Emitters of Antimicrobials

  • Chapter
  • First Online:
Releasing Systems in Active Food Packaging

Abstract

Among the modern active packaging systems are the emitters of antimicrobial agents that are intended to improve storage life and food safety. Currently, there is a tendency to study the continuous release of volatile antimicrobial agents from sachets attached to the container, incorporated directly into films or applied as coatings to the surfaces of the containers. Among the active agents are SO2, CO2, ClO2, ethanol and essential oils. The various research studies reviewed have demonstrated their effectiveness in minimizing the deterioration of food of animal and plant origin caused by microbial contamination. By selecting the ideal antimicrobial emitter, it is possible to control the quality of food and improve the safety of foods along all steps of food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi R, Jain R, Nelson K, Busche D, Lynn DM, Abbott NL. Polymeric films containing sodium chlorite that release disinfectant gas upon activation with UV light. Adv Funct Mater. 2019;29(7):1804851.

    Article  Google Scholar 

  • Akrami F, Rodríguez-Lafuente A, Bentayeb K, Pezo D, Ghalebi SR, Nerín C. Antioxidant and antimicrobial active paper based on Zataria (Zataria multiflora) and two cumin cultivars (Cuminum cyminum). LWT-Food Sci Technol. 2015;60(2):929–33.

    Article  CAS  Google Scholar 

  • Almasi H, Jahanbakhsh Oskouie M, Saleh A. A review on techniques utilized for design of controlled release food active packaging. Crit Rev Food Sci Nutr. 2020:1–21.

    Google Scholar 

  • Al-Naamani L, Dobretsov S, Dutta J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innovative Food Sci Emerg Technol. 2016;38:231–7.

    Article  CAS  Google Scholar 

  • Altan A, Aytac Z, Uyar T. Carvacrol loaded electrospun fibrous films from zein and poly (lactic acid) for active food packaging. Food Hydrocoll. 2018;81:48–59.

    Article  CAS  Google Scholar 

  • Asdagh A, Sani IK, Pirsa S, Amiri S, Shariatifar N, Eghbaljoo-Gharehgheshlaghi H, et al. Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. J Polym Environ. 2021;29(1):335–49.

    Article  CAS  Google Scholar 

  • Atarés L, Chiralt A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol. 2016;48:51–62.

    Article  Google Scholar 

  • Ayala-Zavala JF, González-Aguilar GA. Optimizing the use of garlic oil as antimicrobial agent on fresh-cut tomato through a controlled release system. J Food Sci. 2010;75(7):M398–405.

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Zavala JF, del Toro-Sánchez L, Alvarez-Parrilla E, Soto-Valdez H, Martín-Belloso O, Ruiz-Cruz S, González-Aguilar GA. Natural antimicrobial agents incorporated in active packaging to preserve the quality of fresh fruits and vegetables. Stewart Postharvest Rev. 2008;4(3):1–9.

    Article  Google Scholar 

  • Bai Z, Cristancho DE, Rachford AA, Reder AL, Williamson A, Grzesiak AL. Controlled release of antimicrobial ClO2 gas from a two-layer polymeric film system. J Agric Food Chem. 2016;64(45):8647–52.

    Article  CAS  PubMed  Google Scholar 

  • Becerril R, Gómez-Lus R, Goni P, López P, Nerín C. Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus. Anal Bioanal Chem. 2007;388(5–6):1003–11.

    Article  CAS  PubMed  Google Scholar 

  • Butnaru E, Stoleru E, Brebu MA, Darie-Nita RN, Bargan A, Vasile C. Chitosan-based bionanocomposite films prepared by emulsion technique for food preservation. Materials. 2019;12(3):373.

    Article  CAS  PubMed Central  Google Scholar 

  • Cai C, Ma R, Duan M, Lu D. Preparation and antimicrobial activity of thyme essential oil microcapsules prepared with gum arabic. RSC Adv. 2019;9(34):19740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canales D, Montoille L, Rivas LM, Ortiz JA, Yañez-S M, Rabagliati FM, et al. Fungicides films of low-density polyethylene (LDPE)/inclusion complexes (Carvacrol and Cinnamaldehyde) against Botrytis Cinerea. Coatings. 2019;9(12):795.

    Article  CAS  Google Scholar 

  • Chai HE, Hwang CA, Huang L, Wu VC, Sheen LY. Feasibility and efficacy of using gaseous chlorine dioxide generated by sodium chlorite-acid reaction for decontamination of foodborne pathogens on produce. Food Control. 2020;108:106839.

    Article  CAS  Google Scholar 

  • Chen X, Mu W, Peter S, Zhang X, Zhu Z. The effects of constant concentrations of sulfur dioxide on the quality evolution of postharvest table grapes. J Food Nutr Res. 2016;55(2)

    Google Scholar 

  • Chen X, Zhu Z, Zhang X, Oana Antoce A, Mu W. Modeling the microbiological shelf life of table grapes and evaluating the effects of constant concentrations of sulfur dioxide. J Food Process Preserv. 2017;41(4):e13058.

    Article  Google Scholar 

  • Chen M, Chen X, Ray S, Yam K. Stabilization and controlled release of gaseous/volatile active compounds to improve safety and quality of fresh produce. Trends Food Sci Technol. 2020a;95:33–44.

    Article  CAS  Google Scholar 

  • Chen M, Chen X, Yam K. Encapsulation complex of chlorine dioxide in α-cyclodextrin: structure characterization and release property. Food Control. 2020b;107:106783.

    Article  CAS  Google Scholar 

  • Chiabrando V, Giuggioli N, Maghenzani M, Peano C, Giacalone G. Improving storability of strawberries with gaseous chlorine dioxide in perforated clamshell packaging. Polish J Food Nutr Sci. 2018;68(2)

    Google Scholar 

  • Dantigny P, Guilmart A, Radoi F, Bensoussan M, Zwietering M. Modeling the effect of ethanol on growth rate of food spoilage molds. Int J Food Microbiol. 2005;98(3):261–9.

    Article  CAS  PubMed  Google Scholar 

  • Day BPF. Active packaging. In: Coles R, McDowell D, Kirwan M, editors. Food packaging technologies. Boca Raton. ISBN: 9781444392180: CRC Press; 2003. p. 282–302.

    Google Scholar 

  • Demitri C, De Benedictis VM, Madaghiele M, Corcione CE, Maffezzoli A. Nanostructured active chitosan-based films for food packaging applications: Effect of graphene stacks on mechanical properties. Measurement. 2016;90:418–23.

    Article  Google Scholar 

  • Díaz-Galindo EP, Nesic A, Bautista-Baños S, Dublan García O, Cabrera-Barjas G. Corn-starch-based materials incorporated with cinnamon oil emulsion: physico-chemical characterization and biological activity. Foods. 2020;9(4):475.

    Article  PubMed Central  Google Scholar 

  • Dong Z, Xu F, Ahmed I, Li Z, Lin H. Characterization and preservation performance of active polyethylene films containing rosemary and cinnamon essential oils for Pacific white shrimp packaging. Food Control. 2018;92:37–46.

    Article  CAS  Google Scholar 

  • Escárcega-Galaz AA, Sánchez-Machado DI, López-Cervantes J, Sanches-Silva A, Madera-Santana TJ, Paseiro-Losada P. Mechanical, structural and physical aspects of chitosan-based films as antimicrobial dressings. Int J Biol Macromol. 2018;116:472–81.

    Article  PubMed  Google Scholar 

  • Esquivel-Chávez F, Colín-Chávez C, Virgen-Ortiz JJ, Martínez-Téllez MÁ, de Jesús Avena-Bustillos R, Peña-Madrigal G, Miranda-Ackerman MA. Control of mango decay using antifungal sachets containing of thyme oil/modified starch/agave fructans microcapsules. Future Foods. 2021;3:100008.

    Article  Google Scholar 

  • Fu YB, Xu WC, Fu L, Li DL, Wang JQ. Preparation of an active packaging material and its application on strawberry preservation. In: Advanced materials research, vol. 1120. Trans Tech Publications Ltd; 2015. p. 643–7.

    Google Scholar 

  • Golden CE, Berrang ME, Kerr WL, Harrison MA. Slow-release chlorine dioxide gas treatment as a means to reduce Salmonella contamination on spices. Innovative Food Sci Emerg Technol. 2019;52:256–61.

    Article  CAS  Google Scholar 

  • Haghighi-Manesh S, Azizi MH. Active packaging systems with emphasis on its applications in dairy products. J Food Process Eng. 2017;40(5):e12542.

    Article  Google Scholar 

  • Hansen AÅ, Moen B, Rødbotten M, Berget I, Pettersen MK. Effect of vacuum or modified atmosphere packaging (MAP) in combination with a CO2 emitter on quality parameters of cod loins (Gadus morhua). Food Packag Shelf Life. 2016;9:29–37.

    Article  Google Scholar 

  • Hempel AW, O’Sullivan MG, Papkovsky DB, Kerry JP. Use of smart packaging technologies for monitoring and extending the shelf-life quality of modified atmosphere packaged (MAP) bread: application of intelligent oxygen sensors and active ethanol emitters. Eur Food Res Technol. 2013;237(2):117–24.

    Article  CAS  Google Scholar 

  • Higueras L, López-Carballo G, Hernández-Muñoz P, Catalá R, Gavara R. Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films. Int J Food Microbiol. 2014;188:53–9.

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SF, Rezaei M, Zandi M, Ghavi FF. Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chem. 2013;136(3-4):1490–5.

    Article  Google Scholar 

  • Huang C, Zhang B, Wang S, Zhang L, Wang J, Huang X, et al. Moisture-triggered release of self-produced ClO2 gas from microcapsule antibacterial film system. J Mater Sci. 2018;53(18):12704–17.

    Article  CAS  Google Scholar 

  • Huang T, Qian Y, Wei J, Zhou C. Polymeric antimicrobial food packaging and its applications. Polymers. 2019;11(3):560.

    Article  CAS  PubMed Central  Google Scholar 

  • Janjarasskul T, Tananuwong K, Kongpensook V, Tantratian S, Kokpol S. Shelf life extension of sponge cake by active packaging as an alternative to direct addition of chemical preservatives. LWT-Food Sci Technol. 2016;72:166–74.

    Article  CAS  Google Scholar 

  • Jokar M, Rahman RA, Ibrahim NA, Abdullah LC, Tan CP. Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food Bioprocess Technol. 2012;5(2):719–28.

    Article  CAS  Google Scholar 

  • Kanatt SR, Rao MS, Chawla SP, Sharma A. Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocoll. 2012;29(2):290–7.

    Article  CAS  Google Scholar 

  • Lago MA, Sendón R, de Quirós ARB, Sanches-Silva A, Costa HS, Sánchez-Machado DI, et al. Preparation and characterization of antimicrobial films based on chitosan for active food packaging applications. Food Bioprocess Technol. 2014;7(10):2932–41.

    Article  CAS  Google Scholar 

  • Latou E, Mexis SF, Badeka AV, Kontominas MG. Shelf life extension of sliced wheat bread using either an ethanol emitter or an ethanol emitter combined with an oxygen absorber as alternatives to chemical preservatives. J Cereal Sci. 2010;52(3):457–65.

    Article  CAS  Google Scholar 

  • Li Y, Ren D, Xu D. Preparation of coated corrugated box for controlled-release of chlorine dioxide and its application in strawberry preservation. Coatings. 2020;10(3):242.

    Article  CAS  Google Scholar 

  • Liakos IL, Holban AM, Carzino R, Lauciello S, Grumezescu AM. Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity. Nanomaterials. 2017;7(4):84.

    Article  PubMed Central  Google Scholar 

  • Liu Y, Wang S, Lan W, Qin W. Fabrication and testing of PVA/Chitosan bilayer films for strawberry packaging. Coatings. 2017;7(8):109.

    Article  Google Scholar 

  • Llana-Ruiz-Cabello M, Pichardo S, Maisanaba S, Puerto M, Prieto AI, Gutierrez-Praena D, et al. In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: a review. Food Chem Toxicol. 2015;81:9–27.

