Quantum Radar

  • Chapter
  • First Online:
Quantum Computing Environments

Abstract

Quantum radar is a promising technology that has been getting attraction in recent years, with possible applications in military and civilian fields. In this chapter, the historical background, developments during the last two decades, proposals that are mainly referred to as quantum radar, and their experimental implementation cases are presented. Throughout this chapter, we will use the term radar to cover both radar and lidar, since quantum “radar” is not a radar in the strict sense of the meaning. It is used as an umbrella term to cover multiple proposals, some of which are capable of only detection and not ranging, with different techniques applicable both in the optical and microwave regimes. Therefore, when the term “quantum radar” is invoked, it is used for multiple purposes that are wider than just a quantum version of the classical radar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Query used for this search in the ISI database is: (“supersensitivity” AND “fock state”) OR (“heisenberg limit” AND “fock state”) OR (“heisenberg limit” AND “squeezed state”) OR (“supersensitivity” AND “squeezed state”) OR “gaussian state illumination” OR “quantum Illumination” OR “entanglement illumination” OR “quantum radar” OR (“NOON state” AND (“standard quantum limit” OR radar)) OR (“standard quantum limit” AND heisenberg AND measurement AND entanglement) as of August 30th 2020. Afterwards, 203 articles and proceedings were checked manually and 167 of them were found to be acceptable to include into the dataset.

  2. 2.

    For convenience, in these formulas natural units with ħ = 2 are accepted, as in Ref.[74].

References

  1. Lanzagorta, M. (2011). Quantum radar. Synthesis Lectures on Quantum Computing, 3(1), 1–139. https://doi.org/10.2200/S00384ED1V01Y201110QMC005.

    Article  Google Scholar 

  2. Lloyd, S. (2008). Enhanced sensitivity of photodetection via quantum illumination. Science, 321(5895), 1463–1465. ISSN: 0036-8075. https://doi.org/10.1126/science.1160627. https://science.sciencemag.org/content/321/5895/1463.full.pdf. https://science.sciencemag.org/content/321/5895/1463.

  3. Giovannetti, V., Lloyd, S., & Maccone, L. (2001). Quantum-enhanced positioning and clock synchronization. Nature, 412(6845), 417–419. ISSN: 1476–4687. https://doi.org/10.1038/35086525.

    Article  Google Scholar 

  4. Steinhardt, A., & McCrae, J. (2003). Radar in the quantum limit. In IEEE International Symposium on Phased Array Systems and Technology (pp. 31–34).

    Google Scholar 

  5. Zaugg, T. (2004). Entangled-photon range finding system and method

    Google Scholar 

  6. Edward, H. (2005). Allen and Markos Karageorgis. In Radar systems and methods using entangled quantum particles.

    Google Scholar 

  7. Brandsema, M. J., Narayanan, R. M., & Lanzagorta, M. (2016). Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets. Quantum Information Processing, 16(1), 32. ISSN: 1573–1332. https://doi.org/10.1007/s11128-016-1494-6.

    Article  MathSciNet  Google Scholar 

  8. Afek, I., Ambar, O., & Silberberg, Y. (2010). High-NOON states by mixing quantum and classical light. Science, 328(5980), 879–881.

    Article  MathSciNet  Google Scholar 

  9. Eisert, J., & Plenio, M. B. (1999). A comparison of entanglement measures. Journal of Modern Optics, 46(1), 145–154. https://doi.org/10.1080/09500349908231260. https://www.tandfonline.com/doi/pdf/10.1080/09500349908231260. https://www.tandfonline.com/doi/abs/10.1080/09500349908231260.

  10. Horodecki, M., Horodecki, P., & Horodecki, R. (1998). Mixed-state entanglement and distillation: is there a “Bound” entanglement in nature? Physical Review Letters, 80, 5239–5242. https://doi.org/10.1103/PhysRevLett.80.5239. https://link.aps.org/doi/10.1103/PhysRevLett.80.5239.

  11. Yu, T., & Eberly, J. H. (2009). Sudden death of entanglement. Science, 323(5914), 598–601. ISSN: 0036-8075. https://doi.org/10.1126/science.1167343. https://science.sciencemag.org/content/323/5914/598.full.pdf. https://science.sciencemag.org/content/323/5914/598.

  12. Raimond, J. M., Brune, M., & Haroche, S. (2001). Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics, 73, 565–582. https://doi.org/10.1103/RevModPhys.73.565. https://link.aps.org/doi/10.1103/RevModPhys.73.565.

  13. Bennett, C. H., et al. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70, 1895–1899. https://doi.org/10.1103/PhysRevLett.70.1895. https://link.aps.org/doi/10.1103/PhysRevLett.70.1895.

  14. Mermin, N. D. (1990). Extreme quantum entanglement in a superposition of macroscopically distinct states. Physical Review Letters, 65, 1838–1840. https://doi.org/10.1103/PhysRevLett.65.1838. https://link.aps.org/doi/10.1103/PhysRevLett.65.1838.

  15. Clauser, J. F., et al. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23(15), 880–884. https://doi.org/10.1103/PhysRevLett.23.880.

    Article  Google Scholar 

  16. Maccone, L., & Ren, C. (2020). Quantum radar. Physical Review Letters, 124, 200503. https://doi.org/10.1103/PhysRevLett.124.200503. https://link.aps.org/doi/10.1103/PhysRevLett.124.200503.

  17. Luong, D., et al. (2020). Receiver operating characteristics for a prototype quantum two-mode squeezing radar. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 2041–2060.

    Article  Google Scholar 

  18. Sorelli, G., et al. (2020). Detecting a target with quantum entanglement. eprint: ar**v:2005.07116.

    Google Scholar 

  19. Chang, C. W. S., et al. (2019). Quantum-enhanced noise radar. Applied Physics Letters, 114(11), 112601. https://doi.org/10.1063/1.5085002.

    Article  Google Scholar 

  20. Tan, S.-H., et al. (2008). Quantum illumination with Gaussian states. Physical Review Letters, 101, 253601. https://doi.org/10.1103/PhysRevLett.101.253601. https://link.aps.org/doi/10.1103/PhysRevLett.101.253601.

  21. Lopaeva, E. D., et al. (2013). Experimental realization of quantum illumination. Physical Review Letters, 110, 153603. https://doi.org/10.1103/PhysRevLett.110.153603. https://link.aps.org/doi/10.1103/PhysRevLett.110.153603.

  22. Giovannetti, V., Lloyd, S., & Maccone, L. (2004). Quantum-enhanced measurements: beating the standard quantum limit. Science, 306(5700), 1330–1336. ISSN: 0036-8075. https://doi.org/10.1126/science.1104149. https://science.sciencemag.org/content/306/5700/1330.full.pdf. https://science.sciencemag.org/content/306/5700/1330.

  23. Barzanjeh, S., et al. (2015). Microwave quantum illumination. Physical Review Letters, 114, 080503. https://doi.org/10.1103/PhysRevLett.114.080503. https://link.aps.org/doi/10.1103/PhysRevLett.114.080503.

  24. Barzanjeh, S., et al. (2020). Microwave quantum illumination using a digital receiver. Science Advances, 6(19). https://doi.org/10.1126/sciadv.abb0451. https://advances.sciencemag.org/content/6/19/eabb0451.full.pdf. https://advances.sciencemag.org/content/6/19/eabb0451.

  25. Torromé, R. G., Bekhti-Winkel, N. B., & Knott, P. (2020). Introduction to quantum radar. ar**v: 2006.14238. http://arxiv.org/abs/2006.14238.

  26. Harris Corporation. (2009). Quantum sensors program. https://apps.dtic.mil/dtic/tr/fulltext/u2/a506209.pdf.

    Google Scholar 

  27. Lloyd, S. (2008). Quantum illumination. eprint: ar**v:0803.2022.

    Google Scholar 

  28. Shapiro, J. H., & Lloyd, S. (2009). Quantum illumination versus coherent-state target detection. New Journal of Physics, 11(6), 063045. https://doi.org/10.1088/1367-2630/11/6/063045.

    Article  Google Scholar 

  29. Durak, K., Jam, N., & Dindar, C. (2019). Object tracking and identification by quantum radar. ar**v:1908.06850.

    Google Scholar 

  30. Torromé, R. G., Bekhti-Winkel, N. B., & Knott, P. (2020). Quantum illumination with multiple entangled photons. ar**v:2008.09455.

    Google Scholar 

  31. Bell, J. S. (2004). On the Einstein Podolsky Rosen Paradox. In Speakable and unspeakable in quantum mechanics (pp. 14–21). Cambridge University Press.

    Google Scholar 

  32. Greenberger, D. M., et al. (1990). Bell’s theorem without inequalities. American Journal of Physics, 58(12), 1131–1143. https://doi.org/10.1119/1.16243.

