mechanical biosensors. Nature Nanotech., 6:203–215, 2011.

    Article  CAS  Google Scholar 

  68. Fenfei Liu and M. Hossein-Zadeh. Mass sensing with optomechanical oscillation. Sensors Journal, IEEE, 13(1):146–147, Jan. 2013.

    Google Scholar 

  69. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop. Cavity optomechanical magnetometer. Phys. Rev. Lett., 108:120801, Mar. 2012.

    Google Scholar 

  70. K. H. Kim and X. Fan. Surface sensitive microfluidic optomechanical ring resonator sensors. Appl. Phys. Lett., 105:191101, 2014.

    Article  Google Scholar 

  71. Mani Hossein-Zadeh, Hossein Rokhsari, Ali Hajimiri, and Kerry J. Vahala. Characterization of a radiation-pressure-driven micromechanical oscillator. Physical Review A, 74:023813, Aug. 2006.

    Google Scholar 

  72. Chi **ong, **ankai Sun, King Y. Fong, and Hong X. Tang. Integrated high frequency aluminum nitride optomechanical resonators. Appl. Phy, 100:171111, 2012.

    Google Scholar 

  73. Ian M. White and Xudong Fan. On the performance quantification of resonant refractive index sensors. Opt. Express, 16(2):1020–1028, Jan. 2008.

    Google Scholar 

  74. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer. Shift of whispering-gallery modes in microspheres by protein absorption. 28(4):272–274, February 2003.

    Google Scholar 

  75. Iwao Teraoka, Stephen Arnold, and Frank Vollmer. Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium. J. Opt. Soc. Am. B, 20(9):1937–1946, Sep. 2003.

    Google Scholar 

  76. F. Vollmer and S. Arnold. Whispering-gallery-mode biosening: label-free detection down to single molecules. Nature Methods, 5:591–596, 2008.

    Article  CAS  Google Scholar 

  77. Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer. Whispering gallery mode sensors. Adv. Opt. Photon., 7(2):168–240, June 2015.

    Google Scholar 

  78. Caterina Ciminelli, Francesco Dell’Olio, Carlo E. Campanella, and Mario N. Armenise. Photonic technologies for angular velocity sensing. Adv. Opt. Photon., 2(3):370–404, Sept. 2010.

    Google Scholar 

  79. Alexander G. Krause, Martin Winger, Tim D. Blasius, Qiang Lin, and Oskar Painter. A high-resolution microchip optomechanical accelerometer. Nature Photon., 6:768–772, 2012.

    Article  CAS  Google Scholar 

  80. Tindaro Ioppolo, Ulas Ayaz, and M. Volkan Ötügen. Tuning of whispering gallery modes of spherical resonators using an external electric field. Opt. Express, 17(19):16465–16479, Sept. 2009.

    Google Scholar 

  81. Nebiyu A. Yebo, Sreeprasanth Pulinthanathu Sree, Elisabeth Levrau, Christophe Detavernier, Zeger Hens, Johan A. Martens, and Roel Baets. Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. Opt. Express, 20(11):11855–11862, May 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, W., Jiang, W.C., Lin, Q., Lu, T. (2022). Optomechanical Sensing. In: Bowen, W., Vollmer, F., Gordon, R. (eds) Single Molecule Sensing Beyond Fluorescence . Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-90339-8_4

Download citation

Publish with us

Policies and ethics

Navigation