    Article  CAS  PubMed  Google Scholar 

  • Lucera A, Conte A, Del Nobile MA. Volatile compounds usage in active packaging systems. Antimicrob Food Packag. 2016:319–27.

    Google Scholar 

  • Ma Y, Li P, Watkins CB, Ye N, **g N, Ma H, Zhang T. Chlorine dioxide and sodium diacetate treatments in controlled atmospheres retard mold incidence and maintain quality of fresh walnuts during cold storage. Postharvest Biol Technol. 2020;161:111063.

    Article  CAS  Google Scholar 

  • Majid I, Thakur M, Nanda V. Innovative and safe packaging technologies for food and beverages: updated review. In: Innovations in technologies for fermented food and beverage industries. Springer; 2018. p. 257–87.

    Chapter  Google Scholar 

  • Mlalila N, Hilonga A, Swai H, Devlieghere F, Ragaert P. Antimicrobial packaging based on starch, poly (3-hydroxybutyrate) and poly (lactic-coglycolide) materials and application challenges. Trends Food Sci Technol. 2018;74:1–11.

    Article  CAS  Google Scholar 

  • Mu H, Gao H, Chen H, Fang X, Han Q. A novel controlled release ethanol emitter: preparation and effect on some postharvest quality parameters of Chinese bayberry during storage. J Sci Food Agric. 2017;97(14):4929–36.

    Article  CAS  PubMed  Google Scholar 

  • Muppalla SR, Kanatt SR, Chawla SP, Sharma A. Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packag Shelf Life. 2014;2(2):51–8.

    Article  Google Scholar 

  • Noshirvani N, Ghanbarzadeh B, Gardrat C, Rezaei MR, Hashemi M, Le Coz C, Coma V. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocoll. 2017;70:36–45.

    Article  CAS  Google Scholar 

  • Orsuwan A, Sothornvit R. Active banana flour nanocomposite films incorporated with garlic essential oil as multifunctional packaging material for food application. Food Bioprocess Technol. 2018;11(6):1199–210.

    Article  CAS  Google Scholar 

  • Otoni CG, Pontes SF, Medeiros EA, Soares NDF. Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. J Agric Food Chem. 2014;62(22):5214–9.

    Article  CAS  PubMed  Google Scholar 

  • Otoni CG, Espitia PJ, Avena-Bustillos RJ, McHugh TH. Trends in antimicrobial food packaging systems: emitting sachets and absorbent pads. Food Res Int. 2016;83:60–73.

    Article  CAS  Google Scholar 

  • Pasqualone A. Bread packaging: features and functions. In: Flour and breads and their fortification in health and disease prevention. Academic; 2019. p. 211–22.

    Chapter  Google Scholar 

  • Peng Y, Wu Y, Li Y. Development of tea extracts and chitosan composite films for active packaging materials. Int J Biol Macromol. 2013;59:282–9.

    Article  CAS  PubMed  Google Scholar 

  • Pereira de Abreu DA, Cruz JM, Paseiro Losada P. Active and intelligent packaging for the food industry. Food Rev Int. 2012;28(2):146–87.

    Article  CAS  Google Scholar 

  • Pereira VA Jr, de Arruda INQ, Stefani R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocoll. 2015;43:180–8.

    Article  CAS  Google Scholar 

  • Ramos M, Jiménez A, Peltzer M, Garrigós MC. Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J Food Eng. 2012;109(3):513–9.

    Article  CAS  Google Scholar 

  • Ribeiro-Santos R, Andrade M, de Melo NR, Sanches-Silva A. Use of essential oils in active food packaging: recent advances and future trends. Trends Food Sci Technol. 2017;61:132–40.

    Article  CAS  Google Scholar 

  • Saade C, Annous BA, Gualtieri AJ, Schaich KM, Liu L, Yam KL. System feasibility: designing a chlorine dioxide self-generating package label to improve fresh produce safety part II: solution casting approach. Innovative Food Sci Emerg Technol. 2018;47:110–9.

    Article  CAS  Google Scholar 

  • Sheng Q, Guo XN, Zhu KX. The effect of active packaging on microbial stability and quality of Chinese steamed bread. Packag Technol Sci. 2015;28(9):775–87.

    Article  CAS  Google Scholar 

  • Singh S, Maji PK, Lee YS, Gaikwad KK. Applications of gaseous chlorine dioxide for antimicrobial food packaging: a review. Environ Chem Lett. 2020:1–18.

    Google Scholar 

  • Sogut E, Seydim AC. Development of chitosan and polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract. Carbohydr Polym. 2018;195:180–8.

    Article  CAS  PubMed  Google Scholar 

  • Souza MP, Vaz AF, Silva HD, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG. Development and characterization of an active chitosan-based film containing quercetin. Food Bioprocess Technol. 2015;8(11):2183–91.

    Article  CAS  Google Scholar 

  • Tongnuanchan P, Benjakul S. Essential oils: extraction, bioactivities, and their uses for food preservation. J Food Sci. 2014;79(7):R1231–49.

    Article  CAS  PubMed  Google Scholar 

  • Tsironi T, Ntzimani A, Gogou E, Tsevdou M, Semenoglou I, Dermesonlouoglou E, Taoukis P. Modeling the effect of active modified atmosphere packaging on the microbial stability and shelf life of gutted sea bass. Appl Sci. 2019;9(23):5019.

    Article  CAS  Google Scholar 

  • Vasile C, Baican M. Progresses in food packaging, food quality, and safety – controlled-release antioxidant and/or antimicrobial packaging. Molecules. 2021;26(5):1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyrwa J, Barska A. Innovations in the food packaging market: active packaging. Eur Food Res Technol. 2017;243(10):1681–92.

    Article  CAS  Google Scholar 

  • **ng YG, Yun J, Li XH, Xu QL, Li WL. The effect of formulation variables on the encapsulation efficiency and SO2-release behavior of microparticles containing sulphite. In: Advanced materials research, vol. 152. Trans Tech Publications Ltd; 2011. p. 512–5.

    Google Scholar 

  • Xu W, Li D, Fu Y, Wei H. Preparation and measurement of controlled-release SO2 fungicide active packaging at room temperature. Packag Technol Sci. 2013a;26:51–8.

    Article  CAS  Google Scholar 

  • Xu W, Li D, Fu Y, Liu Z, Wang Y, Yu X, Shang W. Extending the shelf life of Victoria table grapes by high permeability and fungicide packaging at room temperature. Packag Technol Sci. 2013b;26:43–50.

    Article  CAS  Google Scholar 

  • Zanetti M, Carniel TK, Dalcanton F, dos Anjos RS, Riella HG, de Araujo PH, et al. Use of encapsulated natural compounds as antimicrobial additives in food packaging: a brief review. Trends Food Sci Technol. 2018;81:51–60.

    Article  CAS  Google Scholar 

  • Zemljič LF, Tkavc T, Vesel A, Šauperl O. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material. Appl Surf Sci. 2013;265:697–703.

    Article  Google Scholar 

  • Zhang B, Huang C, Zhang L, Wang J, Huang X, Zhao Y, et al. Application of chlorine dioxide microcapsule sustained-release antibacterial films for preservation of mangos. J Food Sci Technol. 2019;56(3):1095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Liu Y, Liu Z, Fan L, Dong T, ** Y, et al. Sustained-release antibacterial pads based on nonwovens polyethylene terephthalate modified by β-cyclodextrin embedded with cinnamaldehyde for cold fresh pork preservation. Food Packag Shelf Life. 2020;26:100554.

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was sponsored by the Technological Institute of Sonora with the PROFAPI project (2021-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Isabel Sánchez-Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Cervantes, J., Sánchez-Machado, D.I., Escárcega-Galaz, A.A., Ramírez-Wong, B., de la Mora-López, G.S., Martínez-Macias, M.d. (2022). Emitters of Antimicrobials. In: Jafari, S.M., Silva, A.S. (eds) Releasing Systems in Active Food Packaging. Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-90299-5_2

Download citation

Publish with us

Policies and ethics

Navigation