Spherical Geometry—A Survey on Width and Thickness of Convex Bodies

  • Chapter
  • First Online:
Surveys in Geometry I
  • 1321 Accesses

Abstract

This chapter concerns the geometry of convex bodies on the d-dimensional sphere S d. We concentrate on the results based on the notion of width of a convex body C ⊂ S d determined by a supporting hemisphere of C. Important tools are the lunes containing C. The supporting hemispheres take over the role of the supporting half-spaces of a convex body in Euclidean space, and lunes the role of strips. Also essential is the notion of thickness of C, i.e., its minimum width. In particular, we describe properties of reduced spherical convex bodies and spherical bodies of constant width. The last notion coincides with the notions of complete bodies and bodies of constant diameter on S d. The results reminded and commented on here concern mostly the width, thickness, diameter, perimeter, area and extreme points of spherical convex bodies, reduced bodies and bodies of constant width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.V. Araújo, Barbier’s theorem for the sphere and the hyperbolic plane. L’Enseign. Math. 42, 295–309 (1966)

    MathSciNet  MATH  Google Scholar 

  2. M.J.C. Baker, A spherical Helly-type theorem. Pac. J. Math. 23, 1–3 (1967)

    Article  MathSciNet  Google Scholar 

  3. E. Barbier, Note sur le problème de l’aiguille et le jeu du joint couvert. J. Math. Pures Appl. 5, 273–286 (1860)

    Google Scholar 

  4. R.V. Benson, Euclidean Geometry and Convexity (McGraw-Hill Book Company, New York, 1966)

    MATH  Google Scholar 

  5. F. Besau, T. Hack, P. Pivovarov, F.E. Schuster, Spherical Centroid Bodies (2019). ar**v:1902.10614

    Google Scholar 

  6. F. Besau, S. Schuster, Binary operations in spherical convex geometry. Indiana Univ. Math. J. 65(4), 1263–1288 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Bezdek, Illuminating spindle convex bodies and minimizing the volume of spherical sets of constant width. Discrete Comput. Geom. 47(2), 275–287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Bezdek, A new look at the Blaschke-Leichtweiss theorem. ar**v:101.00538v1

    Google Scholar 

  9. K. Bezdek, Z. Lángi, From spherical to Euclidean illumination. Monatsh. Math. 192(3), 483–492 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Blaschke, Einige Bemerkungen über Kurven and Flaschen von konstanter Breite. Ber. Verh. Sächs. Akad. Leipzig 67, 290–297 (1915)

    Google Scholar 

  11. W. Blaschke, Konvexe Bereiche gegebener konstanter Breite und kleinsten Inthalts. Math. Ann. 76, 504–513 (1915)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Bonnesen, T.W. Fenchel, Theorie der konvexen Körper. Springer, Berlin (1934) (English translation: Theory of Convex Bodies, BCS Associates, Moscow, Idaho, 1987)

    Book  MATH  Google Scholar 

  13. K.J. Böroczky, A. Sagemeister, The isodiametric problem on the sphere and the hyperbolic space. Acta Math. Hungar. 160(1), 13–32 (2020)

    Article  MathSciNet  Google Scholar 

  14. G.D. Chakerian, H. Groemer, Convex bodies of constant width, in The Collection of Surveys “Convexity and Its Applications, ed. by P.M. Gruber, J.M. Wills (Birkhäuser, Basel 1983), pp. 49–96

    Google Scholar 

  15. C.Y. Chang, C. Liu, Z. Su, The perimeter and area of reduced spherical polygons of thickness π∕2. Results Math. 75(4), 135 (2020)

    Google Scholar 

  16. L. Danzer, B. Grünbaum, V. Klee, Helly’s theorem and its relatives, in Proc. of Symp. in Pure Math., vol. VII, ed. by V. Klee (Convexity, 1963), pp. 99–180

    Google Scholar 

  17. B.V. Dekster, Completness and constant width in spherical and hyperbolic spaces. Acta Math. Hungar. 67, 289–300 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. B.V. Dekster, The Jung theorem for spherical and hyperbolic space. Acta Math. Hungar. 67(4), 315–331 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. B.V. Dekster, Double normals characterize bodies of constant width in Riemannian manifolds, in Geometric Analysis and Nonlinear Partial Differential Equations. Lecture Notes in Pure an Applied Mathematics, vol. 144 (New York, 1993), pp. 187–201

    Google Scholar 

  20. B.V. Dekster, B. Wegner, Constant width and transformality in spheres. J. Geom. 56(1–2), 25–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. H.G. Eggleston, Convexity (Cambridge University Press, Cambridge, 1958)

    Book  MATH  Google Scholar 

  22. L. Euler, it De curvis triangularibus (on triangular curves). Acta Akad. Sci. Imper. Petropolitinae 1778(II), 3–30 (1781); Opera Omnia, Series, Vol. 28, pp. 298–321

    Google Scholar 

  23. E. Fabińska, M. Lassak, Reduced bodies in normed planes. Israel J. Math. 161, 75–87 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. O.P. Ferreira, A.N. Iusem, S.Z. Németh, Projections onto convex sets on the sphere. J. Global Optim. 57, 663–676 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Fuchssteiner, W. Lucky, Convex Cones. North-Holland Mathematics Studies, vol. 56 (North-Holland, Amsterdam, 1981)

    Google Scholar 

  26. E. Gallego, A. Reventós, G. Solanes, E. Teufel, Width of convex bodies in spaces of convex curvature. Manuscr. Math. 126(1), 115–134 (2008)

    Article  MATH  Google Scholar 

  27. F. Gao, D. Hug., R. Schneider, Intrinsic volumes and polar sets in spherical space. Math. Notae 41, 159–176 (2003)

    Google Scholar 

  28. B. Gonzalez Merino, T. Jahn, A. Polyanskii, G. Wachsmuth, Hunting for reduced polytopes. Discrete Comput. Geom. 60(3), 801–808 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Groemer, Extremal convex sets. Monatsh. Math. 96, 29–39 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Q. Guo, Convexity Theory on Spherical Spaces (Scientia Sinica Mathematica, 2020)

    Google Scholar 

  31. Q. Guo, Y. Peng, Spherically convex sets and spherically convex functions. J. Convex Anal. 28, 103–122 (2021)

    MathSciNet  MATH  Google Scholar 

  32. H. Hadwiger, Kleine Studie zur kombinatorischen Geometrie der Sphäre. Nagoya Math. J. 8, 45–48 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Hadwiger, Ausgewählte Probleme der kombinatorischen Geometrie des Euklidischen und Sphärischen Raumes. L’Enseign. Math. 3, 73–75 (1957)

    MathSciNet  MATH  Google Scholar 

  34. N.N. Hai, P.T. An, A Generalization of Blaschke’s convergence theorem in metric spaces. J. Conv. Anal. 4, 1013–1024 (2013)

    MathSciNet  MATH  Google Scholar 

  35. H. Han, Maximum and minimum of support functions. ar**v:1701.08956v2

    Google Scholar 

  36. H. Han, T. Nishimura, Self-dual shapes and spherical convex bodies of constant width π∕2. J. Math. Soc. Jpn. 69, 1475–1484 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Han, T. Nishimura, Spherical method for studying Wulff shapes and related topics, in The volume “Singularities in Generic Geometry” ed. by Math. Soc. Japan. Adv. Stud. in Pure Math., vol. 78 (2018), pp. 1–53

    Google Scholar 

  38. H. Han, T. Nishimura, Wulff shapes and their duals—RIMS, Kyoto University. http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2049-04.pdf~

  39. H. Han, D. Wu, Constant diameter and constant width of spherical convex bodies. Aequat. Math. 95, 167–174 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Heil, Kleinste konvexe Körper gegebener Dicke, Preprint No. 453, Fachbereich Mathematik der TH Darmstadt (1978)

    Google Scholar 

  41. M.A. Hernandez Cifre, A.R. Martinez Fernández, The isodiametric problem and other inequalities in the constant curvature 2-spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 109(2), 315–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. A.G. Horváth, Diameter, width and thickness in hyperbolic plane. ar**v:2011.14739v1

    Google Scholar 

  43. B. Jessen, Über konvexe Punktmengen konstanter Breite. Math. Z. 29(1), 378–380 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  44. T. Kubota, On the maximum area of the closed curve of a given perimeter. Tokyo Matk. Ges. 5, 109–119 (1909)

    MATH  Google Scholar 

  45. M. Lassak, Reduced convex bodies in the plane. Israel J. Math. 70(3), 365–379 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Lassak, On the smallest disk containing a planar reduced convex body. Arch. Math. 80, 553–560 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Lassak, Area of reduced polygons. Publ. Math. 67, 349–354 (2005)

    MathSciNet  MATH  Google Scholar 

  48. M. Lassak, Approximation of bodies of constant width and reduced bodies in a normed plane. J. Convex Anal. 19(3). 865–874 (2012)

    Google Scholar 

  49. M. Lassak, Width of spherical convex bodies. Aequat. Math. 89, 555–567 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Lassak, Reduced spherical polygons. Colloq. Math. 138, 205–216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Lassak, Diameter, width and thickness of spherical reduced convex bodies with an application to Wulff shapes. Beitr Algebra Geom. 61, 369–379 (2020) (earlier in ar**v:193.041148)

    Google Scholar 

  52. M. Lassak, When is a spherical convex body of constant diameter a body of constant width? Aequat. Math. 94, 393–400 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Lassak, Complete spherical convex bodies. J. Geom. 111(2), 35 (2020), 6p (a corrected version is in ar**v:2004.1011v.2)

    Google Scholar 

  54. M. Lassak, Approximation of reduced spherical convex bodies. J. Convex Anal. (to appear). ar**v:2106.00118v1

    Google Scholar 

  55. M. Lassak, H. Martini, Reduced convex bodies in Euclidean space—a survey. Expositiones Math. 29, 204–219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Lassak, H. Martini, Reduced convex bodies in finite-dimensional normed spaces—a survey. Results Math. 66(3–4), 405–426 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Lassak M., M. Musielak, Reduced spherical convex bodies. Bull. Pol. Ac. Math. 66, 87–97 (2018)

    Google Scholar 

  58. M. Lassak, M. Musielak, Spherical bodies of constant width. Aequat. Math. 92, 627–640 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Lassak, M. Musielak, Diameter of reduced spherical convex bodies. Fasciculi Math. 61, 83–88 (2018)

    MathSciNet  MATH  Google Scholar 

  60. S.B. Lay, Convex Sets and Its Applications. A Willey-Interscience Publication (Wiley, New York, 1982)

    Google Scholar 

  61. H. Lebesgue, Sur quelques questions de minimum, relatives aux courbes orbiformes, et sur leurs rapports avec le calcul des variations. J. Math. Pures Appl. 8(4), 67–96 (1921)

    MATH  Google Scholar 

  62. K. Leichtweiss, Curves of constant width in the non-Euclidean geometry. Abh. Math. Sem. Univ. Hamburg 75, 257–284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. C. Liu, Y. Chang, Z. Su, The area of reduced spherical polygons. ar**v:2009.13268v1

    Google Scholar 

  64. H. Maehara, H. Martini, Geometric probability on the sphere. Jahresber. Dtsch. Math.-Ver. 119(2), 93–132 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  65. M. Martini, L. Montejano, D. Oliveros, Bodies of Constant Width. An Introduction to Convex Geometry with Applications (Springer Nature Switzerland AG, 2019)

    Google Scholar 

  66. H. Martini, K.J. Swanepoel, Non-planar simplices are not reduced. Publ. Math. Debrecen 64, 101–106 (2004)

    MathSciNet  MATH  Google Scholar 

  67. E. Meissner, Über Punktmengen konstanter Breite, Vjschr. Naturforsch. Ges. Zürich 56, 42–50 (1911)

    MATH  Google Scholar 

  68. J. Molnár, Über eine Übertragung des Hellyschen Satzes in sphärischen Räume. Acta Mat. Hungar. 8, 315–318 (1957)

    Article  MATH  Google Scholar 

  69. D.A. Murray, Spherical Trigonometry (Longmans Green, London, Bombay and Calcutta, 1900)

    Google Scholar 

  70. M. Musielak, Covering a reduced spherical body by a disk. Ukr. Math. J. 72(10), 1400–1409 (2020)

    MathSciNet  Google Scholar 

  71. J. Pál, Über ein elementares Variationsproblem. Bull. de l’Acad. de Dan. 3(2), 35 (1920)

    Google Scholar 

  72. A. Papadopoulos, Metric Spaces, Convexity and Nonpositive Curvature, 2nd edn. IRMA Lectures in Mathematics and Theoretical Physics. European Mathematical Society (Zürich, 2014)

    Google Scholar 

  73. A. Papadopoulos, On the works of Euler and his followers on spherical geometry. Ganita Bharati 38(1), 53–108 (2014)

    MathSciNet  MATH  Google Scholar 

  74. A. Papadopoulos, Three theorem of Menelaus. Am. Math. Monthly 126(7), 610–619 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  75. A. Pimpinelli, J. Vilain, Physics of Crystal Growth. Monographs and Texts in Statistical Physics (Cambridge University Press, Cambridge, New York, 1998)

    Google Scholar 

  76. K. Reidemeister, Über Körper konstanten Durchmessers. Math. Z. 10, 214–216 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  77. B.A. Rosenfeld, A History of Non-Euclidean Geometry (Springer, New York, 2012)

    Google Scholar 

  78. L.A. Santaló, Note on convex spherical curves. Bull. Am. Math. Soc. 50, 528–534 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  79. L.A. Santaló, Properties of convex figures on a sphere. Math. Notae 4, 11–40 (1944)

    MathSciNet  Google Scholar 

  80. L.A. Santaló, Convex regions on the n-dimensional spherical surface. Ann. Math. 47, 448–459 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  81. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151 (Cambridge University Press, 2013, Cambridge, 2014)

    Google Scholar 

  82. Y. Shao, Q. Guo, An analytic approach to spherically convex sets in S n−1. J. Math. (PRC) 38(3), 473–480 (2018)

    Google Scholar 

  83. I. Todhunter, Spherical Trigonometry, 5th edn. (Macmillan, London, 1886)

    MATH  Google Scholar 

  84. G. Toth, Measures of Symmetry for Convex Sets and Stability (Springer, Cham, 2015)

    Book  MATH  Google Scholar 

  85. G. Van Brummelen, Heavenly Mathematics. The Forgotten Art of Spherical Trigonometry (Princeton University Press, Princeton, 2013)

    Google Scholar 

  86. M.A. Whittlesey, Spherical Geometry and Its Applications (CRC Press, Taylor and Francis Group, 2020)

    MATH  Google Scholar 

  87. G. Wulff, Zur Frage der Geschwindigkeit des Wachstrums und der Auflösung der Krystallflaäschen. Z. Kryst. Mineral. 34, 449–530 (1901)

    Google Scholar 

  88. I.M. Yaglom, V.G. Boltyanskij, Convex Figures (Moscow 1951). (English translation: Holt, Rinehart and Winston, New York 1961)

    Google Scholar 

  89. C. Zălinescu, On the separation theorems for convex sets on the unit sphere. ar**v:2103.04321v1

    Google Scholar 

  90. X. Zhou, Q. Guo, Compositions and valuations on spherically convex sets. Wuhan Univ. J. Nat. Sci. (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Lassak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lassak, M. (2022). Spherical Geometry—A Survey on Width and Thickness of Convex Bodies. In: Papadopoulos, A. (eds) Surveys in Geometry I. Springer, Cham. https://doi.org/10.1007/978-3-030-86695-2_2

Download citation

Publish with us

Policies and ethics

Navigation