Cosolvent and Complexation Systems

  • Chapter
  • First Online:
Formulating Poorly Water Soluble Drugs

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 50))

  • 1622 Accesses

Abstract

Cosolvent and polyethylene glycol (PEG)-based solubilization techniques for the delivery of poorly soluble drugs are discussed in this chapter. The properties of excipients and the physicochemical principles are presented for formulating each type of the solubilized formulations. Cosolvents are commonly used in combination with surface-active solubilizers to increase the solubilizing capacity and to improve the in vivo emulsification of self-emulsifying formulations. In PEG-based delivery systems, drug is either dispersed as micronized crystalline particles (via the formation of eutectic mixtures) or present in its amorphous state. Improvement in absorption from a PEG matrix is due to (1) fast dissolution rate of drug from the dosage forms and (2) higher transient solubility of the drug substance in gastrointestinal tract.

Various manufacturing techniques to process the solubilized formulations into oral dosage forms are also discussed in this chapter. For the formulations that are liquid under ambient conditions, encapsulation into soft gelatin or hard gelatin capsules is the most common manufacturing method. Semisolid and solid-solubilized formulations that are liquid at a higher temperature (50–70 °C) can be encapsulated into hard gelatin capsules as molten liquids at elevated temperature. Semisolid or solid matrices are formed inside the capsules when the molten materials are cooled to ambient temperature. Spray congealing and fluidized bed melt granulation are alternative manufacturing processes to convert the solubilized formulations with high melting/softening points into granules that can be readily processed into capsules or tablets. Powdered solution technology can also be applied to transform the solubilized formulation of low-dose drug into free flowing powder by absorbing the formulation into solid carriers. In addition, the interest in using cyclodextrins (CDs) for drug solubilization has proven beneficial for delivery of poorly water-soluble drugs through the formation of inclusion complexes. This chapter provides an update with studies of drug–CD inclusion complexes, characterization of the complexes, and examples of commercial products containing CDs. The current authors would like to thank and acknowledge the previous authors’ significant contributions from the first and second editions. This current third edition chapter is a revision and update of the original authors’ work from the first and second editions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Marzouqi A, Jobe B, Dowaidar A, Maestrelli F, Mura P. Evaluation of supercritical fluid technology as preparative technique of benzocaine–cyclodextrin complexes–comparison with conventional methods. J Pharm Biomed Anal. 2007;43:566–74.

    Article  CAS  PubMed  Google Scholar 

  • Al-Marzouqi AH, Elwy HM, Shehadi I, Adem A. Physicochemical properties of antifungal drug–cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J Pharm Biomed Anal. 2009;49:227–33.

    Article  CAS  PubMed  Google Scholar 

  • Anguiano-Igea S, Otero-Espinar FJ, Vila-Jato JL, Blanco-Mendez J. The properties of solid dispersions of clofibrate in polyethylene glycol. Pharm Acta Helv. 1995;80:57–66.

    Article  Google Scholar 

  • Armstrong NA, James KC, Pugh WKL. Drug migration into soft gelatin capsule shells and its effect on in-vitro availability. J Pharm Pharmacol. 1984;36:361–5.

    Article  CAS  PubMed  Google Scholar 

  • Atwood JL. Comprehensive supramolecular chemistry II. Elsevier; 2017.

    Google Scholar 

  • Bai Y, Wang J, Bashari M, Hu X, Feng T, Xu X, ** Z, Tian Y. A thermogravimetric analysis (TGA) method developed for estimating the stoichiometric ratio of solid-state α-cyclodextrin-based inclusion complexes. Thermochim Acta. 2012;541:62–9.

    Article  CAS  Google Scholar 

  • Ban MM, Chakote VR, Dhembre GN, Rajguru JR, Joshi DA. In-situ gel for nasal drug delivery. Int J Dev Res. 2018;8(2):18763–9.

