Plasmon-Induced Hot Electrons in Metallic Nanoparticles

  • Chapter
  • First Online:
Plasmon-enhanced light-matter interactions

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 31))

Abstract

Plasmon-induced hot electrons have attracted much recent attention due to its promising potential in photocatalysis and other light harvesting applications. Surface plasmon of metal nanoparticles decays nonradiatively to generate energetic electrons, referred to as hot electrons. Since hot electrons can be transferred to a chemically attached acceptor, this process is potentially useful for technological applications. Plasmon-induced hot-electron transfer is known to occur via two key mechanisms: indirect transfer and direct transfer. For hot-electron-driven catalysis, the energy of hot electrons needs to overlap with the unoccupied orbitals of the reactant, and the particular chemical channel can be selectively enhanced by controlling the energy distribution of hot electrons. High-energy hot electrons generated by plasmon decay also could contribute to nonlinear responses, which is essential for fundamental understanding of the optical nonlinearity associated with quantum and nonlocal effects on the atomic level. This chapter focuses on the recent advances in the understanding of plasmon-induced hot electrons and highlights its application in photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hertz, H. (1887). Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Annals of Physical Chemistry, 267, 983–1000.

    Article  Google Scholar 

  2. Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annals of Physics, 322, 132–148.

    Article  MATH  Google Scholar 

  3. Planck, M. (1901). Ueber das gesetz der energieverteilung im normalspectrum. Annals of Physics, 309, 553–563.

    Article  MATH  Google Scholar 

  4. Brongersma, M. L., Halas, N. J., & Nordlander, P. (2015). Plasmon-induced hot carrier science and technology. Nature Nanotechnology, 10, 25–34.

    Article  ADS  Google Scholar 

  5. Hüfner, S. (2003). Photoelectron spectroscopy: Principles and applications. Springer.

    Book  Google Scholar 

  6. Atwater, H. A. (2007). The promise of plasmonics. Scientific American, 296, 56–62.

    Article  Google Scholar 

  7. Clavero, C. (2014). Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 8, 95–103.

    Article  ADS  Google Scholar 

  8. Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9, 205–213.

    Article  ADS  Google Scholar 

  9. Tian, Y., & Tatsuma, T. (2005). Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 127, 7632–7637.

    Article  Google Scholar 

  10. Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10, 911–921.

    Article  ADS  Google Scholar 

  11. Wu, K., Chen, J., McBride, J. R., & Lian, T. (2015). Efficient hot-electron transfer by a Plasmon-induced interfacial charge-transfer transition. Science, 349, 632–635.

    Article  ADS  Google Scholar 

  12. Linic, S., Aslam, U., Boerigter, C., & Morabito, M. (2015). Photochemical transformations on plasmonic metal nanoparticles. Nature Materials, 14, 567–576.

    Article  ADS  Google Scholar 

  13. Zhang, Z., Zhang, C., Zheng, H., & Xu, H. (2019). Plasmon-driven catalysis on molecules and nanomaterials. Accounts of Chemical Research, 52, 2506–2515.

    Article  Google Scholar 

  14. Zhang, Y., He, S., Guo, W., Hu, Y., Huang, J., Mulcahy, J. R., & Wei, W. D. (2018). Surface-Plasmon-driven hot electron photochemistry. Chemical Reviews, 118, 2927–2954.

    Article  Google Scholar 

  15. Sönnichsen, C., et al. (2002). Drastic reduction of plasmon dam** in gold nanorods. Physical Review Letters, 88, 077402.

    Article  ADS  Google Scholar 

  16. Lehmann, J., et al. (2000). Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Physical Review Letters, 85, 2921–2924.

    Article  ADS  Google Scholar 

  17. Hao, F., et al. (2008). Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Letters, 8, 3983–3988.

    Article  ADS  Google Scholar 

  18. Manjavacas, A., Liu, J., Kulkarni, V., & Nordlander, P. (2014). Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 8, 7630–7638.

    Article  Google Scholar 

  19. Aslam, U., Rao, V. G., Chavez, S., & Linic, S. (2018). Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nature Catalysis, 1, 656–665.

    Article  Google Scholar 

  20. Watanabe, K., Menzel, D., Nilius, N., & Freund, H. J. (2006). Photochemistry on metal nanoparticles. Chemical Reviews, 106, 4301–4320.

    Article  Google Scholar 

  21. Lisowski, M., et al. (2004). Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Applied Physics A: Materials Science & Processing, 78, 165–176.

    Article  ADS  Google Scholar 

  22. Inouye, H., Tanaka, K., Tanahashi, I., & Hirao, K. (1998). Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Physical Review B, 57, 11334–11340.

    Article  ADS  Google Scholar 

  23. Fang, Z., Zhen, Y. R., Neumann, O., Polman, A., Garcia de Abajo, F. J., Nordlander, P., & Halas, N. J. (2013). Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Letters, 13, 1736–1742.

    Article  ADS  Google Scholar 

  24. Frischkorn, C., & Wolf, M. (2006). Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chemical Reviews, 106, 4207–4233.

    Article  Google Scholar 

  25. Du, L., Furube, A., Hara, K., Katoh, R., & Tachiya, M. (2013). Ultrafast Plasmon induced electron injection mechanism in gold-TiO2 nanoparticle system. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews, 15, 21–30.

    Article  Google Scholar 

  26. Liu, J. G., Zhang, H., Link, S., & Nordlander, P. (2018). Relaxation of Plasmon-induced hot carriers. ACS Photonics, 5, 2584–2595.

    Article  Google Scholar 

  27. Link, S., & El-Sayed, M. (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B, 103, 8410–8426.

    Article  Google Scholar 

  28. Dowgiallo, A. M., & Knappenberger, K. L. (2011). Ultrafast electron-phonon coupling in hollow gold Nanospheres. Physical Chemistry Chemical Physics, 13, 21585–21592.

    Article  Google Scholar 

  29. Minutella, E., Schulz, F., & Lange, H. (2017). Excitation-dependence of Plasmon-induced hot electrons in gold nanoparticles. Journal of Physical Chemistry Letters, 8, 4925–4929.

    Article  Google Scholar 

  30. Su, M., et al. (2019). Ultrafast electron dynamics in single aluminum nanostructures. Nano Letters, 19, 3091–3097.

    Article  ADS  Google Scholar 

  31. Kreibig, U., & Vollmer, M. (1995). Optical properties of metal clusters. Springer.

    Book  Google Scholar 

  32. Langhammer, C., Yuan, Z., Zorić, I., & Kasemo, B. (2006). Plasmonic properties of supported Pt and Pd nanostructures. Nano Letters, 6, 833–838.

    Article  ADS  Google Scholar 

  33. Yu, K., Tian, Y., & Tatsuma, T. (2006). Size effects of gold nanaoparticles on plasmon-induced photocurrents of gold–TiO2 nanocomposites. Physical Chemistry Chemical Physics, 8, 5417–5420.

    Article  Google Scholar 

  34. Nishijima, Y., et al. (2012). Near-infrared plasmon-assisted water oxidation. Journal of Physical Chemistry Letters, 3, 1248–1252.

    Article  Google Scholar 

  35. Nishijima, Y., Ueno, K., Yokota, Y., Murakoshi, K., & Misawa, H. (2010). Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. Journal of Physical Chemistry Letters, 1, 2031–2036.

    Article  Google Scholar 

  36. Mubeen, S., et al. (2013). An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnology, 8, 247–251.

    Article  ADS  Google Scholar 

  37. Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83, 614–624.

    Article  ADS  Google Scholar 

  38. Rossi, T. P., Erhart, P., & Kuisma, M. (2020). Hot-carrier generation in Plasmonic nanoparticles: The importance of atomic structure. ACS Nano, 14, 9963–9971.

    Article  Google Scholar 

  39. Kazuma, E., Sakai, N., & Tatsuma, T. (2011). Nanoimaging of localized plasmon-induced charge separation. Chemical Communications, 47, 5777–5779.

    Article  Google Scholar 

  40. Kazuma, E., & Tatsuma, T. (2013). Photoelectrochemical analysis of allowed and forbidden multipole plasmon modes of polydisperse Ag nanorods. Journal of Physical Chemistry C, 117, 2435–3441.

    Article  Google Scholar 

  41. Knight, M. W., Sobhani, H., Nordlander, P., & Halas, N. J. (2011). Photodetection with active optical antennas. Science, 332, 702–704.

    Article  ADS  Google Scholar 

  42. Kumar, P. V., et al. (2019). Plasmon-induced direct hot-carrier transfer at metal-acceptor interfaces. ACS Nano, 13, 3188–3195.

    Article  Google Scholar 

  43. Chen, Y.-C., Hsu, Y.-K., Popescu, R., Gerthsen, D., Lin, Y. G., & Feldmann, C. (2018). Au@Nb@HxK1−xNbO3 nanopeapods with near-infrared active plasmonic hot-electron injection for water splitting. Nature Communications, 9, 232.

    Article  ADS  Google Scholar 

  44. Foerster, B., Joplin, A., Kaefer, K., Celiksoy, S., Link, S., & Sonnichsen, C. (2017). Chemical Interface dam** depends on electrons reaching the surface. ACS Nano, 11, 2886–2893.

    Article  Google Scholar 

  45. Kazuma, E., Jung, J., Ueba, H., Trenary, M., & Kim, Y. (2018). Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science, 360, 521–525.

    Article  ADS  Google Scholar 

  46. Wu, K., Chen, J., McBride, J. R., & Lian, T. (2015). Efficient hot-electron transfer by a Plasmon- induced interfacial charge-transfer transition. Science, 349, 632–635.

    Article  ADS  Google Scholar 

  47. Tan, S., Dai, Y., Zhang, S., Liu, L., Zhao, J., & Petek, H. (2018). Coherent electron transfer at the Ag/Graphite heterojunction Interface. Physical Review Letters, 120, 126801.

    Article  ADS  Google Scholar 

  48. Zhang, J., Guan, M., Lischner, J., Meng, S., & Prezhdo, O. V. (2019). Coexistence of different charge-transfer mechanisms in the hot-carrier dynamics of hybrid Plasmonic nanomaterials. Nano Letters, 19, 3187–3193.

    Article  ADS  Google Scholar 

  49. Runge, E., & Gross, E. K. U. (1984). Density-functional theory for time-dependent systems. Physical Review Letters, 52, 997–1000.

    Article  ADS  Google Scholar 

  50. Ma, J., & Gao, S. (2019). Plasmon-induced electron−hole separation at the Ag/TiO2(110) Interface. ACS Nano, 13, 13658–13667.

    Article  Google Scholar 

  51. Liu, Z. W., Hou, W. B., Pavaskar, P., Aykol, M., & Cronin, S. B. (2011). Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Letters, 11, 1111–1116.

    Article  ADS  Google Scholar 

  52. Yan, L., Xu, J., Wang, F., & Meng, S. (2018). Plasmon-induced ultrafast hydrogen production in liquid water. Journal of Physical Chemistry Letters, 9, 63–69.

    Article  Google Scholar 

  53. Golubev, A. A., Khlebtsov, B. N., Rodriguez, R. D., Chen, Y., & Zahn, D. R. T. (2018). Plasmonic heating plays a dominant role in the Plasmon-induced photocatalytic reduction of 4-Nitrobenzenethiol. Journal of Physical Chemistry C, 122, 5657–5663.

    Article  Google Scholar 

  54. Zhang, C., Lu, J., **, N., Dong, L., Fu, Z., Zhang, Z., & Zheng, H. (2019). Plasmon driven rapid in-situ formation of luminescence single crystal nanoparticle. Small, 15, 1901286.

    Article  Google Scholar 

  55. Christopher, P., **n, H., & Linic, S. (2011). Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry, 3, 467–472.

    Article  ADS  Google Scholar 

  56. Yan, L., Ding, Z., Song, P., Wang, F., & Meng, S. (2015). Plasmon-induced dynamics of H2 splitting on a silver atomic chain. Applied Physics Letters, 107, 083102.

    Article  ADS  Google Scholar 

  57. Yan, L., Wang, F., & Meng, S. (2016). Quantum mode selectivity of Plasmon-induced water splitting on gold nanoparticles. ACS Nano, 10, 5452–5458.

    Article  Google Scholar 

  58. Kale, M. J., Avanesian, T., **n, H., Yan, J., & Christopher, P. (2014). Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate–metal bonds. Nano Letters, 14, 5405–5412.

    Article  ADS  Google Scholar 

  59. Langhammer, C., Kasemo, B., & Zoric, I. (2007). Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios. The Journal of Chemical Physics, 126, 194702.

    Article  ADS  Google Scholar 

  60. Naldoni, A., Montini, T., Malara, F., Mróz, M. M., Beltram, A., Virgili, T., Boldrini, C. L., Marelli, M., Romero-Ocaña, I., Delgado, J. J., Dal Santo, V., & Fornasiero, P. (2017). Hot electron collection on Brookite Nanorods lateral facets for Plasmon-enhanced water oxidation. ACS Catalysis, 7, 1270–1278.

    Article  Google Scholar 

  61. Sakamoto, H., Ohara, T., Yasumoto, N., Shiraishi, Y., Ichikawa, S., Tanaka, S., & Hirai, T. (2015). Hot-electron-induced highly efficient O2 activation by Pt nanoparticles supported on Ta2O5 driven by visible light. Journal of the American Chemical Society, 137, 9324–9332.

    Article  Google Scholar 

  62. Lupetti, M., Hengster, J., Uphues, T., & Scrinzi, A. (2014). Attosecond photoscopy of plasmonic excitations. Physical Review Letters, 113, 113903.

    Article  ADS  Google Scholar 

  63. Mukherjee, S., Libisch, F., Large, N., Neumann, O., Brown, L. V., Cheng, J., Lassiter, J. B., Carter, E. A., Nordlander, P., & Halas, N. J. (2013). Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Letters, 13, 240–247.

    Article  ADS  Google Scholar 

  64. Seemala, B., Therrien, A. J., Lou, M., Li, K., Finzel, J. P., Qi, J., Nordlander, P., & Christopher, P. (2019). Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: Hot electrons or near fields? ACS Energy Letters, 4, 1803–1809.

    Article  Google Scholar 

  65. Townsend, E., & Bryant, G. W. (2014). Which resonances in small metallic nanoparticles are Plasmonic? Journal of Optics, 16, 114022.

    Article  ADS  Google Scholar 

  66. Townsend, E., & Bryant, G. W. (2012). Plasmonic properties of metallic nanoparticles: The effects of size quantization. Nano Letters, 12, 429–434.

    Article  ADS  Google Scholar 

  67. Ma, J., Wang, Z., & Wang, L. W. (2015). Interplay between Plasmon and single-particle excitations in a metal nanocluster. Nature Communications, 6, 10107.

    Article  ADS  Google Scholar 

  68. Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F., & Maier, S. A. (2016). Enhanced third harmonic generation in single germanium Nanodisks excited at the Anapole mode. Nano Letters, 16, 4635.

    Article  ADS  Google Scholar 

  69. Mohamed, M. B., Volkov, V., Link, S., & El-Sayed, M. A. (2000). The ‘lightning’ gold nanorods: Fluorescence enhancement of over a million compared to the gold metal. Chemical Physics Letters, 317, 517.

    Article  ADS  Google Scholar 

  70. Kauranen, M., & Zayats, A. V. (2012). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. Nature Photonics, 6, 737.

    Article  ADS  Google Scholar 

  71. Narang, P., Sundararaman, R., Jermyn, A. S., Goddard, W. A., & Atwater, H. A. (2016). Cubic nonlinearity driven up-conversion in high-field plasmonic hot carrier systems. Journal of Physical Chemistry C, 120, 21056.

    Article  Google Scholar 

  72. Van Sark, W., de Wild, J., Rath, J. K., Meijerink, A., & Schropp, R. E. I. (2013). Upconversion in solar cells. Nanoscale Research Letters, 8, 81.

    Article  ADS  Google Scholar 

  73. Arppe, R., Näreoja, T., Nylund, S., Mattsson, L., Koho, S., Rosenholm, J. M., Soukka, T., & Schäferling, M. (2014). Photon upconversion sensitized nanoprobes for sensing and imaging of pH. Nanoscale, 6, 6837.

    Article  ADS  Google Scholar 

  74. Zhang, Y., Grady, N. K., Ayala-Orozco, C., & Halas, N. J. (2011). Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Letters, 11, 5519.

    Article  ADS  Google Scholar 

  75. Hanke, T., Cesar, J., Knittel, V., Trügler, A., Hohenester, U., Leitenstorfer, A., & Bratschitsch, R. (2012). Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Letters, 12, 992.

    Article  ADS  Google Scholar 

  76. Yan, L., Guan, M., & Meng, S. (2018). Plasmon-induced nonlinear response of silver atomic chains. Nanoscale, 10, 8600.

    Article  Google Scholar 

  77. Li, S., & Jones, R. R. (2016). High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses. Nature Communications, 7, 13405.

    Article  ADS  Google Scholar 

  78. Kale, M. J., Avanesian, T., & Christopher, P. (2014). Direct photocatalysis by plasmonic nanostructures. ACS Catalysis, 4, 116.

    Article  Google Scholar 

  79. Cortés, E., Besteiro, L. V., Alabastri, A., Baldi, A., Tagliabue, G., Demetriadou, A., & Narang, P. (2020). Challenges in plasmonic catalysis. ACS Nano, 14, 16202–16219.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2020YFA0211300), the National Natural Science Foundation of China (Nos. 92050112, 12074237 and 12004233), and the Fundamental Research Funds for Central Universities (GK201701008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, L., Fu, Z., Zhang, Z. (2022). Plasmon-Induced Hot Electrons in Metallic Nanoparticles. In: Yu, P., Xu, H., Wang, Z.M. (eds) Plasmon-enhanced light-matter interactions. Lecture Notes in Nanoscale Science and Technology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-87544-2_7

Download citation

Publish with us

Policies and ethics

Navigation