Combining SysML with Petri Nets for the Design of an Urban Traffic Signal Control

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Urban roads are a crucial infrastructure highly demanded by citizens and organizations interested in their deployment, performance, and safety. Urban traffic signal control is an important and challenging real-world problem that aims to monitor and improve traffic congestion. Therefore, the deployment of traffic signals for vehicles or pedestrians at an intersection is a complex activity, as it is necessary to establish rules to control the flow of vehicles and pedestrians. Also, traffic flow at intersections changes constantly, depending, for instance, on weather conditions and day of the week, as well as road works and accidents that further influence complexity and performance. Thus, this work first uses the SysML Block Definition diagram to model the elements (sensor, controller, and actuator) of the architecture of an urban traffic signal control system. Next, Petri Nets models are proposed for the internal design of each of these elements. Finally, these Petri Nets models are combined into a complete model by merging common places. As a result, this article describes model integration, i.e., SysML Block Definition diagram and Petri Nets for modeling the architectural elements of an urban traffic signal control system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adacher, L., Tiriolo, M.: A distributed approach for traffic signal synchronization problem. In: 2016 Third International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), pp. 191–196 (2016)

    Google Scholar 

  2. An, Y., Zhu, C., Chen, P., Li, Y.: Modeling and analysis of transit signal priority control systems based on colored petri nets. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2701–2706. IEEE (2017)

    Google Scholar 

  3. Asaithambi, G., Kuttan, M.O., Chandra, S.: Pedestrian road crossing behavior under mixed traffic conditions: a comparative study of an intersection before and after implementing control measures. Transp. Dev. Econ. 2(2), 1–12 (2016). https://doi.org/10.1007/s40890-016-0018-5

    Article  Google Scholar 

  4. Biggs, G., Sakamoto, T., Kotoku, T.: A profile and tool for modelling safety information with design information in SysML. Softw. Syst. Model. 15(1), 147–178 (2016)

    Article  Google Scholar 

  5. Castro, G.B., Hirakawa, A.R., Martini, J.S.: Adaptive traffic signal control based on bio-neural network. Procedia Comput. Sci. 109, 1182–1187 (2017)

    Article  Google Scholar 

  6. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann Publishers Inc., Burlington (2014)

    Google Scholar 

  7. Huang, Y.S., Shiue, J.Y., Luo, J.: A traffic signal control policy for emergency vehicles preemption using timed petri nets. IFAC-PapersOnLine 48(3), 2183–2188 (2015)

    Article  Google Scholar 

  8. Le, T., Kovács, P., Walton, N., Vu, H.L., Andrew, L.L., Hoogendoorn, S.S.: Decentralized signal control for urban road networks. Transp. Res. Part C Emerging Technol. 58, 431–450 (2015)

    Article  Google Scholar 

  9. Ma, C., He, R.: Green wave traffic control system optimization based on adaptive genetic-artificial fish swarm algorithm. Neural Comput. Appl. 31(7), 2073–2083 (2019)

    Article  Google Scholar 

  10. Murata, T.: Petri Nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  11. Ning, Z., Zhang, F., Remias, S.: Understanding the security of traffic signal infrastructure. In: Perdisci, R., Maurice, C., Giacinto, G., Almgren, M. (eds.) DIMVA 2019. LNCS, vol. 11543, pp. 154–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22038-9_8

    Chapter  Google Scholar 

  12. OMG: Systems Modeling Language (OMG SysML) Version 1.6 (2019)

    Google Scholar 

  13. Oviedo-Trespalacios, O., Haque, M.M., King, M., Washington, S.: Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers. Accid. Anal. Prev. 101, 67–77 (2017)

    Article  Google Scholar 

  14. Peterson, J.L.: Petri Nets. ACM Comput. Surv. 9(3), 223–252 (1977)

    Article  Google Scholar 

  15. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Universität Hamburg (1962)

    Google Scholar 

  16. Reisig, W.: Petri Nets: An Introduction. Springer, New York (1985). https://doi.org/10.1007/978-3-642-69968-9

    Book  MATH  Google Scholar 

  17. Silvestre, E.A., Soares, M.S.: Modeling road traffic signals control using UML and the MARTE profile. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7336, pp. 1–15. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31128-4_1

    Chapter  Google Scholar 

  18. Soares, M.S., Vrancken, J.L.M.: Road traffic signals modeling and analysis with petri nets and linear logic. In: Proceedings of the IEEE International Conference on Networking, Sensing and Control, ICNSC 2007, London, UK, 15–17 April 2007, pp. 169–174. IEEE (2007)

    Google Scholar 

  19. Soares, M.S., Vrancken, J.L.M.: Responsive traffic signals designed with petri nets. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Singapore, 12–15 October 2008, pp. 1942–1947. IEEE (2008)

    Google Scholar 

  20. Souza, L.S., Misra, S., Soares, M.S.: SmartCitySysML: a SysML profile for smart cities applications. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 383–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_29

    Chapter  Google Scholar 

  21. Vilarinho, C., Tavares, J.P., Rossetti, R.J.F.: Design of a multiagent system for real-time traffic control. IEEE Intell. Syst. 31(4), 68–80 (2016)

    Article  Google Scholar 

  22. Vrancken, J.L.M., van Schuppen, J.H., Soares, M.S., Ottenhof, F.: A hierarchical model and implementation architecture for road traffic control. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009, pp. 3540–3544. IEEE (2009)

    Google Scholar 

  23. Wei, H., Zheng, G., Gayah, V., Li, Z.: A survey on traffic signal control methods. ar** study. Softw. Syst. Model. 19(1), 111–169 (2020)

    Article  Google Scholar 

  24. Yau, K.L.A., Qadir, J., Khoo, H.L., Ling, M.H., Komisarczuk, P.: A survey on reinforcement learning models and algorithms for traffic signal control. ACM Comput. Surv. 50(3), 1–38 (2017)

    Article  Google Scholar 

  25. Yuan, Y.: Application of intelligent technology in urban traffic congestion. In: 2020 International Conference on Computer Engineering and Application - ICCEA 2020, pp. 721–725 (2020)

    Google Scholar 

  26. Zhao, J., Duan, Z.: Verification of use case with petri nets in requirement analysis. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009. LNCS, vol. 5593, pp. 29–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02457-3_3

    Chapter  Google Scholar 

Download references

Acknowledgments

This study was financed by Fundação de Apoio à Pesquisa e à Inovação Tecnológica do estado de Sergipe (FAPITEC/SE) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel S. Soares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Souza, L.S., Soares, M.S. (2021). Combining SysML with Petri Nets for the Design of an Urban Traffic Signal Control. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87013-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87012-6

  • Online ISBN: 978-3-030-87013-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation