Nonsmooth Low-Rank Matrix Recovery: Methodology, Theory and Algorithm

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2021, Volume 1 (FTC 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 358))

Included in the following conference series:

  • 1211 Accesses

Abstract

Many interesting problems in statistics and machine learning can be written as \(\min _{x}F(x) =f(x) + g(x)\), where x is the model parameter, f is the loss and g is the regularizer. Examples include regularized regression in high-dimensional feature selection and low-rank matrix/tensor factorization. Sometimes the loss function and/or the regularizer is nonsmooth due to the nature of the problem, for example, f(x) could be quantile loss to induce some robustness or to put more focus on different parts of the distribution other than the mean. In this paper we propose a general framework to deal with situations when you have nonsmooth loss or regularizer. Specifically we use low-rank matrix recovery as an example to demonstrate the main idea. The framework involves two main steps: the optimal smoothing of the loss function or regularizer and then a gradient based algorithm to solve the smoothed loss. The proposed smoothing pipeline is highly flexible, computationally efficient, easy to implement and well suited for problems with high-dimensional data. Strong theoretical convergence guarantee has also been established. In the numerical studies, we used \(L_1\) loss as an example to illustrate the practicability of the proposed pipeline. Various state-of-the-art algorithms such as Adam, NAG and YellowFin all show promising results for the smoothed loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achlioptas, D., McSherry, F.: Fast computation of low-rank matrix approximations. J. ACM (JACM) 54(2), 9 (2007)

    Article  MathSciNet  Google Scholar 

  2. Alefeld, G., Chen, X.: A regularized projection method for complementarity problems with non-lipschitzian functions. Math. Comput. 77(261), 379–395 (2008)

    Article  MathSciNet  Google Scholar 

  3. Aravkin, A.Y., Kambadur, A., Lozano, A.C., Luss, R.: Sparse quantile huber regression for efficient and robust estimation. ar**v preprint ar**v:1402.4624, 2014

  4. Barnett, S.: Greatest common divisor of two polynomials. Linear Algebra Appl. 3(1), 7–9 (1970)

    Article  MathSciNet  Google Scholar 

  5. Bhojanapalli, S., Kyrillidis, A., Sanghavi, S.: Drop** convexity for faster semi-definite optimization. In: Conference on Learning Theory, pp. 530–582 (2016)

    Google Scholar 

  6. Bokde, D., Girase, S., Mukhopadhyay, D.: Matrix factorization model in collaborative filtering algorithms: a survey. Procedia Comput. Sci. 49, 136–146 (2015)

    Article  Google Scholar 

  7. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT 2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

  8. Chen, X.: First order conditions for nonsmooth discretized constrained optimal control problems. SIAM J. Control Optim. 42(6), 2004–2015 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program. 134(1), 71–99 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chen, X., Womersley, R.S., Ye, J.J.: Minimizing the condition number of a gram matrix. SIAM J. Optim. 21(1), 127–148 (2011)

    Article  MathSciNet  Google Scholar 

  11. Fan, J.: Local Polynomial Modelling and its Applications: Monographs on Statistics and Applied Probability, vol. 66. Routledge (2018)

    Google Scholar 

  12. Garg, R., Khandekar, R.: Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 337–344. ACM (2009)

    Google Scholar 

  13. Gross, D., Liu, Y.-K., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105(15), 150401 (2010)

    Article  Google Scholar 

  14. Huber, P.J.: Robust Statistics. John Wiley and Sons (1981)

    Google Scholar 

  15. Jain, P., Meka, R., Dhillon, I.S.: Guaranteed rank minimization via singular value projection. In: Advances in Neural Information Processing Systems, pp. 937–945 (2010)

    Google Scholar 

  16. Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 665–674. ACM (2013)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  18. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 8, 30–37 (2009)

    Article  Google Scholar 

  19. Markovsky, I., Usevich, K.: Low Rank Approximation. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2227-2

  20. Mount, J.: Approximation by orthogonal transform (2014). https://www.winvector.gitbuh.io/xDrift/orthApprox.pdf. Accessed 05 Sept 2018

  21. Nesterov, Yu.: A method of solving a convex programming problem with convergence rate o(1/sqr(k)). Soviet Mathematics Doklady 27, 372–376 (1983)

    MATH  Google Scholar 

  22. Nesterov, Yu.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MathSciNet  Google Scholar 

  23. Owen, A.B.: A robust hybrid of lasso and ridge regression. Contemp. Math. 443(7), 59–72 (2007)

    Google Scholar 

  24. Park, D., Kyrillidis, A., Caramanis, C., Sanghavi, S.: Finding low-rank solutions via non-convex matrix factorization, efficiently and provably. ar**v preprint ar**v:1606.03168 (2016)

  25. Picci, G.: Stochastic realization theory. In: Mathematical System Theory, pp. 213–229. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-662-08546-2_12

  26. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  Google Scholar 

  27. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  28. Sun, R., Luo, Z.-Q.: Guaranteed matrix completion via non-convex factorization. IEEE Trans. Inform. Theory 62(11), 6535–6579 (2016)

    Article  MathSciNet  Google Scholar 

  29. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  30. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Tu, S., Boczar, R., Simchowitz, M., Soltanolkotabi, M., Recht, B.: Low-rank solutions of linear matrix equations via procrustes flow. In: International Conference on Machine Learning, pp. 964–973 (2016)

    Google Scholar 

  32. Tu, W., et al.: M-estimation in low-rank matrix factorization: a general framework. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 568–577 (2019)

    Google Scholar 

  33. Christopher JCH Watkins and Peter Dayan: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

  34. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2016)

    Google Scholar 

  35. Zuyuan Yang, Y., Zhang, W.Y., **ang, Y., **e, S.: A fast non-smooth nonnegative matrix factorization for learning sparse representation. IEEE Access 4, 5161–5168 (2016)

    Article  Google Scholar 

  36. Zhang, J., Mitliagkas, I.: Yellowfin and the art of momentum tuning. ar**v preprint ar**v:1706.03471 (2017)

  37. Zhao, T., Wang, Z., Liu, H.: Nonconvex low rank matrix factorization via inexact first order oracle. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  38. Zhu, R., Niu, D., Li, Z.: Robust web service recommendation via quantile matrix factorization. In: INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, pp. 1–9. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linglong Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tu, W. et al. (2022). Nonsmooth Low-Rank Matrix Recovery: Methodology, Theory and Algorithm. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2021, Volume 1. FTC 2021. Lecture Notes in Networks and Systems, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-030-89906-6_54

Download citation

Publish with us

Policies and ethics

Navigation