    Google Scholar 

  • Banchero M, Ronchetti S, Manna L. Characterization of ketoprofen/methyl-β-cyclodextrin complexes prepared using supercritical carbon dioxide. J Chem. 2013:1–8.

    Google Scholar 

  • Barzegar-Jalali M, Valizadeh H, Shadbad MR, Adibkia K, Mohammadi G, Farahani A, Arash Z, Nokhodchi A. Cogrinding as an approach to enhance dissolution rate of a poorly water-soluble drug (gliclazide). Powder Technol. 2010;197(3):150–8.

    Article  CAS  Google Scholar 

  • Betageri GV, Makarla KR. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int J Pharm. 1995;126(1–2):155–60.

    Article  CAS  Google Scholar 

  • Bettinetti GP, Sorrenti M, Rossi S, Ferrari F, Mura P, Faucci MT. Assessment of solid-state interactions of naproxen with amorphous cyclodextrin derivatives by DSC. J Pharm Biomed Anal. 2002;30:1173–9.

    Article  CAS  PubMed  Google Scholar 

  • Bindra WTD, Stella VJ. Degradation of O6-benzylguanine in aqueous polyethylene glycol 400 (PEG 400) solutions: concern with formaldehyde in PEG 400. Pharm Res. 1994;11(7):1060–4.

    Article  CAS  PubMed  Google Scholar 

  • Bley H, Fussnegger B, Bodmeier R. Characterization and stability of solid dispersions based on PEG/polymer blends. Int J Pharm. 2010;390:165–73.

    Article  CAS  PubMed  Google Scholar 

  • Borba PA, Pinotti M, Andrade GR, da Costa NB, Olchanheski LR, Fernandes D, de Campos CE, Stulzer HK. The effect of mechanical grinding on the formation, crystalline changes and dissolution behaviour of the inclusion complex of telmisartan and β-cyclodextrins. Carbohydr Polym. 2015;133:373–83.

    Article  CAS  PubMed  Google Scholar 

  • Bouchal F, Skiba M, Chaffai N, Hallouard F, Fatmi S, Lahiani-Skiba M. Fast dissolving cyclodextrin complex of piroxicam in solid dispersion Part I: Influence of β-CD and HPβ-CD on the dissolution rate of piroxicam. Int J Pharm. 2015;478(2):625–32.

    Article  CAS  PubMed  Google Scholar 

  • Brodin A, Frank S, Ye C. Method of preparing solid dispersions. US Patent Publication 2003/0104065; 2003.

    Google Scholar 

  • Cade D, Madit N. Liquid filling in hard gelatin capsules-preliminary steps. Bull Tech Gattefosse. 1996;88:15–9.

    Google Scholar 

  • Cade D, Cole ET, Mayer JPH, Witter F. Liquid filled and sealed hard gelatin capsules. Drug Dev Ind Pharm. 1986;12(11–13):2289–300.

    Article  CAS  Google Scholar 

  • Çelik SE, Özyürek M, Güçlü K, Apak R. Antioxidant capacity of quercetin and its glycosides in the presence of β-cyclodextrins: influence of glycosylation on inclusion complexation. J Incl Phenom Macro. 2015;83(3–4):309–19.

    Article  CAS  Google Scholar 

  • Chatham SM. The use of bases in SSM formulations. STP Pharma. 1987;3(7):575–82.

    CAS  Google Scholar 

  • Chiou WL, Riegelman S. Pharmaceutical application of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–301.

    Article  CAS  PubMed  Google Scholar 

  • Christoforides E, Mentzafos D, Bethanis K. Structural studies of the inclusion complexes of the (+)- and (2)-borneol enantiomers in α– and β–cyclodextrin. J Incl Phenom Macrocycl Chem. 2015;81:193–203.

    Article  CAS  Google Scholar 

  • Cole ET, Cade D, Benameur H. Challenges and opportunities in the encapsulation of liquid and semisolid formulations into capsules for oral administration. Adv Drug Del Rev. 2008;60:747–56.

    Article  CAS  Google Scholar 

  • Collnot EM, Baldes C, Wempe MF, Kappl R, Huttermann J, Hyatt JA, Edgar KJ, Schaefer UF, Lehr CM. Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity. Mol Pharm. 2007;4(3):465–74.

    Article  CAS  PubMed  Google Scholar 

  • Connons KA. Measurement of cyclodextrins complex stability constants, Comprehensive supermolecular chemistry. Oxford: Elsevier; 1996. p. 205–41.

    Google Scholar 

  • Corciova A, Ciobanu C, Poiata A, Mircea C, Nicolescu A, Drobota M, Varganici CD, Pinteala T, Marangoci N. Antibacterial and antioxidant properties of hesperidin:cyclodextrin complexes obtained by different techniques. J Incl Phenom Macrocycl Chem. 2015;81:71–84.

    Article  CAS  Google Scholar 

  • Craig DQM. Polyethylene glycols and drug release. Drug Dev Ind Pharm. 1990;16(17):2501–26.

    Article  CAS  Google Scholar 

  • Cyclodextrin News (2013) 27(2).

    Google Scholar 

  • D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13(9):1257–75.

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023–35.

    Article  CAS  PubMed  Google Scholar 

  • Del Valle EM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39(9):1033–46.

    Article  CAS  Google Scholar 

  • Desai KGH, Park HJ. Solubility studies on valdecoxib in the presence of carriers, cosolvents and surfactants. Drug Dev Res. 2004;62:41–8.

    Article  CAS  Google Scholar 

  • Dodziuk H, Bielejewska A, Schiff W, Ueda H. Complexation of [2.2]para- cyclophane with β- and γ-cyclodextrins studied by HPLC and NMR. Centr Eur J Chem. 2011;9:1056–61.

    CAS  Google Scholar 

  • Emas M, Nyqvist H. Method of studying aging and stabilization of spray-congealed solid dispersions with carnauba wax 1. microcalorimetric investigation. Int J Pharm. 2000;197:117–27.

    Article  CAS  PubMed  Google Scholar 

  • European Medicines Agency. Summary on Compassionate Use: Remdesivir Gilead. Amsterdam: European Medicines Agency; 2020.

    Google Scholar 

  • Ferreira MJG, García A, Leonardi D, Salomon CJ, Lamas MC, Nunes TG. 13 C and 15 N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes. Carbohyd Polym. 2015;123:130–5.

    Article  CAS  Google Scholar 

  • Friesen DT, Shanker R, Crew M, Smithy DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate based spray dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.

    Article  CAS  PubMed  Google Scholar 

  • Frömming KH, Szejtli J. Cyclodextrins in pharmacy, vol. 5. Springer; 1993.

    Google Scholar 

  • Gala U, Miller D, Williams RO. Improved dissolution and pharmacokinetics of abiraterone through kinetisol® enabled amorphous solid dispersions. Pharmaceutics. 2020;12(4):357.

    Article  CAS  PubMed Central  Google Scholar 

  • Garnero C, Longhi M. Study of ascorbic acid interaction with hydroxypropyl-β-cyclodextrin and triethanolamine, separately and in combination. J Pharm Biomed Anal. 2007;45:536–45.

    Article  CAS  PubMed  Google Scholar 

  • Garnero C, Aiassa V, Longhi M. Sulfamethoxazole:hydroxypropyl-β-cyclodextrin complex: preparation and characterization. J Pharm Biomed Anal. 2012;63:74–9.

    Article  CAS  PubMed  Google Scholar 

  • Ginés-Dorado JM, Arias-Blanco MJ, Rabasco-Álvarez AM, González-Rodríguez ML, Cózar-Bernal MJ, Sánchez-Soto PJ. Application of hot stage microscopy to the thermal study of two binary systems of pharmaceutical interest: triamterene–polyethyleneglycol 6000 and triamterene–β-cyclodextrin. In: Méndez-Vilas A, editor. Microscopy: advances in scientific research and education, vol. 2. Formatex Research Center; 2014. p. 1015–9.

    Google Scholar 

  • Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382(24):2327–36.

    Article  CAS  PubMed  Google Scholar 

  • Gullapalli RP. Soft gelatin capsules. J Pharm Sci. 2010;99(10):4107–48.

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Ain S, Babita K, Ain Q, & Dahiya J. Solubility enhancement of the poorly water-soluble antiulcer drug famotidine by inclusion complexation. IJPSN. 2013;6(1):1983–89.

    Google Scholar 

  • Ha ES, Lee SK, Choi DH, Jeong SH, Hwang SJ, Kim MS. Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs. J Pharm Investig. 2020;50(3):231–50.

    Article  CAS  Google Scholar 

  • Hamburger R, Azaz E, Donbrow M. Autoxidation of polyoxyethylenic non-ionic surfactants and of polyethylene glycols. Pharm Acta Helv. 1975;50(1/2):10–7.

    CAS  PubMed  Google Scholar 

  • Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  • Heydari A, Iranmanesh M, Doostan F, Sheibani H. Preparation of Inclusion Complex Between Nifedipine and Ethylenediamine-β-Cyclodextrin as Nanocarrier Agent. Pharm Chem J. 2015;49(9):605–12.

    Article  CAS  Google Scholar 

  • Hohne H, Lahr W, Schmersahl HU. Nifedipine-containing form of administration and method for its production. US Patent. 1990;4:894–235.

    Google Scholar 

  • Holm P, Buur A, Elma MO, Mollgarrd B, Holm JE, Schultz K. Controlled agglomeration. US Patent. 2007;7:217–341.

    Google Scholar 

  • Holm R, Olesen NE, Alexandersen SD, Dahlgaard BN, Westh P, Mu H. Thermodynamic investigation of the interaction between cyclodextrins and preservatives—Application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations. Eur J Pharm Sci. 2015;

    Google Scholar 

  • Iglesias E. Inclusion complexation of novocaine by beta-cyclodextrin in aqueous solutions. J Org Chem. 2006;71:4383–92.

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Garcia I, Brandariz I, Iglesias E. Fluorescence study of tetracaine-cyclodextrin inclusion complexes. Supramol Chem. 2010;22:228–36.

    Article  CAS  Google Scholar 

  • Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency. Drug Discov Today. 2016;21(2):363–8.

    Article  CAS  PubMed  Google Scholar 

  • Jimerson RF. Soft gelatin capsule update. Drug Dev Ind Pharm. 1986;12(8&9):1133–44.

    Article  Google Scholar 

  • Jouyban A. Prediction of drug solubility in water-propylene glycol mixtures using Jouyban-Acree model. Die Pharmazie-Int J Pharm Sci. 2007;62(5):365–7.

    CAS  Google Scholar 

  • Jouyban A, Acree WE Jr. Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures. J Mol Liq. 2018;256:541–7.

    Article  CAS  Google Scholar 

  • Juppo A (2004) Novel modified release formulation. US Patent Application 20,040,067,256.

    Google Scholar 

  • Khaled KA, Yousif A, Asiri B, El-sayed YM. In vitro evaluation of hydrochlorothiazide liquisolid tablets in beagle dogs. Int J Pharm. 2001;222:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Killeen MJ. The process of spray drying and spray congealing. Pharm Eng. 1993;13(4):56–64.

    Google Scholar 

  • Kuentz M, Rothlisberger D. Determination of the optimal amount of water in liquid filled masses for hard gelatin capsules by means of texture analysis and experimental design. Int J Pharm. 2002;236:145–52.

    Article  CAS  PubMed  Google Scholar 

  • Kulthe VV, Chaudhari PD. Effectiveness of Spray Congealing to Obtain Physically Stabilized Amorphous Dispersions of a Poorly Soluble Thermosensitive API. AAPS PharmSciTech. 2014;15(6):1370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurkov SV, Loftsson T. Cyclodextrins. Int J Pharm. 2013;453(1):167–80.

    Article  CAS  PubMed  Google Scholar 

  • Law D, Wang W, Schmitt EA, Qiu YH, Krill SL, Fort JJ. Properties of rapidly dissolving eutectic mixtures of poly(ethylene glycol) and fenofibrate: the eutectic microstructre. J Pharm Sci. 2003;92(3):505–15.

    Article  CAS  PubMed  Google Scholar 

  • Lo Meo P, D’Anna F, Riela S, Gruttadauria M, Noto R. Binding properties of heptakis-(2,6-di-O-methyl)-β-cyclodextrin and mono-(3,6-anhydro)-β- cyclodextrin: a polarimetric study. J Incl Phenom Macrocycl Chem. 2011;71:121–7.

    Article  CAS  Google Scholar 

  • Lobenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system new scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50:3–12.

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010;62(11):1607–21.

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Brewster ME, Másson M. Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv. 2004;2(4):261–75.

    Article  CAS  Google Scholar 

  • Luppi B, Bigucci F, Corace G, Delucca A, Cerchiara T, Sorrenti M, et al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci. 2011;44(4):559–65.

    Article  CAS  PubMed  Google Scholar 

  • Mackaplow MB, Zarraga IE, Morris JF. Rotary spray congealing of a suspension: effect of disk speed and dispersed particles properties. J Microencapsul. 2006;23(7):793–809.

    Article  CAS  PubMed  Google Scholar 

  • Mansky P, Dai WG, Li S, Pollock-Dove C, Daehne K, Dong L, Elchenbaum G. Screening method to identify preclinical liquid and semi-solid formulations for low solubility compounds: miniaturization and automation of solvent casting and dissolution testing. J Pharm Sci. 2007;96(6):1548–63.

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Wu PL, Adjei A, Mehdizadeh M, James KC, Metzler C. Extended hildebrand solubility approach: testosterone and testosterone propionate in binary solvents. J Pharm Sci. 1982;71(12):1334–134.

    Article  CAS  PubMed  Google Scholar 

  • McGinity JW, Maincent P, Steinfink H. Crystallinity and dissolution rate of tolbutamide solid dispersions prepared by the melt method. J Pharm Sci. 1984;10:1441–4.

    Article  Google Scholar 

  • Meier MM, Luiz MTB, Szpoganicz B, Soldi V. Thermal analysis behavior of β- and γ-cyclodextrin inclusion complexes with capric and caprylic acid. Thermochim Acta. 2001;375:153–60.

    Article  CAS  Google Scholar 

  • Mennini N, Bragagni M, Maestrelli F, Mura P. Physicochemical characterization in solution and in the solid state of clonazepam complexes with native and chemically-modified cyclodextrins. J Pharm Biomed Anal. 2014;89:142–9.

    Article  CAS  PubMed  Google Scholar 

  • Meyer MC, Ab S, Mhatre RM, Hussain A, Shah VP, Bottom CB, Cole ET, Lesko LL, Mallinowski H, Williams RL. The effect of gelatin cross-linking on the bioequivalence of hard and soft gelatin acetaminphoen capsules. Pharm Res. 2000;17(8):962–6.

    Article  CAS  PubMed  Google Scholar 

  • Mohan PRK, Sreelakshmi G, Muraleedharan CV, Joseph R. Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc. 2012;62:77–84.

    Article  CAS  Google Scholar 

  • Moneghini M, Kikic I, Voinovich D, Perissutti B, Filipovic-Grcic J. Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterization and in vitro dissolution. Int J Pharm. 2001;222:129–38.

    Article  CAS  PubMed  Google Scholar 

  • Moore WE. The use of an approximate dielectric constant to blend solvent systems. J Pharm Sci. 1958;47(12):855–7.

    Article  CAS  Google Scholar 

  • Mura P, Faucci MT, Manderioli A, Bramanti G, Parrini P. Thermal behavior and dissolution properties of naproxen from binary and tertiary solid dispersions. Drug Dev Ind Pharm. 1999;25(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  • Nema S, Washkuhn RJ, Brendel RJ. Excipients and their use in injectable products. PDA J Pharm Sci Technol. 1997;51(4):166–71.

    CAS  PubMed  Google Scholar 

  • Ogawa N, Higashi K, Nagase H, Endo T, Moribe K, Loftsson T, Yamamoto K, Ueda H. Effects of cogrinding with β-cyclodextrin on the solid state fentanyl. J Pharm Sci. 2010;99:5019–29.

    Article  CAS  PubMed  Google Scholar 

  • Osborne DW. Diethylene glycol monoethyl ether: an emerging solvent in topical dermatology products. J Cosmet Dermatol. 2011;10(4):324–9.

    Article  PubMed  Google Scholar 

  • Pápay ZE, Sebestyén Z, Ludányi K, Kállai N, Balogh E, Kósa A, Somavarapu S, Böddi B, Antal I. Comparative evaluation of the effect of cyclodextrins and pH on aqueous solubility of apigenin. J Pharm Biomed. 2016;117:210–6.

    Article  CAS  Google Scholar 

  • Passerini N, Perissutti B, Albertini B, Voinovich D, Moneghini M, Rodriguez L. Controlled release of verapamil hydrochloride from waxy microparticles prepared by spray congealing. J Control Release. 2003;88:263–75.

    Article  CAS  PubMed  Google Scholar 

  • Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Del Rev. 1997;25:47–58.

    Article  CAS  Google Scholar 

  • Qiu N, Cheng X, Wang G, Wang W, Wen J, Zhang Y, Song H, Ma L, Wei Y, Peng A, Chen L. Inclusion complex of barbigerone with hydroxypropyl-β-cyclodextrin:preparation and in vitro evaluation. Carbohydr Polym. 2014;101:623–30.

    Article  CAS  PubMed  Google Scholar 

  • Ragab MT, El-Rahman MKA, Ramadan NK, El-Ragehy NA, El-Zeany BA. Novel potentiometric application for the determination of pantoprazole sodium and itopride hydrochloride in their pure and combined dosage form. Talanta. 2015;138:28–35.

    Article  CAS  PubMed  Google Scholar 

  • Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J Pharm Sci. 1996;85(11):1142–69.

    Article  CAS  PubMed  Google Scholar 

  • Rizzo C, D’Anna F, Marullo S, Vitale P, Noto R. Two-Component Hydrogels Formed by Cyclodextrins and Dicationic Imidazolium Salts. Eur J Org Chem. 2014;5:1013–24.

    Article  CAS  Google Scholar 

  • Sahakijpijarn S, Moon C, Koleng JJ, Christensen DJ, Williams RO III. Development of remdesivir as a dry powder for inhalation by thin film freezing. Pharmaceutics. 2020;12(11):1002.

    Article  CAS  PubMed Central  Google Scholar 

  • Salústio PJ, Feio G, Figueirinhas JL, Pinto JF, Cabral Marques HM. The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity. Eur J Pharm Biopharm. 2009;71:377–86.

    Article  PubMed  CAS  Google Scholar 

  • Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. 2018;23(5):1161.

    Article  PubMed Central  CAS  Google Scholar 

  • Scott MW. Pharmaceutical tablet excipients of solid particles of a binary solid solution of mannitol with a sugar. US Patent. 1967;3:341,415.

    Google Scholar 

  • Scriba GKE. Chiral Separations in Capillary Electrophoresis. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; 2015.

    Book  Google Scholar 

  • Serajuddin ATM, Sheen PC, Augustine MA. Water migration from soft gelatin capsule shell to fill material and its effect on drug solubility. J Pharm Sci. 1986;75:82–4.

    Google Scholar 

  • Sharma SC, Shaw JJ, Yang RK. Novel drug delivery system. US Patent. 1989;4,797,288

    Google Scholar 

  • Sherje AP, Londhe V. Development and evaluation of pH-responsive cyclodextrin-based in situ gel of paliperidone for intranasal delivery. AAPS PharmSciTech. 2018;19(1):384–94.

    Article  CAS  PubMed  Google Scholar 

  • Sheth A, Jarowski CI. Use of powdered solutions to improve the dissolution rate of polythiazide tablets Drug Dev. Ind Pharm. 1990;16(5):769–77.

    Article  CAS  Google Scholar 

  • Song W, Yu X, Wang S, Blasier R, Markel DC, Mao G, Shi T, Ren W. Cyclodextrin–erythromycin complexes as a drug delivery device for orthopedic application. Int J Nanomedicine. 2011;6:3173–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spireas S. Liquisolid systems and method of preparing same. US Patent. 2002;6,423,339

    Google Scholar 

  • Spireas SS, Jarowski CI, Rohera BD. Powdered solution technology: principles and mechanisms. Pharm Res. 1992;9(10):1351–8.

    Article  CAS  PubMed  Google Scholar 

  • Stain D, Bindar DS. Stabilization of hard gelatin capsule shells filled with polyethylene glycol matrices. Pharm Dev Technol. 2007;12:71–7.

    Article  CAS  Google Scholar 

  • Suzuki ÉY, Amaro MI, de Almeida GS, Cabral LM, Healy AM, de Sousa VP. Development of a new formulation of roflumilast for pulmonary drug delivery to treat inflammatory lung conditions. Int J Pharm. 2018;550(1–2):89–99.

    Article  CAS  PubMed  Google Scholar 

  • Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev. 1998;98(5):1743–54.

    Article  CAS  PubMed  Google Scholar 

  • Szejtli J. Past, present and futute of cyclodextrin research. Pure Appl Chem. 2004;76(10):1825–45.

    Article  CAS  Google Scholar 

  • Szente L, Szejtli J. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv Drug Deliv Rev. 1999;36(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  • Tang P, Wang L, Ma X, Xu K, **ong X, Liao X, Li H. Characterization and In Vitro Evaluation of the Complexes of Posaconazole with β-and 2, 6-di-O-methyl-β-cyclodextrin. AAPS PharmSciTech. 2016:1–11.

    Google Scholar 

  • Taupitz T, Dressman JB, Buchanan CM, Klein S. Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: itraconazole. Eur J Pharm Biopharm. 2013;83(3):378–87.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems: applications. J Pharm Bioallied Sci. 2010;2(2):72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trollope L, Cruickshank DL, Noonan T, Bourne SA, Sorrenti M, Catenacci L, Caira MR. Inclusion of trans-resveratrol in methylated cyclodextrins: synthesis and solid-state structures. J Org Chem. 2014;10:3136–51.

    Google Scholar 

  • U. S. Food and Drug Administration. Inactive ingredient search for approved drug products (2021).

    Google Scholar 

  • Unga J, Tajarobi F, Norder O, Frenning G, Larsson A. Relating solubility data of parabens in liquid PEG400 to the behavior of PEG400-parabens solid dispersions. Eur J Pharm Biopharm. 2009;73:260–8.

    Article  CAS  PubMed  Google Scholar 

  • Ungaro F, Giovino C, Catanzano O, Miro A, Mele A, Quaglia F, La Rotonda MI. Use of cyclodextrins as solubilizing agents for simvastatin: effect of hydroxypropyl-β-cyclodextrin on lactone/hydroxyacid aqueous equilibrium. Int J Pharm. 2011;404:49–56.

    Article  CAS  PubMed  Google Scholar 

  • Urbanetz NA, Lippold BC. Solid dispersions of nimodipine and polyethylene glycol 2000: dissolution properties and physico-chemical characterization. Eur J Pharm Biopharm. 2005;59:107–18.

    Article  CAS  PubMed  Google Scholar 

  • Venuti V, Cannavà C, Cristiano MC, Fresta M, Majolino D, Paolino D, Stancanelli R, Tommasini S, Ventura CA. A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity. Colloids Surf B Biointerfaces. 2014;115:22–8.

    Article  CAS  PubMed  Google Scholar 

  • Villiers, A. (1891). Sur la fermentation de la fécule par l’action du ferment butyrique. Compt Rend Acad Sci, 112, 536-538

    Google Scholar 

  • Washington N, Washington C, Wilson C. Physiological pharmaceutics: barriers to drug absorption. CRC Press; 2000.

    Book  Google Scholar 

  • Werner B (1988) Soft gelatin capsules and method for their production. US Patent 4,744,988.

    Google Scholar 

  • Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.

    Article  CAS  PubMed  Google Scholar 

  • Yajima T, Umeko N, Itai S. Optimum spray congealing conditions for masking the bitter taste of clarithromycin in wax matrix. Chem Pharm Bull. 1999;47(2):220–5.

    Article  CAS  Google Scholar 

  • Yalkowsky SH, Flynn GL, Amidon GL. Solubility of nonelectrolytes in polar solvents. J Pharm Sci. 1972;61(6):983–4.

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Hussain A, Paulson J, Abbruscato TJ, Ahsan F. Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies. Pharm Res. 2004;21(7):1127–36.

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Li Y, Li W, Zhang H, Gao J, Sun J, et al. Preparation and evaluation of carfentanil nasal spray employing cyclodextrin inclusion technology. Drug Dev Ind Pharm. 2018;44(6):953–60.

    Article  CAS  PubMed  Google Scholar 

  • Yano H, Kleinebudde P. Improvement of dissolution behavior for poorly water-soluble drug by application of cyclodextrin in extrusion process: comparison between melt extrusion and wet extrusion. AAPS PharmSciTech. 2010;11(2):885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousaf AM, Kim DW, Cho KH, Kim JO, Yong CS, Choi HG. Effect of the preparation method on crystallinity, particle size, aqueous solubility and dissolution of different samples of the poorly water-soluble fenofibrate with HPβCD. J Incl Phenom Macro. 2015;81(3–4):347–56.

    Article  CAS  Google Scholar 

  • Yousaf AM, Malik UR, Shahzad Y, Mahmood T, Hussain T. Silymarin-laden PVP-PEG polymeric composite for enhanced aqueous solubility and dissolution rate: preparation and in vitro characterization. J Pharm Anal. 2019;9(1):34–9.

    Article  PubMed  Google Scholar 

  • Zhang JQ, Li K, Cong YW, Pu SP, Zhu HY, **e XG, ** Y, Lin J. Preparation, characterisation and bioactivity evaluation of the inclusion complex formed between picoplatin and β-cyclodextrin. Carbohydr Res. 2014;396:54–61.

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Yalkowsky SH. Stabilization of eptifibatide by cosolvents. Int J Pharm. 2001;218:43–56.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhao Y, Niu B, Luo Q, Zhang Y, Quan G, et al. Cyclodextrin-based metal-organic frameworks for pulmonary delivery of curcumin with improved solubility and fine aerodynamic performance. Int J Pharm. 2020;588:119777.

    Article  CAS  PubMed  Google Scholar 

  • Zoppi A, Delrivo A, Aiassa V, Longhi MR. Binding of sulfamethazine to β-cyclodextrin and methyl- β-cyclodextrin. AAPS PharmSciTech. 2013;14:727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Williams III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, J., Williams, R.O. (2022). Cosolvent and Complexation Systems. In: Williams III, R.O., Davis Jr., D.A., Miller, D.A. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-88719-3_5

Download citation

Publish with us

Policies and ethics

Navigation