    Article  MathSciNet  Google Scholar 

  33. Horodecki, M., Horodecki, P., & Horodecki, R. (1996). Separability of mixed states: necessary and sufficient conditions. Physics Letters, A 223(1), 1–8. ISSN: 0375-9601. https://doi.org/10.1016/S0375-9601(96)00706-2. http://www.sciencedirect.com/science/article/pii/S0375960196007062.

  34. Horodecki, P. (1997). Separability criterion and inseparable mixed states with positive partial transposition. Physics Letters A, 232(5), 333–339. ISSN: 0375–9601. https://doi.org/10.1016/S0375-9601(97)00416-7. http://www.sciencedirect.com/science/article/pii/S0375960197004167.

  35. Chruściński, D., & Sarbicki, G. (2014). Entanglement witnesses: construction, analysis and classification. Journal of Physics A: Mathematical and Theoretical, 47(48), 483001. https://doi.org/10.1088/1751-8113/47/48/483001.

    Article  MathSciNet  Google Scholar 

  36. Braunstein, S. L., & Caves, C. M. (1994). Statistical distance and the geometry of quantum states. Physical Review Letters, 72, 3439–3443. https://doi.org/10.1103/PhysRevLett.72.3439. https://link.aps.org/doi/10.1103/PhysRevLett.72.3439.

  37. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physics Review, 47, 777–780. https://doi.org/10.1103/PhysRev.47.777. https://link.aps.org/doi/10.1103/PhysRev.47.777.

  38. Schrödinger, E. (1935). Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften, 23(48), 807–812. ISSN: 1432–1904. https://doi.org/10.1007/BF01491891.

    Article  Google Scholar 

  39. Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67, 661–663. https://doi.org/10.1103/PhysRevLett.67.661. https://link.aps.org/doi/10.1103/PhysRevLett.67.661.

  40. Bennett, C. H., & Wiesner, S. J. (1992). Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69, 2881–2884. https://doi.org/10.1103/PhysRevLett.69.2881. https://link.aps.org/doi/10.1103/PhysRevLett.69.2881.

  41. Mattle, K., et al. (1996). Dense coding in experimental quantum communication. Physical Review Letters, 76, 4656–4659. https://doi.org/10.1103/PhysRevLett.76.4656. https://link.aps.org/doi/10.1103/PhysRevLett.76.4656.

  42. Horodecki, R., et al. (2009). Quantum entanglement. Reviews of Modern Physics, 81, 865–942. https://doi.org/10.1103/RevModPhys.81.865. https://link.aps.org/doi/10.1103/RevModPhys.81.865.

  43. Kimble, H. J. (2008). The quantum internet. Nature, 453(7198), 1023–1030. ISSN: 1476–4687. https://doi.org/10.1038/nature07127. https://doi.org/10.1038/nature07127.

  44. Amico, L., et al. (2008). Entanglement in many-body systems. Reviews of Modern Physics, 80, 517–576. https://doi.org/10.1103/RevModPhys.80.517. https://link.aps.org/doi/10.1103/RevModPhys.80.517.

  45. Dür, W., & Briegel, H. J. (2007). Entanglement purification and quantum error correction. Reports on Progress in Physics, 70(8), 1381–1424. https://doi.org/10.1088/0034-4885/70/8/r03.

    Article  MathSciNet  Google Scholar 

  46. Gühne, O., & Tóth, G. (2009). Entanglement detection. Physics Reports, 474(1), 1–75. ISSN: 0370–1573. https://doi.org/10.1016/j.physrep.2009.02.004. http://www.sciencedirect.com/science/article/pii/S0370157309000623.

  47. Plenio, M. B., & Virmani, S. (2007). An introduction to entanglement measures. Quantum Information and Computation, 7(1), 1–51. ISSN: 1533–7146.

    Article  MathSciNet  Google Scholar 

  48. Calabrese, P., & Cardy, J. (2009). Entanglement entropy and conformal field theory. Journal of Physics A: Mathematical and Theoretical, 42(50), 504005. https://doi.org/10.1088/1751-8113/42/50/504005.

    Article  MathSciNet  Google Scholar 

  49. Blatt, R., & Wineland, D. (2008). Entangled states of trapped atomic ions. Nature, 453(7198). https://doi.org/10.1038/nature07125.

  50. Heaney, L., & Vedral, V. (2009). Natural mode entanglement as a resource for quantum communication. Physical Review Letters, 103, 200502. https://doi.org/10.1103/PhysRevLett.103.200502. https://link.aps.org/doi/10.1103/PhysRevLett.103.200502.

  51. de Vicente, J. I., Spee, C., & Kraus, B. (2013). Maximally entangled set of multipartite quantum states. Physical Review Letters, 111, 110502. https://doi.org/10.1103/PhysRevLett.111.110502. https://link.aps.org/doi/10.1103/PhysRevLett.111.110502.

  52. Werner, R. F. (1989). Quantum states with Einstein-Podolsky-Rosen correlations admitting a hiddenvariable model. Physical Review A, 40, 4277–4281. https://doi.org/10.1103/PhysRevA.40.4277. https://link.aps.org/doi/10.1103/PhysRevA.40.4277.

  53. Thirring, W., et al. (2011). Entanglement or separability: the choice of how to factorize the algebra of a density matrix. The European Physical Journal D, 64(2), 181–196. ISSN: 1434–6079. https://doi.org/10.1140/epjd/e2011-20452-1.

    Article  Google Scholar 

  54. Mintert, F., Ku ś, M., & Buchleitner, A. (2004). Concurrence of mixed bipartite quantum states in arbitrary dimensions. Physical Review Letters, 92, 167902. https://doi.org/10.1103/PhysRevLett.92.167902. https://link.aps.org/doi/10.1103/PhysRevLett.92.167902.

  55. Cramer, M., Plenio, M. B., & Wunderlich, H. (2011). Measuring entanglement in condensed matter systems. Physical Review Letters, 106, 020401. https://doi.org/10.1103/PhysRevLett.106.020401. https://link.aps.org/doi/10.1103/PhysRevLett.106.020401.

  56. Bennett, C. H., et al. (1999). Quantum nonlocality without entanglement. Physical Review Letters, 59, 1070–1091. https://doi.org/10.1103/PhysRevA.59.1070. https://link.aps.org/doi/10.1103/PhysRevA.59.1070.

  57. Ollivier, H., & Zurek, W. H. (2001). Quantum discord: a measure of the quantumness of correlations. Physical Review Letters, 88, 017901. https://doi.org/10.1103/PhysRevLett.88.017901. https://link.aps.org/doi/10.1103/PhysRevLett.88.017901.

  58. Henderson, L., & Vedral, V. (2001). Classical, quantum and total correlations. Journal of Physics A: Mathematical and General, 34(35), 6899–6905. https://doi.org/10.1088/0305-4470/34/35/315.

    Article  MathSciNet  Google Scholar 

  59. Bera, A., et al. (2017). Quantum discord and its allies: a review of recent progress. Reports on Progress in Physics, 81(2), 024001. https://doi.org/10.1088/1361-6633/aa872f.

    Article  MathSciNet  Google Scholar 

  60. De Chiara, G., & Sanpera, A. (2018). Genuine quantum correlations in quantum many-body systems: a review of recent progress. Reports on Progress in Physics, 81(7), 074002. https://doi.org/10.1088/1361-6633/aabf61.

    Article  MathSciNet  Google Scholar 

  61. Streltsov, A. (2014). Quantum correlations beyond entanglement: And their role in quantum information theory. SpringerBriefs in Physics. Springer International Publishing. ISBN: 978-3319096568. https://books.google.com.tr/books?id=-rQjBQAAQBAJ.

  62. Fanchini, F. F., de Oliveira Soares Pinto, D., & Adesso, G. (2017). Lectures on general quantum correlations and their applications. Quantum Science and Technology. Springer International Publishing. ISBN: 978-3319534121. https://books.google.com.tr/books?id=G3opDwAAQBAJ.

  63. Yuen, H. P. (1986). Amplification of quantum states and noiseless photon amplifiers. Physics Letters A, 113(8), 405–407.

    Article  MathSciNet  Google Scholar 

  64. Adnane, H., Teklu, B., & Paris, M. G. A. (2019). Quantum phase communication channels assisted by non-deterministic noiseless amplifiers. JOSA B, 36(11), 2938–2945.

    Article  Google Scholar 

  65. Abram, I., & Levenson, J. A. (1994). Quantum noise in parametric amplification. In Nonlinear spectroscopy of solids (pp. 251–287). Springer.

    Google Scholar 

  66. Zavatta, A., Fiurášek, J., & Bellini, M. (2011). A high-fidelity noiseless amplifier for quantum light states. Nature Photonics, 5(1), 52–56.

    Article  Google Scholar 

  67. He, H., et al. (2020). Non-classical semiconductor photon sources enhancing the performance of classical target detection systems. Journal of Lightwave Technology, 38, 4540–4547.

    Article  Google Scholar 

  68. Boto, A. N., et al. (2000). Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Physical Review Letters, 85, 2733–2736. https://doi.org/10.1103/PhysRevLett.85.2733. https://link.aps.org/doi/10.1103/PhysRevLett.85.2733.

  69. Israel, Y., Rosen, S., & Silberberg, Y. (2014). Supersensitive polarization microscopy using NOON states of light. Physical Review Letters, 112(10), 103604.

    Article  Google Scholar 

  70. Wang, W., et al. (2019). Heisenberg-limited single-mode quantum metrology in a superconducting circuit. Nature Communications, 10(1), 1–6.

    Article  Google Scholar 

  71. Luo, C., et al. (2017). Heisenberg-limited Sagnac interferometer with multiparticle states. Physical Review A, 95(2), 023608.

    Article  Google Scholar 

  72. Zhou, Z.-Y., et al. (2017). Superresolving phase measurement with short-wavelength noon states by quantum frequency up-conversion. Physical Review Applied, 7(6), 064025.

    Article  Google Scholar 

  73. Smith III, J. F. (2009). Quantum entangled radar theory and a correction method for the effects of the atmosphere on entanglement. In Quantum information and computation VII (Vol. 7342). International Society for Optics and Photonics, 73420A.

    Google Scholar 

  74. Adesso, G., & Illuminati, F. (2007). Entanglement in continuous-variable systems: recent advances and current perspectives. Journal of Physics A: Mathematical and Theoretical, 40(28), 7821–7880. ISSN: 1751–8113. https://doi.org/10.1088/1751-8113/40/28/S01. https://iopscience.iop.org/article/10.1088/1751-8113/40/28/S01.

  75. Wang, X., et al. (2007). Quantum information with Gaussian states. Physics Reports, 448(1–4), 1–111. ISSN: 03701573. https://doi.org/10.1016/j.physrep.2007.04.005. https://linkinghub.elsevier.com/retrieve/pii/S0370157307001822.

  76. Weedbrook, C., et al. (2012). Gaussian quantum information. Reviews of Modern Physics, 84(2), 621–669. ISSN: 00346861. https://doi.org/10.1103/RevModPhys.84.621. eprint: 1110.3234.

  77. Barzanjeh, S., et al. (2019). Stationary entangled radiation from micromechanical motion. Nature, 570(7762), 480–483. ISSN: 0028–0836. https://doi.org/10.1038/s41586-019-1320-2. http://www.nature.com/articles/s41586-019-1320-2.

  78. Zhang, Z., et al. (2015). Entanglement-enhanced sensing in a lossy and noisy environment. Physical Review Letters, 114(11). ISSN: 10797114. https://doi.org/10.1103/PhysRevLett.114.110506. ar**v:1411.5969.

  79. Luong, D., Rajan, S., & Balaji, B. (2020). Quantum two-mode squeezing radar and noise radar: correlation coefficients for target detection. https://doi.org/10.1109/JSEN.2020.2971851. ar**v: 1911.09062.

  80. Shapiro, J. H. (2019). The quantum illumination story. eprint: ar**v:1910.12277.

    Google Scholar 

  81. Brandsema, M. J., Narayanan, R. M., & Lanzagorta, M. O. (2020). Correlation properties of single photon binary waveforms used in quantum radar/lidar. In A. M. Raynal & K. I. Ranney (Ed.), Radar sensor technology XXIV (p. 35). SPIE, Apr. ISBN: 9781510635937. https://doi.org/10.1117/12.2560184. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11408/2560184/Correlation-properties-of-single-photon-binary-waveforms-used-in-quantum/10.1117/12.2560184.full.

  82. Torromé, R. G., Bekhti-Winkel, N. B., & Knott, P. (2020). Quantum illumination with multiple entangled photons. ar**v preprint ar**v:2008.09455.

    Google Scholar 

  83. Gilbert, G., & Weinstein, Y. S. (2008). Aspects of practical remote quantum sensing. Journal of Modern Optics, 55(19–20), 3283–3291. https://doi.org/10.1080/09500340802428314. https://doi.org/10.1080/09500340802428314.

  84. Gilbert, G., & Hamrick, M. (2000). Practical quantum cryptography: a comprehensive analysis (part one). eprint: ar**v:quant-ph/0009027.

    Google Scholar 

  85. Barnett, S. M., Fabre, C., & Maítre, A. (2003). Ultimate quantum limits for resolution of beam displacements. The European Physical Journal D – Atomic, Molecular, Optical and Plasma Physics, 22(3), 513–519. ISSN: 1434–6079. https://doi.org/10.1140/epjd/e2003-00003-3.

    Google Scholar 

  86. Simon, C., et al. (2010). Quantum memories. The European Physical Journal D, 58(1), 1–22. ISSN: 1434-6079. https://doi.org/10.1140/epjd/e2010-00103-y.

    Article  Google Scholar 

  87. Heshami, K., et al. (2016). Quantum memories: emerging applications and recent advances. Journal of Modern Optics, 63(20), 2005–2028. PMID: 27695198. https://doi.org/10.1080/09500340.2016.1148212.

    Article  Google Scholar 

  88. Hadfield, R. H. (2009). Single-photon detectors for optical quantum information applications. Nature Photonics, 3(12), 696–705. ISSN: 1749-4893. https://doi.org/10.1038/nphoton.2009.230.

    Article  Google Scholar 

  89. Chunnilall, C. J., et al. (2014). Metrology of single-photon sources and detectors: a review. Optical Engineering, 53(8), 1–17. https://doi.org/10.1117/1.OE.53.8.081910.

    Article  Google Scholar 

  90. Maccone, L., & Riccardi, A. (2020). Squeezing metrology: a unified framework. Quantum, 4, 292. ISSN: 2521-327X. https://doi.org/10.22331/q-2020-07-09-292.

    Article  Google Scholar 

  91. Skolnik, M. (2002). Introduction to radar systems. McGraw-Hill Education. ISBN: 0072881380.

    Google Scholar 

  92. Liu, K., et al. (2014). Analysis of quantum radar cross section and its influence on target detection performance. IEEE Photonics Technology Letters, 26(11), 1146–1149.

    Article  Google Scholar 

  93. Fang, C., et al. (2018). The calculation and analysis of the bistatic quantum radar cross section for the typical 2-D plate. IEEE Photonics Journal, 10(2), 1–14.

    Article  Google Scholar 

  94. Chang, C. W. S., et al. (2018). Generating multimode entangled microwaves with a superconducting parametric cavity. Physical Review Applied, 10(4), 044019.

    Article  Google Scholar 

  95. Messaoudi, N., et al. (2020). Quantum-enhanced noise radar. Bulletin of the American Physical Society, 65.

    Google Scholar 

  96. England, D. G., Balaji, B., & Sussman, B. J. (2019). Quantum-enhanced standoff detection using correlated photon pairs. Physical Review A, 99(2), 023828.

    Article  Google Scholar 

  97. Zhang, Z., et al. (2017). Floodlight quantum key distribution: demonstrating a framework for high-rate secure communication. Physical Review A, 95, 012332. https://doi.org/10.1103/PhysRevA.95.012332. https://link.aps.org/doi/10.1103/PhysRevA.95.012332.

  98. Shapiro, J. H., et al. (2019). Quantum low probability of intercept. Journal of the Optical Society of America B: Optical Physics, 36(3), B41–B50. https://doi.org/10.1364/JOSAB.36.000B41. http://josab.osa.org/abstract.cfm?URI=josab-36-3-B41.

  99. Berchera, I. R., & Degiovanni, I. P. (2019). Quantum imaging with sub-Poissonian light: challenges and perspectives in optical metrology. Metrologia, 56(2), 024001. https://doi.org/10.1088/1681-7575/aaf7b2.

    Article  Google Scholar 

  100. Gregory, T., et al. (2020). Imaging through noise with quantum illumination. Science Advances, 6(6) (2020). https://doi.org/10.1126/sciadv.aay2652. https://advances.sciencemag.org/content/6/6/eaay2652.full.pdf. https://advances.sciencemag.org/content/6/6/eaay2652.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Durak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durak, K., Seskir, Z., Rami, B. (2022). Quantum Radar. In: Iyengar, S.S., Mastriani, M., Kumar, K.L. (eds) Quantum Computing Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-89746-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89746-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89745-1

  • Online ISBN: 978-3-030-89746-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation