DAFV: A Unified and Real-Time Framework of Joint Detection and Attributes Recognition for Fast Vehicles

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Abstract

In the past decade, with the development of computing equipment and CNN, target detection has made great progress, which has promoted the development of specific target detection. The purpose of vehicle detection is not only to extract the vehicle from a large number of traffic surveillance cameras, but also for some follow-up research, such as the structured storage of vehicle information, which needs to quickly identify the attributes of the vehicle. Based on those demands, we propose a method of joint Detection and Attributes recognition for Fast Vehicles (DAFV). Firstly, we present Feature Rapidly Extract Module (FREM), which is to quickly shrink the feature map size and enhance the run-time efficiency. Secondly, we present Feature Refinement Module (FRM) to increase feature utilization rate and improve the performance. Lastly, we present the Cross-Stage and Multi-Scale (CS-MS) Module to optimize scale-invariant design. Related experiments based on UA-DETRAC dataset proves that DAFV is a feasible and effective method. The DAFV is fast and the speed does not change with the number of vehicles. For 416 \(\times \) 416 pictures, DAFV can reach 53 FPS with only 775 Mib GPU memory, which can meet the needs of real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  2. He, K., Zhang, X., Ren, S.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  3. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)

    Google Scholar 

  4. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  5. Uijlings, J.R.R., Sande, K.E.A.V.D., Gevers, T., et al.: Selective search for object recognition. Int. J. Comput. Vis. 104, 154–171 (2013). https://doi.org/10.1007/s11263-013-0620-5

    Article  Google Scholar 

  6. Lin, T.Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017)

    Google Scholar 

  7. **ong, Z., Xu, H., Li, W., et al.: Multi-source adversarial sample attack on autonomous vehicles. IEEE Trans. Veh. Technol. 70(3), 2822–2835 (2021)

    Article  Google Scholar 

  8. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525 (2017)

    Google Scholar 

  9. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  10. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, Bastian, Matas, Jiri, Sebe, Nicu, Welling, Max (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  11. Misra, D.: Mish: a self regularized non-monotonic neural activation function (2019)

    Google Scholar 

  12. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  13. Loffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015)

    Google Scholar 

  14. Szegedy, C., Loffe, S., Vanhoucke, V., et al.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  15. Wang, J., Cai, Z., Yu, J.: Achieving personalized \(k\)-anonymity-based content privacy for autonomous vehicles in CPS. IEEE Trans. Ind. Inform. 16(6), 4242–4251 (2020)

    Article  Google Scholar 

  16. **ong, Z., Cai, Z., Han, Q., et al.: ADGAN: protect your location privacy in camera data of auto-driving vehicles. IEEE Trans. Ind. Inform. 17(9), 6200–6210 (2020)

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Neural Information Processing System Foundation (NIPS), pp. 1097–1105 (2012)

    Google Scholar 

  19. Zheng, Z., Wang, P., Liu, W., et al.: Distance-IoU loss: faster and better learning for bounding box regression. In: AAAI Conference on Artificial Intelligence, pp. 12993–13000 (2020)

    Google Scholar 

  20. Wen, L., Du, D., Cai, Z., et al.: UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. Comput. Vis. Image Underst. 93, 102907 (2015)

    Google Scholar 

  21. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)

    Google Scholar 

  22. Szegedy, C., Vanhoucke, V., Loffe, S.: Rethinking the inception architecture for computer vision (2016)

    Google Scholar 

  23. Lin, Tsung-Yi., et al.: Microsoft COCO: common objects in context. In: Fleet, David, Pajdla, Tomas, Schiele, Bernt, Tuytelaars, Tinne (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  24. Wang, L., Lu, Y., Wang, H., et al.: Evolving boxes for fast vehicle detection, pp. 1135–1140 (2020)

    Google Scholar 

  25. Dai, J., Li, Y., He, K., et al.: R-FCN: object detection via region-based fully convolutional networks(2016)

    Google Scholar 

  26. Wu, Shuzhe, Kan, Meina, Shan, Shiguang, Chen, **lin: Hierarchical attention for part-aware face detection. Int. J. Comput. Vis. 127(6), 560–578 (2019). https://doi.org/10.1007/s11263-019-01157-5

    Article  Google Scholar 

  27. Cao, W.M., Chen, X.J.: Deformable convolutional networks tracker. DEStech Trans. Comput. Sci. Eng. (2019)

    Google Scholar 

  28. Fu, Z., Chen, Y., Yong, H., et al.: Foreground gating and background refining network for surveillance object detection. IEEE Trans. Image Process. 28(12), 6077–6090 (2019)

    Article  MathSciNet  Google Scholar 

  29. Yang, Y., Zhang, G., Katabi, D., et al.: ME-Net: towards effective adversarial robustness with matrix estimation (2019)

    Google Scholar 

  30. Kim, K., Kim, P., Chung, Y., et al.: Multi-scale detector for accurate vehicle detection in traffic surveillance data. IEEE Access 7, 78311–78319 (2019)

    Article  Google Scholar 

  31. Perreault, H., Bilodeau, G. A., Saunier, N., et al.: SpotNet: self-attention multi-task network for object detection, pp. 230–237 (2020)

    Google Scholar 

  32. Cai, Z., Zheng, X.: A private and efficient mechanism for data uploading in smart cyber-physical systems. IEEE Trans. Netw. Sci. Eng. 7(2), 766–775 (2018)

    Article  MathSciNet  Google Scholar 

  33. Cai, Z., Zheng, X., Yu, J.: A differential-private framework for urban traffic flows estimation via taxi companies. IEEE Trans. Ind. Inform. 15(12), 6492–6499 (2019)

    Article  Google Scholar 

  34. **e, S., Girshick, R., Dollár, P., et al.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995(2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, Y., Li, C., Li, Z., Wang, Z., Yin, G. (2021). DAFV: A Unified and Real-Time Framework of Joint Detection and Attributes Recognition for Fast Vehicles. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12938. Springer, Cham. https://doi.org/10.1007/978-3-030-86130-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86130-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86129-2

  • Online ISBN: 978-3-030-86130-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation